112 research outputs found

    Multidimensional approximation of nonlinear dynamical systems

    Get PDF
    A key task in the field of modeling and analyzing nonlinear dynamical systems is the recovery of unknown governing equations from measurement data only. There is a wide range of application areas for this important instance of system identification, ranging from industrial engineering and acoustic signal processing to stock market models. In order to find appropriate representations of underlying dynamical systems, various data-driven methods have been proposed by different communities. However, if the given data sets are high-dimensional, then these methods typically suffer from the curse of dimensionality. To significantly reduce the computational costs and storage consumption, we propose the method multidimensional approximation of nonlinear dynamical systems (MANDy) which combines data-driven methods with tensor network decompositions. The efficiency of the introduced approach will be illustrated with the aid of several high-dimensional nonlinear dynamical systems

    Artificial Neural Network Methods in Quantum Mechanics

    Full text link
    In a previous article we have shown how one can employ Artificial Neural Networks (ANNs) in order to solve non-homogeneous ordinary and partial differential equations. In the present work we consider the solution of eigenvalue problems for differential and integrodifferential operators, using ANNs. We start by considering the Schr\"odinger equation for the Morse potential that has an analytically known solution, to test the accuracy of the method. We then proceed with the Schr\"odinger and the Dirac equations for a muonic atom, as well as with a non-local Schr\"odinger integrodifferential equation that models the n+αn+\alpha system in the framework of the resonating group method. In two dimensions we consider the well studied Henon-Heiles Hamiltonian and in three dimensions the model problem of three coupled anharmonic oscillators. The method in all of the treated cases proved to be highly accurate, robust and efficient. Hence it is a promising tool for tackling problems of higher complexity and dimensionality.Comment: Latex file, 29pages, 11 psfigs, submitted in CP

    On the relationship between Bayesian error bars and the input data density

    Get PDF
    We investigate the dependence of Bayesian error bars on the distribution of data in input space. For generalized linear regression models we derive an upper bound on the error bars which shows that, in the neighbourhood of the data points, the error bars are substantially reduced from their prior values. For regions of high data density we also show that the contribution to the output variance due to the uncertainty in the weights can exhibit an approximate inverse proportionality to the probability density. Empirical results support these conclusions

    Approximate Kernel Orthogonalization for Antenna Array Processing

    Get PDF
    We present a method for kernel antenna array processing using Gaussian kernels as basis functions. The method first identifies the data clusters by using a modified sparse greedy matrix approximation. Then, the algorithm performs model reduction in order to try to reduce the final size of the beamformer. The method is tested with simulations that include two arrays made of two and seven printed half wavelength thick dipoles, in scenarios with 4 and 5 users coming from different angles of arrival. The antenna parameters are simulated for all DOAs, and include the dipole radiation pattern and the mutual coupling effects of the array. The method is compared with other state-of-the-art nonlinear processing methods, to show that the presented algorithm has near optimal capabilities together with a low computational burden.Spanish Governnment under Grant TEC2008-02473IEEE Antennas and Propagation SocietyPublicad

    Kernel Near Principal Component Analysis

    Full text link
    corecore