328 research outputs found

    Latent Fisher Discriminant Analysis

    Full text link
    Linear Discriminant Analysis (LDA) is a well-known method for dimensionality reduction and classification. Previous studies have also extended the binary-class case into multi-classes. However, many applications, such as object detection and keyframe extraction cannot provide consistent instance-label pairs, while LDA requires labels on instance level for training. Thus it cannot be directly applied for semi-supervised classification problem. In this paper, we overcome this limitation and propose a latent variable Fisher discriminant analysis model. We relax the instance-level labeling into bag-level, is a kind of semi-supervised (video-level labels of event type are required for semantic frame extraction) and incorporates a data-driven prior over the latent variables. Hence, our method combines the latent variable inference and dimension reduction in an unified bayesian framework. We test our method on MUSK and Corel data sets and yield competitive results compared to the baseline approach. We also demonstrate its capacity on the challenging TRECVID MED11 dataset for semantic keyframe extraction and conduct a human-factors ranking-based experimental evaluation, which clearly demonstrates our proposed method consistently extracts more semantically meaningful keyframes than challenging baselines.Comment: 12 page

    Kernel Methods for Machine Learning with Life Science Applications

    Get PDF

    Grassmann Learning for Recognition and Classification

    Get PDF
    Computational performance associated with high-dimensional data is a common challenge for real-world classification and recognition systems. Subspace learning has received considerable attention as a means of finding an efficient low-dimensional representation that leads to better classification and efficient processing. A Grassmann manifold is a space that promotes smooth surfaces, where points represent subspaces and the relationship between points is defined by a mapping of an orthogonal matrix. Grassmann learning involves embedding high dimensional subspaces and kernelizing the embedding onto a projection space where distance computations can be effectively performed. In this dissertation, Grassmann learning and its benefits towards action classification and face recognition in terms of accuracy and performance are investigated and evaluated. Grassmannian Sparse Representation (GSR) and Grassmannian Spectral Regression (GRASP) are proposed as Grassmann inspired subspace learning algorithms. GSR is a novel subspace learning algorithm that combines the benefits of Grassmann manifolds with sparse representations using least squares loss §¤1-norm minimization for improved classification. GRASP is a novel subspace learning algorithm that leverages the benefits of Grassmann manifolds and Spectral Regression in a framework that supports high discrimination between classes and achieves computational benefits by using manifold modeling and avoiding eigen-decomposition. The effectiveness of GSR and GRASP is demonstrated for computationally intensive classification problems: (a) multi-view action classification using the IXMAS Multi-View dataset, the i3DPost Multi-View dataset, and the WVU Multi-View dataset, (b) 3D action classification using the MSRAction3D dataset and MSRGesture3D dataset, and (c) face recognition using the ATT Face Database, Labeled Faces in the Wild (LFW), and the Extended Yale Face Database B (YALE). Additional contributions include the definition of Motion History Surfaces (MHS) and Motion Depth Surfaces (MDS) as descriptors suitable for activity representations in video sequences and 3D depth sequences. An in-depth analysis of Grassmann metrics is applied on high dimensional data with different levels of noise and data distributions which reveals that standardized Grassmann kernels are favorable over geodesic metrics on a Grassmann manifold. Finally, an extensive performance analysis is made that supports Grassmann subspace learning as an effective approach for classification and recognition

    Finger Vein Recognition Using Principle Component Analysis and Adaptive k-Nearest Centroid Neighbor Classifier

    Get PDF
    The k-nearest centroid neighbor kNCN classifier is one of the non-parametric classifiers which provide a powerful decision based on the geometrical surrounding neighborhood. Essentially, the main challenge in the kNCN is due to slow classification time that utilizing all training samples to find each nearest centroid neighbor. In this work, an adaptive k-nearest centroid neighbor (akNCN) is proposed as an improvement to the kNCN classifier. Two new rules are introduced to adaptively select the neighborhood size of the test sample. The neighborhood size for the test sample is changed through the following ways: 1) The neighborhood size, k will be adapted to j if the centroid distance of j-th nearest centroid neighbor is greater than the predefined boundary. 2) There is no need to look for further nearest centroid neighbors if the maximum number of samples of the same class is found among jth nearest centroid neighbor. Thus, the size of neighborhood is adaptively changed to j. Experimental results on theFinger Vein USM (FV-USM) image database demonstrate the promising results in which the classification time of the akNCN classifier is significantly reduced to 51.56% in comparison to the closest competitors, kNCN and limited-kNCN. It also outperforms its competitors by achieving the best reduction ratio of 12.92% whilemaintaining the classification accuracy

    Software and FPGA-Based Hardware to Accelerate Machine Learning Classifiers

    Get PDF
    This thesis improves the accuracy and run-time of two selected machine learning algorithms, the first in software and the second on a field-programmable gate array (FPGA) device. We first implement triplet loss and triplet mining methods on large margin metric learning, inspired by Siamese networks, and we analyze the proposed methods. In addition, we propose a new hierarchical approach to accelerate the optimization, where triplets are selected by stratified sampling in hierarchical hyperspheres. The method results in faster optimization time and in almost all cases, and shows improved accuracy. This method is further studied for high-dimensional feature spaces with the goal of finding a projection subspace to increase and decrease the inter- and intra class variances, respectively. We also studied hardware acceleration of random forests (RFs) to improve the classification run-time for large datasets. RFs are a widely used classification and regression algorithm, typically implemented in software. Hardware implementations can be used to accelerate RF especially on FPGA platforms due to concurrent memory access and parallel computational abilities. This thesis proposes a method to decrease the training time by expanding on memory usage on an Intel Arria 10 (10AX115N 3F 45I2SG) FPGA, while keeping high accuracy comparable with CPU implementations
    • …
    corecore