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Abstract

Nearest subspace methods (NSM) are a category of classification methods

widely applied to classify high-dimensional data. In this paper, we propose

to improve the classification performance of NSM through learning tailored

distance metrics from samples to class subspaces. The learned distance met-

ric is termed as ‘learned distance to subspace’ (LD2S). Using LD2S in the

classification rule of NSM can make the samples closer to their correct class

subspaces while farther away from their wrong class subspaces. In this way,

the classification task becomes easier and the classification performance of

NSM can be improved. The superior classification performance of using

LD2S for NSM is demonstrated on three real-world high-dimensional spec-

tral datasets.
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1. Introduction1

Classification of high-dimensional data is an important research topic [8,2

9, 10, 27, 28]. Subspace-based classification methods have been widely ap-3

plied to classify high-dimensional data. Face recognition [11, 4, 7], chemo-4

metrics [22, 2, 5, 27] and process control in engineering [14, 20, 15, 17]5

are famous application areas of subspace-based classification methods. In6

subspace-based classification methods, classes are first modelled by low-7

dimensional subspaces. Then the test sample is classified using a classifi-8

cation rule that measures the similarities between the test sample and the9

class subspaces, and the test sample is assigned to its most similar class.10

The principal component (PC) subspaces are commonly adopted as the11

low-dimensional class subspaces. They are believed to be good representa-12

tions of high-dimensional data, because most variable information in the data13

is extracted to the leading PCs and the redundant information in the original14

features is discarded.15

Two distances associated with the PC subspaces are usually used in the16

classification rules: the squared orthogonal distance (OD2) and the squared17

score distance (SD2). OD2 measures the squared orthogonal distance between18

a sample and a PC subspace [28], while SD2 measures the squared Maha-19

lanobis distance between the projection of a sample onto a PC subspace and20

the centre of the PC subspace. When the distances are used in the classifi-21

cation rule, the test sample is assigned to the class with the smallest score of22

the classification rule. In this paper, we term the PC subspace-based classifi-23

cation methods with the classification rule using distances “nearest subspace24
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methods” (NSM).25

The nearest subspace classifier (NSC) [11, 25, 4, 3, 13] and soft inde-26

pendent modelling of class analogy (SIMCA) [22, 2, 5, 18, 16, 12] are two27

famous examples of NSM. NSC and SIMCA both adopt PC subspace as28

the low-dimensional class subspace, however, they use different classification29

rules to classify a test sample. In NSC, OD2 between the test sample and30

its projection on a class subspace is used as the classification rule. The test31

sample is assigned to the class with the smallest OD2. In SIMCA, the lin-32

ear combination of OD2 and SD2 is usually used as the classification rule.33

The test sample is assigned to the class with the smallest score of the linear34

combination.35

However, the standard distances OD2 and SD2 may not always be able to36

capture or reflect well the mechanism underlying the semantic similarity or37

dissimilarity between the sample and the subspace. In fact, this is also the38

case with other generic distance metrics, such as the Euclidean distance and39

the Mahalanobis distance. This has led to the proposals of metric learning40

in the machine learning community, which enables automatic learning of a41

tailored distance metric from the data available.42

More specifically, given the PC class subspaces, the distances used in the43

classification rule play vital roles in classification. Currently, OD2 and SD2
44

are the two distances widely used in the classification rule, both of which45

use predetermined distance metrics: OD2 uses the Euclidean distance while46

SD2 uses the Mahalanobis distance. However, different data usually prefer47

different distance metrics to reflect different semantic concepts of dissimilar-48

ity or similarity in the context of problems, and hence adapting the distance49
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metrics to different data can be expected to improve the classification perfor-50

mance of NSM. On the other hand, distance metric learning methods emerg-51

ing in the machine learning community provide us a tool to learn tailored52

distance metrics automatically from data and to improve the classification53

performance [23, 21, 26, 19, 24].54

However, the existing distance metric learning methods in the literature55

aim to improve the classification methods that are based on distances between56

samples, such as k-nearest neighbours (kNN). Thus the distance metrics57

that they learned are for the distances between samples. But unfortunately58

the distance metrics used in NSM measure the distances between samples59

and class subspaces. This makes those established distance metric learning60

methods unable to be applied directly to NSM.61

Therefore in this paper, we propose a distance metric learning method62

tailored for NSM to improve its classification performance. We first analyse63

the classification rules of NSM adopted in the literature, and we derive a64

general formulation for them. We show that the general formulation is based65

on two parameterisation matrices with different sizes; hence different classi-66

fication rules of NSM in the literature can be shown actually using different67

distance metrics within the general formulation.68

We define this general formulation as the distance metric from a sample69

to a class subspace, and propose a method of learning distance to subspace,70

to automatically learn the two parameterisation matrices that define the71

distance metric. Then, inspired by the distance metric learning strategy,72

we learn this distance metric based on a set of distance-to-subspace-based73

similarity/dissimilarity constraints: the samples are similar to their correct74
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class subspaces while are dissimilar from the wrong class subspaces. Using75

the learned distance as the similarity measure, we aim to make the samples76

to be closer to their correct class subspaces while be farther away from their77

wrong class subspaces. We term this distance metric “learned distance to78

subspace (LD2S)”.79

The contributions of this paper are summarised as follows.80

First, we are the first to derive a general formulation for the classification81

rules of nearest subspace methods used in literature. Based on the general for-82

mulation, we can design new classification rules, by specifying M k
1 and M k

2.83

This formulation is a guidance for researchers to design new classification84

rules for nearest subspace methods with better classification performance.85

Second, based on the general formulation, we develop a novel distance86

metric learning method for nearest subspace methods. Most of the current87

literature of distance metric learning methods are only designed for clas-88

sification methods based on distances between samples. Here we design a89

distance metric learning method for methods based on distances between a90

sample and a subspace. In this paper, we have shown an effective distance91

metric learning method, LS2D, to classify high-dimensional data.92

To evaluate the effectiveness of LD2S, we compare the the classification93

performances of NSC [4], SIMCA [22, 2] and NSM with the classification94

rule learned from LD2S (NSM-LD2S) using three real-world high-dimensional95

datasets.96
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2. Methodology97

2.1. NSM98

2.1.1. PC class subspace99

Given the training set of class k (k = 1, 2), Xk ∈ Rnk×p, we build the PC100

class subspace of the kth class by using the reduced singular value decompo-101

sition (SVD):102

Xk(c) = U qkDqkV
T
qk
, (1)

where Xk(c) is the column-centred training set, the rows of U qk ∈ Rnk×qk103

(qk = rank(Xk(c))) are the standardised PC scores, Dqk ∈ Rqk×qk is a diag-104

onal matrix with singular values d1 ≥ d2 ≥ . . . ≥ dqk ≥ 0 on the diagonal,105

and the columns of V qk ∈ Rp×qk are the PCs. The PC score is defined as106

T qk = U qkDqk = Xk(c)V qk ∈ Rnk×qk . (2)

If we select the first rk ≤ qk PCs to build the kth class subspace, then107

Xk(c) = U rkDrkV
T
rk

+ Ek, (3)

where U rk ∈ Rnk×rk , Drk ∈ Rrk×rk , V rk ∈ Rp×rk , and Ek ∈ Rnk×p is the108

residual matrix when reconstructing the training samples Xk(c) using the109

first rk PCs. The PC subspace spanned by the first rk PCs is associated110

with a unique projection matrix P k = V rkV
T
rk
∈ Rp×p. We denote the PC111

subspace for class k as Lk.112

Projecting a new sample xnew ∈ R1×p to the PC class subspace, we could113
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obtain114

xk,new(c) = tk,newV T
rk

+ ek,new, (4)

where xk,new(c) is the centred xnew by the column means of Xk, t
k,new ∈ R1×r

115

is the PC score of the new sample, and ek,new ∈ R1×p is the residual of116

reconstructing the new sample by the PC class subspace.117

2.1.2. Two distances associated with the PC class subspace118

Given the PC class subspaces, the new sample xnew is classified using a119

classification rule that is based on two distances related the PC class sub-120

spaces: the squared orthogonal distance (OD2) and the squared score dis-121

tance (SD2). In this section, we discuss the calculation and the geometric122

intuition of OD2 and SD2.123

The squared orthogonal distance. The squared orthogonal distance from xcnew124

to the subspace of the kth class, OD2
k, is defined based on the residual ek,new125

in (4):126

OD2
k =

p∑
j=1

(ek,newj )2 = ek,new(ek,new)T , (5)

which is the squared Frobenius norm of ek,new.127

Rewriting (4), we have128

ek,new = xk,new(c) − xk,new(c) P k = xk,new(c) (Ip − P k), (6)

where Ip denotes the p-by-p identity matrix. The ek,new can then be con-129

sidered as the difference vector between xk,new(c) and its projection on Lk,130

xk,new(c) P k. The orthogonal complement of Lk is L⊥k which has the projection131
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matrix Ip −P k. Thus ek,new is also the projection of xk,new(c) to the subspace132

L⊥k . Since ek,new is orthogonal to Lk, the distance based on ek,new is called133

the orthogonal distance. An illustration of OD2
k in a 3-dimensional feature

X(c)
k,new

Pk

enew

Lk

X(c)
k,new

Figure 1: An illustration of OD2
k in a 3-dimensional feature space.

134

space is shown in Figure 1. The new instance xk,new(c) is shown as the black135

dot; the class subspace Lk is shown as the dark blue 2-dimensional plane;136

and the projection of xk,new(c) to Lk, xk,new(c) P k, is shown as the black triangle.137

The residual ek,new is represented by the red solid line segment, which is138

orthogonal to the plane Lk. The square of the length of the red line segment139

is OD2
k.140

The squared score distance. The squared score distance to class k, SD2
k, is141

defined as the Mahalanobis distance from the projection of xk,new(c) to the142

centre of the subspace Lk:143

SD2
k =

rk∑
i=1

(tk,newi /di)
2 = tk,newD−2rk (tk,new)T , (7)
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where Drk is the diagonal matrix of singular values in (3). SD2
k is the144

reweighted squared Frobenius norm of tk,new with weights 1/di (i = 1, 2, . . . , r)145

and 1/d1 ≤ 1/d2 ≤ . . . ≤ 1/drk . An illustration of SD2
k in a 3-dimensional

X(c)
k,new

Pk

enew

Centre
Lk

X(c)
k,new

Figure 2: An illustration of SD2
k in a 3-dimensional feature space.

146

feature space is shown in Figure 2. In addition to the symbols in Figure 1,147

the centre of the class subspace, Lk, is shown as the black star, and the or-148

ange dashed line connects the centre of the class subspace and the projection149

of xk,new(c) to the class subspace. The SD2
k is then the reweighted length of the150

orange dashed line.151

2.1.3. The classification rules152

In NSC, the classification rule is153

OD2
k. (8)

NSC assigns xnew to the class with the smallest OD2
k.154
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In SIMCA, a linear combination of OD2
k and SD2

k is often used as the155

classification rule [2]:156

γ

(
ODk

ck
OD2

)2

+ (1− γ)

(
SDk

ck
SD2

)2

, (9)

where γ ∈ [0, 1] and ck
OD2 and ck

SD2 are the cutoff values of OD2
k and SD2

k157

calculated from the training set of the kth class. When γ = 1, (9) only158

depends on OD2
k, and is the same as (8) if the cutoff value ck

OD2 in (9) is one.159

When γ = 0, (9) only depends on SD2
k. In practice, the value of γ can be set160

by the users based on their prior knowledge of the importance of OD2
k and161

SD2
k, or can be tuned by cross-validation using the training set.162

2.2. A general formulation for the classification rules for NSM163

Although the classification rules in NSM are in different forms, as shown164

in (8) and (9), we shall show that they can be written using the following165

general formulation:166

xk,new(c) M k
1(xk,new(c) )T − tk,newM k

2(tk,new)T , (10)

with different M k
1 ∈ Rp×p and M k

2 ∈ Rrk×rk . In this section, we derive this167

general formulation based on the classification rules (8) and (9), and show168

M k
1 and M k

2 for (8) and (9), respectively. Based on the derived general169

formulation of the classification rules, we will define the distance to subspace170

and propose a method to learn the distance to subspace in the next section.171
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Substituting (6) into (5), we obtain

OD2
k = (xk,new(c) − xk,new(c) P k)(x

k,new
(c) − xk,new(c) P k)

T

= xk,new(c) (xk,new(c) )T − 2xk,new(c) P k(x
k,new
(c) )T + xk,new(c) P 2

k(x
k,new
(c) )T

= xk,new(c) (xk,new(c) )T − xk,new(c) P k(x
k,new
(c) )T

= xk,new(c) (xk,new(c) )T − tk,new(tk,new)T , (11)

which indicates that OD2
k is the difference between the squared Frobenius172

norm of xk,new(c) and the squared Frobenius norm of tk,new. This is intuitive if173

we think about the right-angled triangle formed by xk,new(c) , xk,new(c) P k and the174

centre of Lk in Figure 2.175

Then the classification rule (8) can be written as

xk,new(c) (xk,new(c) )T − tk,new(tk,new)T

= xk,new(c) M k
1(NSC)(x

k,new
(c) )T − tk,newM k

2(NSC)(t
k,new)T , (12)

where M k
1(NSC) = Ip and M k

2(NSC) = Irk . Equation (12) indicates that176

the classification rule of NSC provides equal weights to the p dimensions177

in the linear combination of the original features xk,new(c) (xk,new(c) )T and also178

equal weights to the rk dimensions in the linear combination of the scores179

tk,new(tk,new)T .180
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Similarly, for the classification rule of SIMCA, we substitute (11) to (9):

γ

(ck
OD2)2

(xk,new(c) (xk,new(c) )T − tk,new(tk,new)T ) +
1− γ

(ck
SD2)2

tk,newD−2r (tk,new)T

=
γ

(ck
OD2)2

xk,new(c) (xk,new(c) )T −
r∑
i=1

(− 1− γ
(ck

SD2)2
+

γ

(ck
OD2)2d2i

)t2i

= xk,new(c) M k
1(S)(x

k,new
(c) )T − tk,newM k

2(S)(t
k,new)T , (13)

where M k
1(S) = 1

h1
Ip, h1 = γ

(ck
OD2 )

2 and M k
2(S) is an rk-by-rk diagonal matrix181

with (− 1−γ
(ck

SD2 )
2 + γ

(ck
OD2 )

2d2i
) on the diagonals (di’s are the singular values in182

D with d1 ≥ d2 ≥ . . . ≥ drk ≥ 0). Different from the classification rule of183

NSM in (12), the rule in (13) indicates that the classification rule of SIMCA184

provides equal weights to the p dimensions in the linear combination of the185

the original features xk,new(c) (xk,new(c) )T , while providing different weights to the186

rk dimensions in the linear combination of the scores tk,new(tk,new)T .187

2.3. Learning distance to subspace188

We define the general formulation (10) as the distance from xnew to the189

kth class subspace. Hence we assign xnew to the nearest class subspace based190

on the distance to subspace defined in (10).191

The distance to subspace for the kth class defined in (10) depends on192

two matrices: M k
1 and M k

2. It can be treated as the difference between two193

squared distances: xk,new(c) M k
1(xk,new(c) )T is the squared distance from xk,new(c)194

to the centre of the class subspace Lk, and tk,newM k
2(tk,new)T is the squared195

distance from the projection of xk,new(c) to Lk to the centre of Lk.196

The matrices M k
1 and M k

2 are of great importance for classification.197

Instead of determining M k
1 and M k

2 manually as in [22] and [2], distance198
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metric learning methods offer us a path to learn more appropriate distance199

metrics automatically from the training data to improve the classification200

performance.201

Distance metric learning methods aim to learn distance metrics based202

on a set of similarity/dissimilarity constraints: the samples from the same203

class should be similar while the samples from different classes should be204

dissimilar. Thus the samples from the same class are close together while the205

samples from different classes are farther away from each other, based on the206

distance metric learned from the training data. In this way, the classification207

task becomes easier and we can expect better classification performance using208

the learned distance metrics.209

Established distance metric learning methods are sample-based, i.e. the210

distances that they learned are measured between samples. However, in211

NSM, the distance is calculated between a sample and a class subspace. Thus212

we need to develop a new method of learning the distance metric from sample213

to subspace, to learn the distance metrics in NSM. The learned distance214

metrics are termed “learned distance to subspace (LD2S)”. Inspired by the215

constraints used in established distance metric learning methods, we propose216

the following set of similarity/dissimilarity constraints for LD2S: the samples217

should be similar to their true class while dissimilar from the wrong classes.218

In other words, we aim to learn M k
1 and M k

2, such that the samples are close219

to their true classes while farther away from the wrong classes.220

2.3.1. Distance metric221

In this section, we briefly review the definition of distance metric. Given a222

set of data points {x1,x2, ...,xN} in R1×p with a set of labels {y1, y2, ..., yN},223
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the distance metric d(xi,xj) between two data points xi and xj should satisfy224

the following properties:225

1. d(xi,xj) ≥ 0 (non-negativity),226

2. d(xi,xj) = 0 if and only if xi = xj (identity),227

3. d(xi,xj) = d(xj,xi) (symmetry),228

4. d(xi,xj) ≤ d(xi,xk) + d(xj,xk) (triangle inequality), where xk is an229

instance that is different to xi and xj.230

A distance metric is known as a pseudo metric when the second property231

is relaxed to: d(xi,xj) = 0 if xi = xj.232

Most of the metric learning algorithms aim to learn a Mahalanobis distance-233

like pseudo metric:234

dM(xi,xj) =
√

(xi − xj)M (xi − xj)T , (14)

which is parameterised by M . The matrix M is set to be positive semidefi-235

nite to ensure that dM(xi,xj) is a pseudo metric. If M is the inverse of the236

sample variance, then dM(xi,xj) is the Mahalanobis distance. If M is the237

identity matrix, then dM(xi,xj) is exactly the Euclidean distance.238

2.3.2. Distance to subspace239

Different from the distance metric between two samples xi and xj defined240

in (14), we define the squared distance metric between a sample x and a class241

subspace Lk using the general formulation in (10):242

d2(x,Lk) = xk(c)M
k
1(xk(c))

T − tkM k
2(tk)T , (15)
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where xk(c) denotes the sample mean-centred by the mean of the training243

samples of the kth class, M k
1 ∈ Rp×p is the parameterisation matrix for the244

distance in the original feature space of the kth class, tk is the PC score of the245

sample when projected to the PC subspace of the kth class, and M k
2 ∈ Rrk×rk246

is the parameterisation matrix for the distance in the PC subspace of the kth247

class. Then d2(x,Lk) can be treated as the difference between the squared248

distance from the sample (column-centred by the column means of class k) to249

the centre of Lk and the squared distance from the projection of the sample250

to the centre of Lk.251

2.3.3. Learned distance to subspace252

To learn good distance metrics between samples and class subspaces, we253

propose the following similarity/dissimilarity constraints: the samples are254

similar to their correct class subspaces while are dissimilar to the wrong255

class subspaces. To formulate the constraints, we define the following simi-256

larity/dissimilarity sets:257

S = {(xi,Lk) | xi belongs to class k}, and258

D = {(xi,Lk) | xi does not belong to class k}.259

In the following part, the training samples from class 1 are denoted by260

subscript 1(i), i.e. x1(i) ∈ R1×p and X1 = [xT1(1), . . . ,x
T
1(n1)

]T ∈ Rn1×p, and the261

training samples from class 2 are denoted by subscript 2(j), i.e. x2(j) ∈ R1×p
262

and X2 = [xT2(1), . . . ,x
T
2(n2)

]T ∈ Rn2×p. Thus the similarity/dissimilarity sets263

become264

S = {(x1(i),L1), (x2(j),L2) | i = 1, 2, . . . , n1, j = 1, 2, . . . , n2}, and265

D = {(x1(i),L2), (x2(j),L1) | i = 1, 2, . . . , n1, j = 1, 2, . . . , n2}.266

One straightforward way to find tailored distance metrics is to minimise

15



the sum of the distances between the samples and the class subspaces that

fall into the similarity set S, while maximise the sum of those that fall into

the dissimilarity set D. However, simply optimising the sums of the distances

suffers from losing the information in individual samples. Hence, instead of

treating all training samples together, we aim to make the difference between

the distance to the wrong class and the distance to the correct class large

enough for each training sample by using the following constraints:

d2(x1(i),L2)− d2(x1(i),L1) ≥ 1, for i = 1, . . . , n1, and

d2(x2(j),L1)− d2(x2(j),L2) ≥ 1, for j = 1, . . . , n2. (16)

In this way, the samples can be classified more easily. In addition, to en-

hance the generalisation ability of the learned distance metrics, we add slack

variables ξ1(i) and ξ2(j) to the constraints and aim to solve the following op-

timisation problem:

min
ξ1(i),ξ2(j),M

k
1 ,M

k
2

n1∑
i=1

ξ1(i) +

n2∑
j=1

ξ2(j) (17)

s.t. d2(x1(i),L2)− d2(x1(i),L1) ≥ 1− ξ1(i), ξ1(i) ≥ 0, (18)

d2(x2(j),L1)− d2(x2(j),L2) ≥ 1− ξ2(j), ξ2(j) ≥ 0, (19)

M k
1 � 0 and M k

2 � 0, (20)

where M k
1 � 0 and M k

2 � 0 denote that M k
1 and M k

2 are positive semidefi-
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nite. The constraints in (18) and (19) can be rewritten as

ξ1(i) ≥ [1 + d2(x1(i),L1)− d2(x1(i),L2)]+ and

ξ2(j) ≥ [1 + d2(x2(j),L2)− d2(x2(j),L1)]+,

where [l]+ = max(0, l). Hence the optimisation problem is equivalent to

min
Mk

1 ,M
k
2

n1∑
i=1

[1 + d2(x1(i),L1)− d2(x1(i),L2)]++

n2∑
j=1

[1 + d2(x2(j),L2)− d2(x2(j),L1)]+

s.t. M k
1 � 0, M k

2 � 0. (21)

The hinge losses used in (21) only penalise the samples that do not satisfy267

(16), while assign zero loss for the samples that satisfy (16) using NSM.268

In this way, the hinge loss makes full use of the effectiveness of NSM. It269

is worth noting that the hinge loss has also been popularly used in other270

distance-based classifiers, such as support vector machine (SVM) and large271

margin nearest neighbour (LMNN) classification [21].272

Suppose M k∗
1 and M k∗

2 (k = 1, 2) denote the solutions of (21). Then the273

learned distance from a test sample xnew to the kth class subspace is274

d2(xnew,Lk) = xk,new(c) M k∗
1 (xk,new(c) )T − tk,newM k∗

2 (tk,new)T . (22)

We compare d2(xnew,L1) and d2(xnew,L2), and assign xnew to the class with275

the smallest squared distance.276

Considering the nature of spectral data, i.e. high-dimensional feature and277
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small sample size, learning the full matrices, M k
1 with p(p+ 1)/2 parameters278

and M k
2 with rk(rk+1)/2 parameters, could easily suffer from the overfitting279

problem. In (12) and (13), M k
1(NSC) = Ip and M k

1(S) = 1
h1
Ip are identity280

matrices with common coefficients 1 and 1/h1 for all dimensions, respectively.281

Therefore, in this paper, we learn M k
1 = ckIp(with ck ≥ 0) and M k

2 =282

diag(mk
21,m

k
22, . . . ,m

k
2rk

) (with each element nonnegative), as natural and283

practically-interpretable extensions of those used in (12) and (13).284

3. Experiments285

In the following experiments, NSC, SIMCA and NSM with distance mea-286

surement (22) (NSM-LD2S) are compared using high-dimensional spectral287

data, the Phenyl dataset, the fat dataset [6] and the meat dataset [1]. We288

also compare the classification results of the nearest subspace methods with289

those of naive Bayes (NB), k nearest neighbours (kNN) and support vector290

machine (SVM), to show the effectiveness of the nearest subspace methods291

to classify high-dimensional data.292

3.1. Datasets293

The number of samples in each class and the number of features for the294

three high-dimensional spectral datasets are summarised in Table 1.295

Table 1: The number of samples in each class, n1 and n2, and the number of features p
for the three high-dimensional spectral datasets.

n1 n2 p
Phenyl 300 300 658

Fat 122 71 100
Meat 54 55 1050

18



100 200 300 400 500 600
0

20

40

60

80

100

120

m/z

R
el

at
iv

e 
ab

un
da

nc
e

 

 

Do not contain Phenyl
Contain Phenyl

(a) The Phenyl dataset.

10 20 30 40 50 60 70 80 90 100
2

2.5

3

3.5

4

4.5

5

5.5

6

Wavelengths

A
bu

nd
an

ce

 

 

Less than 20%
More than 20%

(b) The fat dataset.

100 200 300 400 500 600 700 800 900 1000
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Wavelengths

1/
lo

g(
re

fle
ct

an
ce

)

 

 

Chicken samples
Turkey samples

(c) The meat dataset.

Figure 3: The plots of the spectra of the three datasets.

3.1.1. The Phenyl dataset296

The Phenyl dataset is available in the ‘chemometrics’ R package, which297

contains 300 spectra with the phenyl substructure and 300 spectra without298

the phenyl substructure. The spectra are measured at 658 wavelengths. To299

avoid confusing, the spectra of two instances from two classes are shown in300

Figure 3a.301

3.1.2. The fat dataset302

The fat dataset contains 193 spectra of finely chopped meat, measured at303

100 wavelengths [6]. The fat dataset consists of 122 spectra of meat samples304

with less than 20% fat and 71 spectra of meat samples with more than 20%305

fat. The spectra of all samples are shown in Figure 3b.306

3.1.3. The meat dataset307

The meat dataset [1] contains the spectra of five classes of meat sam-308

ples, measured at 1050 wavelengths. We select the chicken and turkey meat309

samples from the original dataset in the experiments, because they contain310

similar chemical components and are hard to classify. The new meat dataset311

19



contains the spectra of 55 chicken samples and the spectra of 54 turkey sam-312

ples. The spectral of all samples are shown in Figure 3c.313

3.2. Experiment settings314

The classification performances of the three methods are shown for five315

different ratios of training set size/feature dimension: n1/p = n2/p = 0.1,316

0.2, 0.3, 0.4 and 0.5.317

For the Phenyl dataset, we randomly select 100 samples with Phenyl318

structure and 100 samples without Phenyl structure. For illustrative pur-319

poses, we select the first 100 dimensions from the 658 feature dimensions for320

the experiments in this paper, i.e. p = 100.321

For the fat dataset, we use all the 120 meat samples with less than 20%322

fat and 71 meat samples with more than 20% fat in the dataset. We also use323

all the dimensions of the fat dataset, i.e. p = 100.324

For the meat dataset, we use all the 55 chicken samples and 54 turkey325

samples in the dataset. Again for illustrative purposes, we also select the first326

100 dimensions from the 350 dimensions for the experiments in this paper,327

i.e. p = 100.328

Therefore, as p = 100 for each of the three datasets, the five training set329

sizes are n1 = n2 = 10, 20, 30, 40 and 50. The samples to form a training330

set are randomly selected from a dataset. The rest samples in the datasets331

are used as test samples.332

In NSC, SIMCA and NSM-LD2S, the numbers of PCs, rk, are tuned by333

5-fold cross-validation using the training set to minimise the classification334

error. More specifically, for each value of rk, we calculate the mean classi-335

fication error of the 5-fold cross-validation. The value with the minimum336
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mean classification error is chosen as the number of PCs.337

In SIMCA, ckOD = (µ̂ + σ̂z0.975)
3/2, where µ̂ and σ̂ are the mean and the338

standard deviation of the orthogonal distances in of the training samples in339

class k; and ckSD =
√
χ2
nk;0.975

. The weight γ is also tuned by 5-fold cross-340

validation using the training data.341

In NSM-LD2S, the optimisation problem (21) is solved by ‘cvx’ in MAT-342

LAB.343

In SVM, the radial basis function (RBF) kernel is adopted. The scale344

parameter of the RBF kernel and the penalty factor C are tune by 5-fold345

cross-validation. The values of the two parameters to be chosen are set to346

10, 102 and 103. In kNN, the number of nearest neighbours is tuned by 5-347

fold cross-validation. The values to be chosen are set to 3, 5 and 7. In NB,348

the prior probability of each class is set as the proportion of the number of349

training samples of that class over the total number of training samples.350

All the random training/test splits and the subsequent experiments are351

repeated 100 times and the classification accuracies of the test data are352

recorded.353

3.3. Results354

3.3.1. The Phenyl dataset355

The classification results of the Phenyl dataset demonstrate the superior356

classification performance of NSM-LD2S, as shown in Figure 4 and Figure 5,357

compared with NSC and SIMCA over all nk/p ratios. It is clear that SVM358

performs better than the three nearest subspace methods for this dataset.359

kNN and NB are also better than the three nearest subspace methods when360

nk/p becomes large.361
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Figure 4: Classification accuracies of NB, kNN, SVM, NSC, SIMCA and NSM-LD2S for
the Phenyl dataset.
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Figure 5: Mean classification accuracies of NB, kNN, SVM, NSC, SIMCA and NSM-LD2S
for the Phenyl dataset.
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However, it is conceivable that, for certain other datasets, the classifica-362

tion performance of NSM-LD2S cannot always be better than those of NSC363

and SIMCA, in particular under small nk/p ratios. In the following two364

sections, we show two examples that NSM-LD2S performs worse than NSC365

and SIMCA for small nk/p ratios but better for large nk/p ratios. This is366

because there are more parameters in NSM-LD2S to be learned than in NSC367

and SIMCA, and NSM-LD2S needs more training samples to achieve good368

classification performance for some data. In addition, the classification per-369

formances of NB, kNN and SVM are also not always better than the nearest370

subspace methods. The following two examples can also demonstrate this371

argument.372

3.3.2. The fat dataset373

In the fat dataset, the classification performance of NSM-LD2S and SIMCA374

are worse than NSC when nk/p = 0.1 and are better than NSC when375

nk/p ≥ 0.2, as shown in Figure 6 and Figure 7. NSM-LD2S provides the376

best classification performance when nk/p ≥ 0.2.377

It is obvious that NB has the worst mean classification accuracies for all378

nk/p ratios. kNN performs similarly to NSM-LD2S. SVM performs similarly379

to SIMCA when nk/p = 0.1 and performs worse than the three nearest380

subspace methods for all other nk/p ratios.381

3.3.3. The meat dataset382

Compared with the fat dataset, the classification accuracies of the three383

methods for the meat dataset show a stronger effect of the nk/p ratios. When384

nk/p < 0.4, NSM-LD2S performs much worse than NSC and SIMCA, espe-385
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(e) n1/p = n2/p = 0.5.

Figure 6: Classification accuracies of NB, kNN, SVM, NSC, SIMCA and NSM-LD2S for
the fat dataset.
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Figure 7: Mean classification accuracies of NB, kNN, SVM, NSC, SIMCA and NSM-LD2S
for the fat dataset.
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Figure 8: Classification accuracies of NB, kNN, SVM, NSC, SIMCA and NSM-LD2S for
the meat dataset.
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Figure 9: Mean classification accuracies of NB, kNN, SVM, NSC, SIMCA and NSM-LD2S
for the meat dataset.

cially for nk/p = 0.1. However, when nk/p = 0.5, the classification accuracies386

of NSM-LD2S become much better than those of NSC and SIMCA, as shown387

in Figure 8(e) and Figure 9. The classification results of the meat dataset388

suggest that NSM-LD2S needs nk/p > 0.4 to achieve superior classification389

performance for the meat dataset.390

Similarly to the fat dataset, NB and SVM have the worst classification391

performances for nk/p > 0.1 for the meat dataset. kNN performs worse than392

the nearest subspace methods for the meat dataset.393

3.3.4. Summary of the results394

The experiments show that using the learned distance metrics from data395

can provide superior classification results, compared with using predeter-396

mined distance metrics, when the nk/p ratio is large enough. For data with397

small nk/p ratios, using the distance measurement based on LD2S may per-398

form poorly in classification since the nk/p ratio is not large enough to learn399
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all the parameters in LD2S.400

It is worth noting that the nearest subspace methods are effective to401

classify high-dimensional data. One important reason is that they find the402

low-dimensional subspace representation for each class to extract the most403

informative feature. Our proposed LD2S is an additional step to improve404

the classification performance of the nearest subspace methods, based on405

the feature-extracted data. LD2S can obtain better distance measurements406

between a sample and a subspace, which has a positive effect on classifi-407

cation accuracies. As demonstrated by the experiment results, NSM-LD2S408

can achieve better classification accuracies than NSM and SIMCA, which409

shows the effectiveness of LD2S in addition to feature extraction in NSM410

and SIMCA.411

4. Conclusion412

We have proposed a general formulation of distance to subspace, i.e. the413

distance from a sample to a PC class subspace. Based on this formulation,414

we have proposed a simple but effective LD2S method that can learn tailored415

distance metrics adaptively from data, for the classification rule of NSM. The416

classification performances on three datasets demonstrate the effectiveness of417

learning distance metrics from data when the nk/p ratio is large enough. The418

current LD2S is designed for binary classification. A multi-class version of419

LD2S is needed for more general and practical cases and we identify this as420

our future work.421
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