42,052 research outputs found

    The kernel Kalman rule: efficient nonparametric inference with recursive least squares

    Get PDF
    Nonparametric inference techniques provide promising tools for probabilistic reasoning in high-dimensional nonlinear systems. Most of these techniques embed distributions into reproducing kernel Hilbert spaces (RKHS) and rely on the kernel Bayes’ rule (KBR) to manipulate the embeddings. However, the computational demands of the KBR scale poorly with the number of samples and the KBR often suffers from numerical instabilities. In this paper, we present the kernel Kalman rule (KKR) as an alternative to the KBR. The derivation of the KKR is based on recursive least squares, inspired by the derivation of the Kalman innovation update. We apply the KKR to filtering tasks where we use RKHS embeddings to represent the belief state, resulting in the kernel Kalman filter (KKF). We show on a nonlinear state estimation task with high dimensional observations that our approach provides a significantly improved estimation accuracy while the computational demands are significantly decreased

    Subgradient-Based Markov Chain Monte Carlo Particle Methods for Discrete-Time Nonlinear Filtering

    Get PDF
    This work shows how a carefully designed instrumental distribution can improve the performance of a Markov chain Monte Carlo (MCMC) filter for systems with a high state dimension. We propose a special subgradient-based kernel from which candidate moves are drawn. This facilitates the implementation of the filtering algorithm in high dimensional settings using a remarkably small number of particles. We demonstrate our approach in solving a nonlinear non-Gaussian high-dimensional problem in comparison with a recently developed block particle filter and over a dynamic compressed sensing (l1 constrained) algorithm. The results show high estimation accuracy

    Implementation of adaptive kernel Kalman filter in stone soup

    Get PDF
    The recently proposed adaptive kernel Kalman filter (AKKF) is an efficient method for highly nonlinear and high-dimensional tracking or estimation problems. Compared to other nonlinear Kalman filters (KFs), the AKKF has significantly improved performance, reducing computational complexity and avoiding resampling. It has been applied in various tracking scenarios, such as multi-sensor fusion and multi-target tracking. By using existing Stone Soup components, along with newly established kernel-based prediction and update modules, we demonstrate that the AKKF can work in the Stone Soup platform by being applied to a bearing–only tracking (BOT) problem. We hope that the AKKF will enable more applications for tracking and estimation problems, and the development of a whole class of derived algorithms in sensor fusion systems

    Identification of nonlinear lateral flow immunoassay state-space models via particle filter approach

    Get PDF
    This is the post-print of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, the particle filtering approach is used, together with the kernel smoothing method, to identify the state-space model for the lateral flow immunoassay through available but short time-series measurement. The lateral flow immunoassay model is viewed as a nonlinear dynamic stochastic model consisting of the equations for the biochemical reaction system as well as the measurement output. The renowned extended Kalman filter is chosen as the importance density of the particle filter for the purpose of modeling the nonlinear lateral flow immunoassay. By using the developed particle filter, both the states and parameters of the nonlinear state-space model can be identified simultaneously. The identified model is of fundamental significance for the development of lateral flow immunoassay quantification. It is shown that the proposed particle filtering approach works well for modeling the lateral flow immunoassay.This work was supported in part by the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, Natural Science Foundation of China under Grants 61104041, International Science and Technology Cooperation Project of Fujian Province of China under Grant 2009I0016
    corecore