334 research outputs found

    A Comprehensive Survey on Deep Graph Representation Learning

    Full text link
    Graph representation learning aims to effectively encode high-dimensional sparse graph-structured data into low-dimensional dense vectors, which is a fundamental task that has been widely studied in a range of fields, including machine learning and data mining. Classic graph embedding methods follow the basic idea that the embedding vectors of interconnected nodes in the graph can still maintain a relatively close distance, thereby preserving the structural information between the nodes in the graph. However, this is sub-optimal due to: (i) traditional methods have limited model capacity which limits the learning performance; (ii) existing techniques typically rely on unsupervised learning strategies and fail to couple with the latest learning paradigms; (iii) representation learning and downstream tasks are dependent on each other which should be jointly enhanced. With the remarkable success of deep learning, deep graph representation learning has shown great potential and advantages over shallow (traditional) methods, there exist a large number of deep graph representation learning techniques have been proposed in the past decade, especially graph neural networks. In this survey, we conduct a comprehensive survey on current deep graph representation learning algorithms by proposing a new taxonomy of existing state-of-the-art literature. Specifically, we systematically summarize the essential components of graph representation learning and categorize existing approaches by the ways of graph neural network architectures and the most recent advanced learning paradigms. Moreover, this survey also provides the practical and promising applications of deep graph representation learning. Last but not least, we state new perspectives and suggest challenging directions which deserve further investigations in the future

    Performing Short-Term Travel Time Prediction on Arterials

    Get PDF
    As urban centers become larger and more densely developed, their roadway networks tend to experience more severe congestion for longer periods of the day and increasingly unreliable travel times. Proactive traffic management (PTM) strategies such as proactive traffic signal control systems and advanced traveler information systems provide the potential to cost effectively improve road network operations. However, these proactive management strategies require an ability to accurately predict near-future traffic conditions. Traffic conditions can be described using a variety of measures of performance and travel time is one of the most valued by both travelers and transportation system managers. Consequently, there exists a large body of literature dedicated to methods for performing travel time prediction. The majority of the existing body of research on travel time prediction has focused on freeway travel time prediction using fixed point sensor data. Predicting travel times on signalized arterials is more challenging than on freeways mainly as a result of the higher variation of travel times in these environments. For both freeways and arterial environments, making predictions in real-time is more challenging than performing off-line predictions, mainly because of data availability issues that arise for real-time applications. Recently, Bluetooth detectors have been utilized for collecting both spatial (i.e. travel time) and fixed point (e.g. number of detections) data. Bluetooth detectors have surpassed most of the conventional travel time measuring techniques in three main capacities: (i) direct measurement of travel time, (ii) continuous collection of travel times provides large samples, and (iii) anonymous detection. Beside these advantages, there are also caveats when using these detectors: (i) the Bluetooth obtained data include different sources of outliers and measurement errors that should be filtered out before the data are used in any travel time analysis and (ii) there is an inherent time lag in acquiring Bluetooth travel times (due to the matching of the detections at the upstream and downstream sensors) that should be carefully handled in real-time applications. In this thesis, (1) the magnitude of Bluetooth travel time measurement error has been examined through a simulation framework; (2) a real-time proactive outlier detection algorithm, which is suitable for filtering out data anomalies in Bluetooth obtained travel times, has been proposed; (3) the performance of the existing real-time outlier detection algorithms has been evaluated using both field data and simulation data; and (4) two different data-driven methodologies, that are appropriate for real-time applications, have been developed to predict near future travel times on arterials using data obtained from Bluetooth detectors. The results of this research demonstrate that (1) although the mean Bluetooth travel time measurement error is sufficiently close to zero across all the examined traffic conditions, for some situations the 95% confidence interval of the mentioned error approaches 35% of the true mean travel time; (2) the proposed proactive filtering algorithm appropriately detects the Bluetooth travel time outliers in real time and outperforms the existing data-driven filtering techniques; (3) the performance of different outlier detection algorithms can be objectively quantified under different conditions using the developed simulation framework; (4) the proposed prediction approaches significantly improved the accuracy of travel time predictions for 5-minutre prediction horizon. The daily mean absolute relative errors are improved by 18% to 24% for the proposed k-NN model and 8% to 14% for the proposed Markov model; (5) prevailing arterial traffic state and its transition through the course of the day can be adequately modeled using data obtained from Bluetooth technology

    Learned perception systems for self-driving vehicles

    Get PDF
    2022 Spring.Includes bibliographical references.Building self-driving vehicles is one of the most impactful technological challenges of modern artificial intelligence. Self-driving vehicles are widely anticipated to revolutionize the way people and freight move. In this dissertation, we present a collection of work that aims to improve the capability of the perception module, an essential module for safe and reliable autonomous driving. Specifically, it focuses on two perception topics: 1) Geo-localization (mapping) of spatially-compact static objects, and 2) Multi-target object detection and tracking of moving objects in the scene. Accurately estimating the position of static objects, such as traffic lights, from the moving camera of a self-driving car is a challenging problem. In this dissertation, we present a system that improves the localization of static objects by jointly optimizing the components of the system via learning. Our system is comprised of networks that perform: 1) 5DoF object pose estimation from a single image, 2) association of objects between pairs of frames, and 3) multi-object tracking to produce the final geo-localization of the static objects within the scene. We evaluate our approach using a publicly available data set, focusing on traffic lights due to data availability. For each component, we compare against contemporary alternatives and show significantly improved performance. We also show that the end-to-end system performance is further improved via joint training of the constituent models. Next, we propose an efficient joint detection and tracking model named DEFT, or "Detection Embeddings for Tracking." The proposed approach relies on an appearance-based object matching network jointly learned with an underlying object detection network. An LSTM is also added to capture motion constraints. DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards while having significant advantages in robustness when applied to more challenging tracking data. DEFT raises the bar on the nuScenes monocular 3D tracking challenge, more than doubling the performance of the previous top method (3.8x on AMOTA, 2.1x on MOTAR). We analyze the difference in performance between DEFT and the next best-published method on nuScenes and find that DEFT is more robust to occlusions and large inter-frame displacements, making it a superior choice for many use-cases. Third, we present an end-to-end model to solve the tasks of detection, tracking, and sequence modeling from raw sensor data, called Attention-based DEFT. Attention-based DEFT extends the original DEFT by adding an attentional encoder module that uses attention to compute tracklet embedding that 1) jointly reasons about the tracklet dependencies and interaction with other objects present in the scene and 2) captures the context and temporal information of the tracklet's past observations. The experimental results show that Attention-based DEFT performs favorably against or comparable to state-of-the-art trackers. Reasoning about the interactions between the actors in the scene allows Attention-based DEFT to boost the model tracking performance in heavily crowded and complex interactive scenes. We validate the sequence modeling effectiveness of the proposed approach by showing its superiority for velocity estimation task over other baseline methods on both simple and complex scenes. The experiments demonstrate the effectiveness of Attention-based DEFT for capturing spatio-temporal interaction of the crowd for velocity estimation task, which helps it to be more robust to handle complexities in densely crowded scenes. The experimental results show that all the joint models in this dissertation perform better than solving each problem independently

    Quantitative methods in high-frequency financial econometrics: modeling univariate and multivariate time series

    Get PDF

    An Improved Particle Filtering-based Approach for Health Prediction and Prognosis of Nonlinear Systems

    Get PDF
    Health monitoring of nonlinear systems is broadly concerned with the system health tracking and its prediction to future time horizons. Estimation and prediction schemes constitute as principle components of any health monitoring technique. Particle filter (PF) represents a powerful tool for performing state and parameter estimation as well as prediction of nonlinear dynamical systems. Estimation of the system parameters along with the states can yield an up-to-date and reliable model that can be used for long-term prediction problems through utilization of particle filters. This feature enables one to deal with uncertainty issues in the resulting prediction step as the time horizon is extended. Towards this end, this paper presents an improved method to achieve uncertainty management for long-term prediction of nonlinear systems by using particle filters. In our proposed approach, an observation forecasting scheme is developed to extend the system observation profiles (as time-series) to future time horizon. Particles are then propagated to future time instants according to a resampling algorithm instead of considering constant weights for the particles propagation in the prediction step. The uncertainty in the long-term prediction of the system states and parameters are managed by utilizing dynamic linear models for development of an observation forecasting scheme. This task is addressed through an outer adjustment loop for adaptively changing the sliding observation injection window based on the Mahalanobis distance criterion. Our proposed approach is then applied to predicting the health condition as well as the remaining useful life (RUL) of a gas turbine engine that is affected by degradations in the system health parameters. Extensive simulation and case studies are conducted to demonstrate and illustrate the capabilities and performance characteristics of our proposed and developed schemes

    Spatiotemporal Graph Convolutional Neural Network for Robust and Accurate Traffic Flow Prediction

    Get PDF
    corecore