501 research outputs found

    Preconditioned discontinuous Galerkin method and convection-diffusion-reaction problems with guaranteed bounds to resulting spectra

    Full text link
    This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection-diffusion-reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced by Gergelits et al. and adapt it to the more general settings, assuming that both the original and preconditioning matrices are composed of sparse matrices of very low ranks, representing local contributions to the global matrices. When applied to a symmetric problem, the method provides bounds to all individual eigenvalues of the preconditioned matrix. We show that this preconditioning strategy works not only for Galerkin discretization, but also for the discontinuous Galerkin discretization, where local contributions are associated with individual edges of the triangulation. In the case of non-symmetric problems, the method yields guaranteed bounds to real and imaginary parts of the resulting eigenvalues. We include some numerical experiments illustrating the method and its implementation, showcasing its effectiveness for the two variants of discretized (convection-)diffusion-reaction problems.Comment: 18 pages, 8 pages, and 1 figur

    Discretisations and Preconditioners for Magnetohydrodynamics Models

    Full text link
    The magnetohydrodynamics (MHD) equations are generally known to be difficult to solve numerically, due to their highly nonlinear structure and the strong coupling between the electromagnetic and hydrodynamic variables, especially for high Reynolds and coupling numbers. In the first part of this work, we present a scalable augmented Lagrangian preconditioner for a finite element discretisation of the B\mathbf{B}-E\mathbf{E} formulation of the incompressible viscoresistive MHD equations. For stationary problems, our solver achieves robust performance with respect to the Reynolds and coupling numbers in two dimensions and good results in three dimensions. Our approach relies on specialised parameter-robust multigrid methods for the hydrodynamic and electromagnetic blocks. The scheme ensures exactly divergence-free approximations of both the velocity and the magnetic field up to solver tolerances. In the second part, we focus on incompressible, resistive Hall MHD models and derive structure-preserving finite element methods for these equations. We present a variational formulation of Hall MHD that enforces the magnetic Gauss's law precisely (up to solver tolerances) and prove the well-posedness of a Picard linearisation. For the transient problem, we present time discretisations that preserve the energy and magnetic and hybrid helicity precisely in the ideal limit for two types of boundary conditions. In the third part, we investigate anisothermal MHD models. We start by performing a bifurcation analysis for a magnetic Rayleigh--B\'enard problem at a high coupling number S=1,000S=1{,}000 by choosing the Rayleigh number in the range between 0 and 100,000100{,}000 as the bifurcation parameter. We study the effect of the coupling number on the bifurcation diagram and outline how we create initial guesses to obtain complex solution patterns and disconnected branches for high coupling numbers.Comment: Doctoral thesis, Mathematical Institute, University of Oxford. 174 page

    Robust Preconditioners for Incompressible MHD Models

    Full text link
    In this paper, we develop two classes of robust preconditioners for the structure-preserving discretization of the incompressible magnetohydrodynamics (MHD) system. By studying the well-posedness of the discrete system, we design block preconditioners for them and carry out rigorous analysis on their performance. We prove that such preconditioners are robust with respect to most physical and discretization parameters. In our proof, we improve the existing estimates of the block triangular preconditioners for saddle point problems by removing the scaling parameters, which are usually difficult to choose in practice. This new technique is not only applicable to the MHD system, but also to other problems. Moreover, we prove that Krylov iterative methods with our preconditioners preserve the divergence-free condition exactly, which complements the structure-preserving discretization. Another feature is that we can directly generalize this technique to other discretizations of the MHD system. We also present preliminary numerical results to support the theoretical results and demonstrate the robustness of the proposed preconditioners

    A Two-Level Method for Mimetic Finite Difference Discretizations of Elliptic Problems

    Get PDF
    We propose and analyze a two-level method for mimetic finite difference approximations of second order elliptic boundary value problems. We prove that the two-level algorithm is uniformly convergent, i.e., the number of iterations needed to achieve convergence is uniformly bounded independently of the characteristic size of the underling partition. We also show that the resulting scheme provides a uniform preconditioner with respect to the number of degrees of freedom. Numerical results that validate the theory are also presented

    Towards a robust Terra

    Get PDF
    In this work mantle convection simulation with Terra is investigated from a numerical point of view, theoretical analysis as well as practical tests are performed. The stability criteria for the numerical formulation of the physical model will be made clear. For the incompressible case and the Terra specific treatment of the anelastic approximation, two inf-sup stable grid modifications are presented, which are both compatible with hanging nodes. For the Q1hQ12h element pair a simple numeric test is introduced to prove the stability for any given grid. For the Q1h Pdisc 12h element pair and 1-regular refinements with hangig nodes an existing general proof can be adopted. The influence of the slip boundary condition is found to be destabilizing. For the incompressible case a cure can be adopted from the literature. The necessary conditions for the expansion of the stability results to the anelastic approximation will be pointed out. A numerical framework is developed in order to measure the effect of different numerical approaches to improve the handling of strongly varying viscosity. The framework is applied to investigate how block smoothers with different block sizes, combination of different block smoothers, different prolongation schemes and semi coarsening influence the multigrid performance. A regression-test framework for Terra will be briefly introduced

    A Cartesian grid-based boundary integral method for moving interface problems

    Full text link
    This paper proposes a Cartesian grid-based boundary integral method for efficiently and stably solving two representative moving interface problems, the Hele-Shaw flow and the Stefan problem. Elliptic and parabolic partial differential equations (PDEs) are reformulated into boundary integral equations and are then solved with the matrix-free generalized minimal residual (GMRES) method. The evaluation of boundary integrals is performed by solving equivalent and simple interface problems with finite difference methods, allowing the use of fast PDE solvers, such as fast Fourier transform (FFT) and geometric multigrid methods. The interface curve is evolved utilizing the θ−L\theta-L variables instead of the more commonly used x−yx-y variables. This choice simplifies the preservation of mesh quality during the interface evolution. In addition, the θ−L\theta-L approach enables the design of efficient and stable time-stepping schemes to remove the stiffness that arises from the curvature term. Ample numerical examples, including simulations of complex viscous fingering and dendritic solidification problems, are presented to showcase the capability of the proposed method to handle challenging moving interface problems
    • …
    corecore