11 research outputs found

    Fullerenes with the maximum Clar number

    Full text link
    The Clar number of a fullerene is the maximum number of independent resonant hexagons in the fullerene. It is known that the Clar number of a fullerene with n vertices is bounded above by [n/6]-2. We find that there are no fullerenes whose order n is congruent to 2 modulo 6 attaining this bound. In other words, the Clar number for a fullerene whose order n is congruent to 2 modulo 6 is bounded above by [n/6]-3. Moreover, we show that two experimentally produced fullerenes C80:1 (D5d) and C80:2 (D2) attain this bound. Finally, we present a graph-theoretical characterization for fullerenes, whose order n is congruent to 2 (respectively, 4) modulo 6, achieving the maximum Clar number [n/6]-3 (respectively, [n/6]-2)

    Decomposition theorem on matchable distributive lattices

    Full text link
    A distributive lattice structure M(G){\mathbf M}(G) has been established on the set of perfect matchings of a plane bipartite graph GG. We call a lattice {\em matchable distributive lattice} (simply MDL) if it is isomorphic to such a distributive lattice. It is natural to ask which lattices are MDLs. We show that if a plane bipartite graph GG is elementary, then M(G){\mathbf M}(G) is irreducible. Based on this result, a decomposition theorem on MDLs is obtained: a finite distributive lattice L\mathbf{L} is an MDL if and only if each factor in any cartesian product decomposition of L\mathbf{L} is an MDL. Two types of MDLs are presented: J(m×n)J(\mathbf{m}\times \mathbf{n}) and J(T)J(\mathbf{T}), where m×n\mathbf{m}\times \mathbf{n} denotes the cartesian product between mm-element chain and nn-element chain, and T\mathbf{T} is a poset implied by any orientation of a tree.Comment: 19 pages, 7 figure

    Planar k-cycle resonant graphs with k=1,2

    Get PDF
    AbstractA connected graph is said to be k-cycle resonant if, for 1⩽t⩽k, any t disjoint cycles in G are mutually resonant, that is, there is a perfect matching M of G such that each of the t cycles is an M-alternating cycle. The concept of k-cycle resonant graphs was introduced by the present authors in 1994. Some necessary and sufficient conditions for a graph to be k-cycle resonant were also given. In this paper, we improve the proof of the necessary and sufficient conditions for a graph to be k-cycle resonant, and further investigate planar k-cycle resonant graphs with k=1,2. Some new necessary and sufficient conditions for a planar graph to be 1-cycle resonant and 2-cycle resonant are established

    A Maximum Resonant Set of Polyomino Graphs

    Full text link
    A polyomino graph HH is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. In this paper, we show that if KK is a maximum resonant set of HH, then HKH-K has a unique perfect matching. We further prove that the maximum forcing number of a polyomino graph is equal to its Clar number. Based on this result, we have that the maximum forcing number of a polyomino graph can be computed in polynomial time. We also show that if KK is a maximal alternating set of HH, then HKH-K has a unique perfect matching.Comment: 13 pages, 6 figure

    GPU accelerated maximum cardinality matching algorithms for bipartite graphs

    Get PDF
    We design, implement, and evaluate GPU-based algorithms for the maximum cardinality matching problem in bipartite graphs. Such algorithms have a variety of applications in computer science, scientific computing, bioinformatics, and other areas. To the best of our knowledge, ours is the first study which focuses on GPU implementation of the maximum cardinality matching algorithms. We compare the proposed algorithms with serial and multicore implementations from the literature on a large set of real-life problems where in majority of the cases one of our GPU-accelerated algorithms is demonstrated to be faster than both the sequential and multicore implementations.Comment: 14 pages, 5 figure

    Normal components, Kekule patterns, and Clar patterns in plane bipartite graphs

    No full text
    As a general case of molecular graphs of polycyclic alternant hydrocarbons, we consider a plane bipartite graph G with a Kekule pattern (perfect matching). An edge of G is called nonfixed if it belongs to some, but not all, perfect matchings of G. Several criteria in terms of resonant cells for determining whether G is elementary (i.e., without fixed edges) are reviewed. By applying perfect matching theory developed in plane bipartite graphs, in a unified and simpler way we study the decomposition of plane bipartite graphs with fixed edges into normal components, which is shown useful for resonance theory, in particular, cell and sextet polynomials. Further correspondence between the Kekule patterns and Clar (resonant) patterns are revealed
    corecore