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Abstract

A connected graph is said to be k-cycle resonant if, for 16 t6 k, any t disjoint cycles in G
are mutually resonant, that is, there is a perfect matching M of G such that each of the t cycles
is an M -alternating cycle. The concept of k-cycle resonant graphs was introduced by the present
authors in 1994. Some necessary and su6cient conditions for a graph to be k-cycle resonant
were also given. In this paper, we improve the proof of the necessary and su6cient conditions
for a graph to be k-cycle resonant, and further investigate planar k-cycle resonant graphs with
k =1; 2. Some new necessary and su6cient conditions for a planar graph to be 1-cycle resonant
and 2-cycle resonant are established.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the topological theory of benzenoid hydrocarbons, a hexagonal system (or ben-
zenoid system) denotes the carbon atom skeleton graph of a benzenoid hydrocarbon,
which is a 2-connected plane graph with a plane embedding such that every interior
face is bounded by a regular hexagon. A Kekule structure K of a hexagonal sys-
tem H is also a perfect matching of H . An edge in H is said to be a K-double
bond if it belongs to K , otherwise a K-single bond. An edge in H is said to be
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a Dxed double (resp, single) bond if it belongs to (resp. does not belong to) every
Kekule structure of H . A hexagonal system is said to be normal if it contains no Dxed
bond. A cycle (or circuit) C in H is said to be conjugated or resonant if there is
a Kekule structure K of H such that C is a K-alternating cycle. In the conjugated
circuit model [4,5,11,13–15,18,19,28,29,31–34,36–42] conjugated circuits with diGerent
sizes have diGerent resonance energies. If the size of a conjugated circuit is equal
to 4n + 2, then the smaller the n the larger the resonant energy. So the conjugated
hexagon has the largest energy. On the other hand, from a purely empirical standpoint,
Clar found that various electronic properties of polycyclic aromatic hydrocarbons can
be predicted by appropriately deDning an aromatic sextet for their Kekule structures
[2,3,6,7,9,10,17,20,30,44,45]. According to Clar’s aromatic sextet theory, the Clar for-
mula of a polyhex G (the molecule model of a polycyclic aromatic hydrocarbon) is
a set of mutually resonant sextets with the maximum cardinal number, where sextets
mean resonant hexagons and a set of mutually resonant sextets means a set of disjoint
hexagons for which there is a Kekule structure K so that all of the disjoint hexagons
are K-alternating hexagons. In Ref. [43], Zhang Fuji and Chen Rongsi investigated
1-coverable hexagonal systems, each hexagon of which is resonant. A hexagonal sys-
tem is said to be k-coverable if any k disjoint hexagons of it are mutually resonant.
Zheng Maolin [46] Drst introduced the concept of k-coverable hexagonal systems and
investigated their properties and construction. Some necessary and su6cient conditions
for a hexagonal system to be k-coverable were given. As a natural generalization of
k-coverable hexagonal systems, Guo Xiaofeng and Zhang Fuji introduced the concept
of k-cycle resonant graphs [8], and investigated some of their properties. Some simple
necessary and su6cient conditions for a graph to be k-cycle resonant were given. In
particular, the construction of k-cycle resonant hexagonal systems was completely char-
acterized. It was also shown that in the hexagonal systems with h hexagons obtained
from a common parent hexagonal system with h-1 hexagons, k∗-cycle resonant systems
have greater resonance energies than 1-cycle resonant systems for k∗¿ 1, where k∗

is the maximum number of disjoint cycles. Also 1-cycle resonant systems sharing a
similar common parent have greater resonance energies than hexagonal systems, which
are not 1-cycle resonant. Harary et al. [12] investigated the hexagonal systems all of
whose hexagons are simultaneously resonant, that is, there is a perfect matching M in
such a hexagonal system H that every hexagon of H is an M -alternating hexagon. It is
interesting that the hexagonal systems with all hexagons being simultaneously resonant
are also k-cycle resonant, and vice versa, although they have diGerent deDnitions.
In the present paper, the authors improve the proof of the necessary and su6cient

conditions for a graph to be k-cycle resonant, and further investigate general planar
k-cycle resonant graphs with k = 1; 2. Some new necessary and su6cient conditions
for a graph to be planar 1-cycle resonant graphs or planar 2-cycle resonant graphs are
established.
In the investigation of matching theory, Lovasz et al. [1,16,21–27,35] introduced and

investigated elementary graphs, 1-extendable graphs, and n-extendable graphs, etc. A
graph G is said to be n-extendable if any n independent edges of G are contained in
some perfect matching of G. We can similarly call k-cycle resonant graphs as k-cycle
extendable graphs. It was proved in Ref. [43] that a hexagonal system H is normal if
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and only if every hexagon of H is resonant. So 1-coverable hexagonal systems are also
1-extendable and elementary (a graph is said to be elementary if its non-Dxed bonds
induce a connected spanning subgraph).

2. Some related results of k-cycle resonant graphs

De�nition 1. A graph G is said to be k-cycle resonant or k-cycle extendable if G
contains at least k (¿ 1) disjoint cycles and, for 16 t6 k, any t disjoint cycles in
G are mutually resonant, that is, there is a Kekule structure K of G such that the t
disjoint cycles are K-alternating cycles.

The following theorems were given in Ref. [8].

Theorem A (Guo Xiaofeng and Zhang Fuji [8]). Let G be a k-cycle resonant graph.
Then

(1) G is bipartite.
(2) For 16 t6 k and any t disjoint cycles C1; C2; : : : ; Ct in G, G−⋃t

i=1 Ci contains
no odd component.

(3) Any two 2-connected blocks in G have no common vertex.

A block of a connected graph G is either a maximal 2-connected subgraph of G or
a cut edge of G, and a 2-connected block of G is a maximal 2-connected subgraph of
G. Two 2-connected blocks in a connected component of G have at most one common
vertex which must be a cut vertex of G.

Theorem B (Guo Xiaofeng and Zhang Fuji [8]). Let G be a k-cycle resonant graph.
Then G is elementary or 1-extendable if and only if G is 2-connected.

A path P in a graph G is said to be a chain if all internal vertices of P are of
degree 2 in G and the degree of any end vertex of P is not equal to two in G. A
hexagonal system is said to be a catacondensed hexagonal system if every vertex of it
lies on the boundary.

Theorem C (Guo Xiaofeng and Zhang Fuji [8]). A hexagonal system H is k∗-cycle
resonant if and only if H is a catacondensed hexagonal system with no chain
of even length, where k∗ is the maximum number of disjoint cycles in H.

Theorem 3.1 in Ref. [8] gave some su6cient and necessary conditions for a graph
to be k-cycle resonant: “A connected graph G with at least k disjoint cycles is k-cycle
resonant if and only if G is bipartite and, for 16 t6 k and any t disjoint cycles
C1; C2; : : : ; Ct in G; G −⋃t

i=1 Ci contains no odd component.”
However, the theorem has a negligence. In fact, the su6cient and necessary condi-

tions are valid if G is 2-connected or G has a perfect matching. A referee (Klein) of
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Fig. 1. Graph G consists of two cycles C1 and C2 with a common vertex v, where C1 and C2 are two
2-connected blocks of G.

Fig. 2.

the present paper gave an example to show that a graph G with no perfect matching,
which is not 2-connected, satisDes the conditions of the theorem but it is not 1-cycle
resonant (see Figs. 1 and 2).
Therefore, the theorem given in Ref. [8] should be revised as follows.

Theorem D. A 2-connected graph G with at least k disjoint cycles is k-cycle resonant
if and only if G is bipartite and, for 16 t6 k and any t disjoint cycles C1; C2; : : : ; Ct

in G; G −⋃t
i=1 Ci contains no odd component.

The proof of Theorem D is the same as the proof of Theorem 3.1 given in Ref. [8].
In that proof, the condition that “G is 2-connected” had been implicitly used.
For general cases, we have the following.

Theorem E. A connected graph G with at least k disjoint cycles is k-cycle resonant
if and only if G is a bipartite graph with perfect matchings and, for 16 t6 k and
any t disjoint cycles C1; C2; : : : ; Ct in G; G −⋃t

i=1 Ci contains no odd component.

Proof. The necessity is evident. We need only to prove the su6ciency.
Suppose that G is a bipartite graph with perfect matchings and, for 16 t6 k and

any t disjoint cycles C1; C2; : : : ; Ct in G; G −⋃t
i=1 Ci contains no odd component. If

G is 2-connected, by Theorem D, then G is k-cycle resonant. Hence we assume that
G is not 2-connected and G1; G2; : : : ; Gs are 2-connected blocks of G.
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Claim 1. Any two 2-connected blocks of G have no common vertex.

By Theorem A (3), Claim 1 holds immediately.

Claim 2. All the edges not belonging to any 2-connected block of G but having an
end vertex in a 2-connected block of G are ?xed single bonds.

Let e be such an edge with an end vertex v being in a 2-connected block Gi of G.
Let Ci be a cycle in Gi containing v. Then the connected component of G-Ci containing
the end vertex of e other than v must be an even component. This means that e does
not belong to any perfect matching of G, that is, e is a Dxed single bond.

Claim 3. The forest G−⋃s
i=1 V (Gi) has a unique perfect matching which is contained

in every perfect matching of G and so are all ?xed double bonds.

Obviously.

Claim 4.
⋃s
i=1 Gi−

⋃t
j=1 V (Cj) has no odd component, where 16 t6 k and Cj; j=

1; 2; : : : ; t, are disjoint cycles in G.

Suppose that
⋃s
i=1 Gi −

⋃t
j=1 V (Cj) has odd components. Let H∗ be the compo-

nent of G − ⋃t
j=1 V (Cj), which is an even component and consists of some odd

components in
⋃s
i=1 Gi −

⋃t
j=1 V (Cj), say H1; H2; : : :, and some even components in

⋃s
i=1 Gi −

⋃t
j=1 V (Cj), and some components in G − ⋃s

i=1 V (Gi). Since the forest
G − ⋃s

i=1 V (Gi) has a unique perfect matching, every component of it is also even.
Hence, the even component H∗ will contain an even number of odd components of⋃s
i=1 Gi −

⋃t
j=1 V (Cj). There is a cut edge e of H∗ such that H∗-e has a component,

say H∗
1 , containing only one odd component of

⋃s
i=1 Gi −

⋃t
j=1 V (Cj), say H1, and e

has one end vertex v in H1. Let H∗
2 = H∗ − V (H∗

1 ). Then both H∗
1 and H∗

2 are odd
components of H∗-e. Note that e is also a cut edge of G. Let C′

0 be a cycle in G con-
taining v, let H ′ be the component of G− V (C′

0) containing H2, and let C′
1; C

′
2; : : : ; C

′
s

be the cycles in
⋃t
i=1 Ci contained in H ′. Then H∗

2 is also an odd component of
G −⋃s

j=0 V (C
′
j). This contradicts our assumption.

Claim 5. For any 2-connected block Gi in G with the maximum number k∗i of disjoint
cycles, if k∗i ¡ k; Gi is k∗-cycle resonant, otherwise Gi is k-cycle resonant.

The conclusion of Claim 5 holds by Claim 4 and Theorem D.
From Claim 5, we have that

⋃s
i=1 Gi is k-cycle resonant, that is, for 16 t6 k and

any t disjoint cycles in G, there is a perfect matching M∗ of
⋃s
i=1 Gi such that each

of the t cycles is an M∗-alternating cycle. The union of M∗ and the unique perfect
matching of G − ⋃s

i=1 V (Gi) is just a perfect matching of G. This means that G is
also k-cycle resonant.

Based on Theorem B, Theorem E, and Claims 3, and 5, we have the following.
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Theorem F. Let G be a k-cycle resonant graph. Then,

(i) for a 2-connected block G′ of G with the maximum number k∗ of disjoint cycles,
if k∗6 k; G′ is k∗-cycle resonant, otherwise G′ is k-cycle resonant;

(ii) the forest induced by all the vertices of G not in any 2-connected block of G has
a unique perfect matching.

The above theorems imply that a non-2-connected k-cycle resonant graph can be
constructed from some disjoint 2-connected k∗ (or k)-cycle resonant graphs and a
forest with a perfect matching by adding some edges between the 2-connected graphs
and the forest so that the resultant graph is connected and the added edges are cut
edges. Hence, we need only to consider 2-connected k-cycle resonant graphs.
Before continuing, we give some terminology and notations.
Let G be a connected graph, and H a subgraph of G. A vertex in H is said to be

an attachment vertex of H if it is incident with an edge in G − E(H). The set of
all attachment vertices of H is denoted by VA(H). A bridge B of H in G is either
an edge in G − E(H) with two end vertices being in H , or a subgraph of G induced
by all the edges in a connected component B′ of G − V (H) together with all the
edges with an end vertex in B′ and the other in H . The vertices in V (B) ∩ V (H) are
also attachment vertices of B to H . A bridge with k attachment vertices is called a
k-bridge.
The attachment vertices of a k-bridge B of a cycle C in G divide C into k edge-

disjoint paths, called the segments of B. Two bridges of C avoid one another if all the
attachment vertices of one bridge lie in a single segment of the other bridge, otherwise
they overlap. Two bridges B and B∗ of C are skew if there are four distinct vertices
on C, in the cyclic order u; u∗; v; v∗, such that u and v are attachment vertices of B; u∗

and v∗ are attachment vertices of B∗.
As deDned at the fore, a block of a connected graph G is either a maximal 2-connected

subgraph of G or a cut edge of G. The block graph of G, denoted by b(G), is the
graph whose vertices are blocks of G and two vertices of b(G) are adjacent if the
corresponding blocks in G have a common vertex. The set of internal vertices of a
chain P in G is denoted by VI(P).

Lemma 1. Let G=(V; E) be a 2-connected graph, P a chain in G, and B a 2-connected
subgraph of G with exactly two attachment vertices. Then any block of G[E−E(B)]
(resp. G − VI(P)) has exactly two attachment vertices in G, and the block graph
of G[E − E(B)] (resp. G − VI(P)) is a path.

Proof. The attachment vertices of a block of G[E − E(B)] (resp. G − VI(P)) are cut
vertices of G[E − E(B)] (resp. G − VI(P)) but are not cut vertices of G, since G
is 2-connected. So, if a block of G[E − E(B)] (resp. G − VI(P)) has at least three
attachment vertices in G, then G[E−E(B)] (resp. G−VI(P)) would also have at least
three attachment vertices, contradicting that G[E−E(B)] (resp. G−VI(P)) and B have
the same attachment vertices in G. Now it follows that the block graph of G[E−E(B)]
(resp. G − VI(P)) is a path.
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For a 2-connected subgraph B in G with exactly two attachment vertices and a chain
P, the blocks of G[E − E(B)] (resp. G− VI(P)) containing an attachment vertex of B
(resp. P) are called the end blocks of G[E − E(B)] (resp. G − VI(P)). We also call
G[E − E(B)] (resp. G − VI(P)) the complement of B (resp. P) in G denoted by QB
(resp. QP).
The following lemma is obvious.w

Lemma 2. Let G be a 2-connected graph, and P a chain in G. Then any end block
of QP is 2-connected.

Lemma 3. Let G be a 2-connected graph, B a bridge of a cycle C in G. Then QB is
2-connected.

Proof. QB consists of the cycle C and some bridges of C. Since G is 2-connected, any
bridge Bi of C has at least two attachment vertices which are not cutvertices of QB.
Any vertex of Bi not on C is not a cut vertex of QB, otherwise it would be also a cut
vertex of G, a contradiction. Hence QB has no cut vertex, that is, QB is 2-connected.

Two paths in a graph G are said to be internal disjoint if any common vertex of
them is an end vertex of the two paths.
For a bipartite graph G, we always colour vertices of G white and black so that any

two adjacent vertices have diGerent colours.

3. Planar 1-cycle resonant graphs

We Drst give several equivalent propositions.

Theorem 1. Let G be a 2-connected bipartite planar graph. Then the following state-
ments are equivalent:

(i) G is 1-cycle resonant.
(ii) For any cycle C in G, G − V (C) has no odd component.
(iii) For any cycle C in G, any bridge of C has exactly two attachment vertices

which have diAerent colours.
(iv) For any cycle C in G, any two bridges of C avoid one another. Moreover,

for any 2-connected subgraph B of G with exactly two attachment vertices, the
attachment vertices of B have diAerent colours.

Proof. By Theorem D, (i) and (ii) are equivalent. We need only to prove statements
(ii), (iii) and (iv) are also equivalent.
Since G is planar, we may assume G is a plane graph embedded in a plane.
(ii) ⇒ (iii). Let B is a bridge of C. Without loss of generality, we assume B is in the

interior of C. Suppose that B has at least three attachment vertices, say v1; v2; v3. Then
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there is a vertex u in B such that in B there are three internal-disjoint paths starting
from u and terminating at v1; v2; v3, respectively, say P1; P2; P3. Let Ci; i=1; 2; 3, denote
the cycle consisting of Pi+1; Pi+2, and the vi+1-vi+2 segment on C not containing vi,
where if i + 1 or i + 2 is greater than 3 then their values are taken modulo 3. Let
C′
i =Ci+1RCi+2, where Ci+1RCi+2 denote the symmetric diGerence of the edge sets of
Ci+1 and Ci+2. Let Hi; i = 1; 2; 3, be the connected component of G − C′

i containing
an internal vertex of Pi. Then all components of Hi − V (Pi) are also components
of G − Ci+1 (resp. G − Ci+2). By (ii), Hi and all components of G − Ci+1 (resp.
G − Ci+2) are even components, and so Pi contains an even number of vertices too.
Hence Pi∪Pi+1∪Pi+2−{vi; vi+1; vi+2} contains an odd number of vertices and B−V (C)
would be an odd component of G − C, contradicting (ii). Now it follows that B has
exactly two attachment vertices since G is 2-connected.
Moreover, we can assert that the attachment vertices, say v1; v2, of B have diGerent

colours. Otherwise, any v1 − v2 path in B has an odd number of vertices. Let C∗ be
the cycle consisting of a v1 − v2 path in B and a v1 − v2 segment on C. Then, since
B−V (C) is an even component of G−C, B−V (C∗) has an odd number of vertices,
and so contains an odd component which is also an odd component of G − C∗, again
a contradiction.
(iii) ⇒ (iv). Suppose that there are two bridges B1 and B2 of C which are not

mutually avoided and B2 is in the exterior of C. Let u; v (resp. u∗; v∗) be the attachment
vertices of B1 (resp. B2). Their cyclic order on C is u; u∗; v; v∗. Let C∗ be the cycle
consisting of a u∗ − v∗ path in B2 and the u∗ − v∗ segment on C containing u. Then
a bridge of C∗ containing B1 has at least three attachment vertices, contradicting (iii).
Let B be a 2-connected subgraph of G with exactly two attachment vertices, say

v1 and v2. Then there is a cycle CB in B containing v1 and v2. Since G has no
cut vertex, there is a path in G − E(B) with end vertices v1 and v2, and so in
G − E(B) there is a bridge of CB, say B′, with attachment vertices v1 and v2. By
(iii), B′ has exactly two attachment vertices v1 and v2 which have diGerent
colours.
(iv) ⇒ (iii). Suppose that a bridge B of C has at least three attachment vertices, say

v1; v2, and v3. In addition, we may assume B lies in the interior of C. Then there is a
vertex u in B such that in B there are three internal-disjoint paths starting from u and
terminating at v1; v2; v3, respectively, say P1; P2; P3. Let C∗ be the cycle consisting of
P1 ∪ P2 and the segment on C containing v3. Then there are two skew bridges of C∗

one of which contains P3 and the other contains the v1 − v2 segment of C not on C∗.
This contradicts (iv).
Let B be a bridge of C with the attachment vertices v1 and v2. Then, by Lemma 3,

QB is a 2-connected subgraph of G with exactly two attachment vertices v1 and v2. So
v1 and v2 have diGerent colours.
(iii) ⇒ (ii). Suppose that G − V (C) has an odd component B′. In addition, we

suppose B′ is a minimum in all such odd components for every cycle C and G−V (C).
Then there is a bridge B of C with exactly two attachment vertices v1 and v2, which
contains B′ and also has an odd number of vertices. Since v1 and v2 have diGerent
colours, any v1− v2 path in B, say PB, is of odd length. So B−V (PB) contains an odd
component too, say B′′. Let C∗ be the cycle consisting of PB and a v1 − v2 segment
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on C. Clearly, B′′ is also an odd component of G−V (C∗) which has a smaller vertex
number than B′. This contradicts the choice of B′.

Now we can give the following necessary and su6cient conditions for a graph to
be planar 1-cycle resonant.

Theorem 2. (1) A 2-connected graph G is planar 1-cycle resonant if and only if G
is bipartite and, for any cycle C in G, any bridge of C has exactly two attachment
vertices which have diAerent colours.
(2) A 2-connected graph G is planar 1-cycle resonant if and only if G is bipartite

and, for any cycle C in G, any two bridges of C avoid one another and, for any
2-connected subgraph B of G with exactly two attachment vertices, the attachment
vertices of B have diAerent colours.

By Theorem 1(iii) and (iv), Theorem 2(1) holds if and only if Theorem 2(2) holds.
We will only prove Theorem 2(1).

Proof of Theorem 2. (1) By Theorem E and Theorem 1, the necessity is obvious. We
only need to prove the su6ciency
By the famous Kuratowski’s Theorem (see Theorems 9, 10 in Bondy and Murty’s

book “Graph Theory with Applications” [1]), a graph is planar if and only if it contains
no subdivision of K5 or K3;3. Suppose graph G satisDes the conditions of the theorem
but is not planar. Then G contains a subdivision of K5 or K3;3. It is not di6cult to
Dnd a cycle C in a subdivision of K5 or K3;3 such that a bridge B of C has at least
three attachment vertices, a contradiction. Hence G is a 2-connected bipartite planar
graph. By Theorem 1(i) and (iii), G is planar 1-cycle resonant.

From Theorems 2(1) and (2) we have the following corollary, which is useful for
the investigation of planar 2-cycle resonant graphs.

Corollary 1. Let G be a 2-connected planar 1-cycle resonant graph, C a cycle of G,
and B a bridge of C. Then

(i) B is not 2-connected,
(ii) every block of B has exactly two attachment vertices, and the block graph

of B is a path,
(iii) any 2-connected subgraph of G with exactly two attachment vertices has an even

number of vertices, and so does any bridge B of C,
(iv) for a cycle C∗ in a 2-connected block B∗ of B, (a) B∗ − V (C∗) has no odd

component, (b) if C∗ does not contain the attachment vertices, say v1 and v2,
of B∗, then v1 and v2 are contained in a common component of B∗ − V (C∗),
and B− V (C∗) has no odd component,

(v) for any 2-connected subgraph B∗ of G with exactly two attachment vertices v1
and v2; B∗ − v1 − v2 has no odd component.
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Proof. (i) Suppose that B is 2-connected. Let v1 and v2 be the attachment vertices of B.
Then there is a cycle C∗ in B which contains v1 and v2. C∗ is divided as two segments
by v1 and v2, say P1 and P2, each of which is not an edge (otherwise this edge is a
bridge of C, a contradiction). We assert that there is no such path in B− v1 − v2 with
an end vertex on P1 − v1 − v2 and the other on P2 − v1 − v2 which is internal disjoint
with P1 and P2. Otherwise, let C′ be the cycle consisting of P1 and a v1 − v2 segment
on C. The bridge of C′ containing P2 would have at least three attachment vertices,
contradicting that G is 1-cycle resonant by Theorems 1 and 2. However, if there is no
such path in B− v1 − v2 connecting P1 and P2, then B− v1 − v2 is not connected. This
also contradicts that B is a bridge of C.
(ii) From Lemmas 3 and 1, it follows that every block of B has exactly two attach-

ment vertices in G and the block graph of B is a path.
(iii) Let B∗ be a 2-connected subgraph of G with exactly two attachment vertices.

There is a cycle C in B∗ containing two attachment vertices. Then each component of
B − V (C) is also a component of G − V (C), and so is an even component. Since G
is bipartite by Theorems 1 and 2, C is also an even cycle. Now it follows that B∗ has
an even number of vertices. Let B be a bridge of C. By Lemma 3, QB is 2-connected
and has exactly two attachment vertices. So QB has an even number of vertices, and so
does B.
(iv) Let C∗ be a cycle in a 2-connected block B∗ of B.
(a) Suppose that B∗ − V (C∗) has an odd component B0. Then B0 must contain

an attachment vertex of B∗. Otherwise, B0 is also an odd component of G − V (C∗),
contradicting that G is 1-cycle resonant. Since B∗ is bipartite and has an even number
of vertices by (iii), B∗−V (C∗) has exactly two odd components each of which contains
an attachment vertex of B∗. Let C be a cycle in B∗ containing the attachment vertices
v1 and v2, which is divided by v1 and v2 into two segments, say P1 and P2. Since
V (C∗) is a cut set of B∗ separating v1 and v2, it contains vertices of both P1 and
P2. This means that there is a path in B∗ starting from an internal vertex of P1 and
terminating at an internal vertex of P2, which is internal disjoint with P1 and P2.
Hence, we can Dnd a cycle C′ in G containing P1 but not containing edges of P2,
so that the bridge of C′ containing P2 would have at least three attachment vertices,
contradicting that G is 1-cycle resonant.
(b) By a similar argument as in the proof of (iv)(a), we can assert that, if C∗

does not contain the attachment vertices of B∗, then the attachment vertices of B∗

are contained in a same component of B∗ − V (C∗). Hence, they are also contained
in a same component of B − V (C∗), say B′. Clearly, all the components of B∗ −
V (C∗) other than B′ are also components of G − V (C∗), and so are even com-
ponents. All the blocks of B other than B∗ are contained in B′. Since B has an
even number of vertices and C∗ is an even cycle, B′ is also an even compo-
nent.
(v) By (iii), B∗ has an even number of vertices. So if B∗ − v1 − v2 has an odd

component, it has at least two odd components, say B1 and B2. In B∗ − V (B1) there
is a v1 − v2 path P. Since G is 2-connected, B∗ is connected and there is a v1 − v2
path P∗ in B∗. Let C∗ be the cycle in G consisting of P and P∗. Then B1 is also a
component of G − C∗, and so is an even component, a contradiction.
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4. 2-Cycle resonant graphs

A vertex u of a graph G is said to be cycle-related to another vertex v of G if u is
contained in a 2-connected block of G and any cycle containing u must also contain
v. If v is also cycle-related to u, then u and v are mutually cycle-related.

Property 1. If a vertex u of a connected graph G is cycle-related to another vertex v
of G, then u and v belong to a same 2-connected block B in G and all the edges in
G − v incident with u are cut edges of G − v.
Now we give the following necessary and su6cient conditions for a planar graph to

be 2-cycle resonant.

Theorem 3. A 2-connected graph G is planar 2-cycle resonant if and only if,

(i) G is planar 1-cycle resonant,
(ii) for a chain P with even length and end vertices v1 and v2; G−VI(P) has exactly

two blocks each of which is 2-connected and v1 and v2 are cycle-related to the
common vertex of the two blocks,

(iii) for a chain P with odd length and end vertices v1 and v2 such that G − VI(P)
is not 2-connected, either (a) G−VI(P) has exactly three blocks, each of which
is a 2-connected, and each of v1 and v2 is cycle-related to the other attachment
vertex of the block containing it, and the attachment vertices of the third block
are mutually cycle-related in the third block, or (b) any two 2-connected blocks
of G − VI(P) are disjoint,

(iv) for a 2-connected subgraph B1 of G with exactly two attachment vertices, if QB1
is not 2-connected and every block of QB1 is 2-connected, then QB1 has exactly
three blocks, say B2; B3; B4, and the attachment vertices of each of B1; B2; B3; B4
are mutually cycle-related in the block.

Proof. First we address the necessity.
(i) By the deDnition of k-cycle resonance graphs, a 2-cycle resonant graph G is also

1-cycle resonant.
(ii) For a chain P with even length and end vertices v1 and v2; G − VI(P) is not

2-connected. Otherwise, in G−VI(P) there is a cycle C containing v1 and v2 such that
P−v1−v2 is an odd component of G−V (C), contradicting that G is 1-cycle resonant.
Hence G − VI(P) has at least two end blocks, say B1 and B2, which are 2-connected
by Lemma 2. Assume G − VI(P) has at least three blocks or has exactly two blocks
such that vi; i=1 or 2, is not cycle-related to the other attachment vertex of Bi. Then
there are two disjoint cycles C1 and C2 in B1 ∪ B2 containing v1 and v2, respectively,
such that P− v1 − v2 is an odd component of G− V (C1 ∪C2), contradicting that G is
2-cycle resonant.
(iii) For a chain P with odd length such that G − VI(P) is not 2-connected, G −

VI(P) has an odd number of blocks since two attachment vertices of every block of
G − VI(P) have diGerent colours by Theorems 1, 2.1, and 2.2. In addition, any chain
Pi in G − VI(P) induced by non-2-connected blocks of G − VI(P) must also be of
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odd length. Otherwise, G − VI(Pi) contains at least two 2-connected blocks (the end
blocks of G − VI(P)) and other blocks lying in the maximal chain P, contradicting
(ii). If G−VI(P) has exactly three blocks, say B1; B2; B3 (where B1 and B2 contain v1
and v2, respectively), each of which is 2-connected, but (iii) (a) is not true, then in
B1 ∪ B3 or B2 ∪ B3, say B1 ∪ B3, there are two disjoint cycles C1 and C2 such that C1

contains v1 and C2 contains the common vertex of B2 and B3. Then the component of
G−V (C1∪C2) containing VI(P) and V (B2)\V (B3) is an odd component, contradicting
that G is 2-cycle resonant. If G−VI(P) has exactly three blocks, say B1; B2; B3 (where
B1 and B2 contain v1 and v2, respectively), and B3 is not 2-connected, the only two
2-connected blocks B1 and B2 are disjoint. If G − VI(P) has at least Dve blocks and
there are two 2-connected blocks Br and Bs which have a common vertex, without
loss of generality, assume that Br is an end block of G − VI(P) containing v1 and Bt
is the other end block of G − VI(P). Then there is a cycle Cs in Bs containing the
common vertex of Br and Bs and a cycle Ct in Bt containing v2 which are disjoint and
the component of G− V (Cs ∪Ct) containing v1 is an odd component, a contradiction.
(iv) For a 2-connected subgraph B1 of G with exactly two attachment vertices, by

Lemma 1, let B2; B3; : : : ; Bt be blocks of QB1 such that Bi and Bi+1; i = 2; 3; : : : ; t − 1,
have a common vertex. By Theorem 2.2, QB1 has an odd number of blocks. If QB1 is
not 2-connected, and every block of QB1 is 2-connected, we assert QB1 has exactly three
blocks. Otherwise, t¿ 6. Let C1 (resp. C4) be a cycle in B1 (resp. B4) containing two
attachment vertices of B1 (resp. B4). Then C1 and C4 are disjoint and the component
of G− V (C1 ∪C4) containing the common vertex of B2 and B3 is an odd component,
contradicting that G is 2-cycle resonant. Moreover, the attachment vertices of each of
B1; B2; B3; B4 are mutually cycle-related in the block. Otherwise, assume that there is a
cycle C1 in B1 containing only an attachment vertex of B1, say the common vertex of
B1 and B2. Let C4 be a cycle in B4 containing two attachment vertices of B4. Then
C1 and C4 are disjoint and the component of G− V (C1 ∪C4) containing the common
vertex of B2 and B3 is an odd component, again a contradiction.
To address the su6ciency, suppose that G is not 2-cycle resonant. Then there are two

disjoint cycles C1 and C2 in G such that G − V (C1 ∪ C2) contains an odd component
B′. Since G is 1-cycle resonant, G − C1 has no odd component. Let B be a bridge
of C1 containing C2. Then B′ must be contained in B, and is an odd component of
B− VA(B)− V (C2). We can choose such disjoint cycles C1 and C2 so that the bridge
B of C1 containing C2 is minimal. By Corollary 1, B is not 2-connected. Hence, since
the number of blocks of B must be odd, B has at least three blocks, in which the block
containing C2, say B∗, is 2-connected.

Claim 1. In the above assumption, C2 contains at least one attachment vertex of B∗.

Otherwise, by Corollary 1(iv) (b), the attachment vertices of B∗ are contained in
a same component of B∗ − V (C2), and B − V (C2) has no odd component. But B′ is
an odd component of B − VA(B) − V (C2). So B∗ is an end block of B, and an odd
component of B−VA(B)−V (C2) not containing any attachment vertex of B∗, say B′′

(possible, B′′ = B′), is contained in B∗. Note that, by Corollary 1(iv), two attachment
vertices of B∗ are contained in a same component of B∗−V (C2), so there is a path P
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in B with end vertices being the attachment vertices of B, which is disjoint with B′′.
Let C∗

1 be the cycle consisting of P and a segment on C1. Then B′′ is also an odd
component of G − C∗

1 − C2, and the bridge of C∗
1 containing B′′ is a proper subgraph

of B. This contradicts the choice of C1 and C2.
Now we consider the following cases.
Case 1: There is a chain P of even length in B induced by cut edges of B. By

condition (ii) and Lemma 2, G − VI(P) consists of exactly two 2-connected blocks,
one of which is QB and the other is denoted by B∗. In addition, the end vertices of P
are cycle-related to the common vertex of QB and B∗, and C1 and C2 are disjoint. Thus
C2 cannot contain the attachment vertices of B∗. This contradicts Claim 1.
Case 2: There is a chain P of odd length in B induced by cut edges of B such that

G−VI(P) is not 2-connected. G−VI(P) contains at least two 2-connected blocks, one
of which is QB and the other, say B∗, contains the cycle C2. Hence, any maximal chain
in B induced by cut edges of B must be of odd length by condition (ii).
If G−VI(P) has exactly three blocks each of which is 2-connected, by condition (iii)

(a) and Claim 1, B∗ and QB must be the end blocks of G−VI(P). Otherwise, C1 and C2

would have a common vertex, a contradiction. Then either C2 contains two attachment
vertices of B∗ or it contains only one attachment vertex of B∗ which is not an end
vertex of P. In any case, any component of B∗ − C2 not containing an end vertex of
P is also a component of B− VA(B)− C2 and G − C2, and so is an even component.
Let B′′ be the other 2-connected block in B. The components of B′′ −VA(B′′) are also
components of B − VA(B) − C2, and, by Corollary 1 (v), B′′ − VA(B′′) has no odd
component. The only other component of B − VA(B) − C2, which contains edges on
P, must be also even, since both B− VA(B) and C2 have an even number of vertices.
This also contradicts our assumption.
Similarly, if any two 2-connected blocks of G− VI(P) are disjoint, B− VA(B)−C2

has no odd component, and again this is a contradiction.
Case 3: Each block of B is 2-connected. Let B1 = QB which is also 2-connected by

Lemma 3. Then, by condition (iv), B consists of exactly three 2-connected blocks,
say B2; B2; B4, and the attachment vertices of each of B1; B2; B3; B4 are mutually cycle-
related. Combining Claim 1, we have that C2 contains two attachment vertices of B∗

(one of B2; B2; B4, say B3, which is disjoint with B1). Then any component of B∗−C2

is also a component of B − VA(B) − C2 and G − C2, and so is an even component.
The other components of B − VA(B) − C2 are also components of B2 − VA(B2) and
B4−VA(B4), and so are even by Corollary 1(v). This again contradicts our assumption.
The proof is thus completed.

5. Conclusion

Previously, k-cycle resonant hexagonal systems were completely characterized in Ref.
[8]. General planar k-cycle resonant graphs have a more complex characterization. The
present work establishes some necessary and su6cient conditions for a 2-connected
graph to be a planar 1-cycle resonant graph or a planar 2-cycle resonant graph.
Based on the conditions, an e6cient algorithm for determining whether or not a
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2-connected graph is planar 1-cycle resonant or 2-cycle resonant can be developed.
We shall establish such an algorithm and investigate the ear decomposition of planar
1-cycle resonant graphs and 2-cycle resonant graphs in further works.
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