15 research outputs found

    K_6 minors in 6-connected graphs of bounded tree-width

    Full text link
    We prove that every sufficiently big 6-connected graph of bounded tree-width either has a K_6 minor, or has a vertex whose deletion makes the graph planar. This is a step toward proving that the same conclusion holds for all sufficiently big 6-connected graphs. Jorgensen conjectured that it holds for all 6-connected graphs.Comment: 33 pages, 8 figure

    K6minors in 6-connected graphs of bounded tree-width

    Get PDF
    We prove that every sufficiently large 6-connected graph of bounded tree-width either has a K6 minor, or has a vertex whose deletion makes the graph planar. This is a step toward proving that the same conclusion holds for all sufficiently large 6-connected graphs. Jørgensen conjectured that it holds for all 6-connected graphs

    Excluding subdivisions of bounded degree graphs

    Full text link
    Let HH be a fixed graph. What can be said about graphs GG that have no subgraph isomorphic to a subdivision of HH? Grohe and Marx proved that such graphs GG satisfy a certain structure theorem that is not satisfied by graphs that contain a subdivision of a (larger) graph H1H_1. Dvo\v{r}\'ak found a clever strengthening---his structure is not satisfied by graphs that contain a subdivision of a graph H2H_2, where H2H_2 has "similar embedding properties" as HH. Building upon Dvo\v{r}\'ak's theorem, we prove that said graphs GG satisfy a similar structure theorem. Our structure is not satisfied by graphs that contain a subdivision of a graph H3H_3 that has similar embedding properties as HH and has the same maximum degree as HH. This will be important in a forthcoming application to well-quasi-ordering

    Excluding a small minor

    Get PDF
    There are sixteen 3-connected graphs on eleven or fewer edges. For each of these graphs H we discuss the structure of graphs that do not contain a minor isomorphic to H. © 2012 Elsevier B.V. All rights reserved

    K-6 minors in large 6-connected graphs

    Get PDF
    Jorgensen conjectured that every 6-connected graph with no K-6 minor has a vertex whose deletion makes the graph planar. We prove the conjecture for all sufficiently large graphs. (C) 2017 Published by Elsevier Inc

    Packing Topological Minors Half-Integrally

    Full text link
    The packing problem and the covering problem are two of the most general questions in graph theory. The Erd\H{o}s-P\'{o}sa property characterizes the cases when the optimal solutions of these two problems are bounded by functions of each other. Robertson and Seymour proved that when packing and covering HH-minors for any fixed graph HH, the planarity of HH is equivalent with the Erd\H{o}s-P\'{o}sa property. Thomas conjectured that the planarity is no longer required if the solution of the packing problem is allowed to be half-integral. In this paper, we prove that this half-integral version of Erd\H{o}s-P\'{o}sa property holds with respect to the topological minor containment, which easily implies Thomas' conjecture. Indeed, we prove an even stronger statement in which those subdivisions are rooted at any choice of prescribed subsets of vertices. Precisely, we prove that for every graph HH, there exists a function ff such that for every graph GG, every sequence (Rv:v∈V(H))(R_v: v \in V(H)) of subsets of V(G)V(G) and every integer kk, either there exist kk subgraphs G1,G2,...,GkG_1,G_2,...,G_k of GG such that every vertex of GG belongs to at most two of G1,...,GkG_1,...,G_k and each GiG_i is isomorphic to a subdivision of HH whose branch vertex corresponding to vv belongs to RvR_v for each v∈V(H)v \in V(H), or there exists a set Z⊆V(G)Z \subseteq V(G) with size at most f(k)f(k) intersecting all subgraphs of GG isomorphic to a subdivision of HH whose branch vertex corresponding to vv belongs to RvR_v for each v∈V(H)v \in V(H). Applications of this theorem include generalizations of algorithmic meta-theorems and structure theorems for HH-topological minor free (or HH-minor free) graphs to graphs that do not half-integrally pack many HH-topological minors (or HH-minors)
    corecore