K_{6} MINORS IN LARGE 6-CONNECTED GRAPHS

Ken-ichi Kawarabayashi
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
Serguei Norine ${ }^{1}$
Department of Mathematics
Princeton University
Princeton, NJ 08544, USA
Robin Thomas ${ }^{2}$
School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332-0160, USA
and
Paul Wollan
Mathematisches Seminar der Universität Hamburg
Bundesstrasse 55
D-20146 Hamburg, Germany

Abstract

Jørgensen conjectured that every 6 -connected graph G with no K_{6} minor has a vertex whose deletion makes the graph planar. We prove the conjecture for all sufficiently large graphs.

8 April 2005, revised 9 March 2012.

[^0]
1 Introduction

Graphs in this paper are allowed to have loops and multiple edges. A graph is a minor of another if the first can be obtained from a subgraph of the second by contracting edges. An H minor is a minor isomorphic to H. A graph G is apex if it has a vertex v such that $G \backslash v$ is planar. (We use \backslash for deletion.) Jørgensen [4] made the following beautiful conjecture.

Conjecture 1.1 Every 6-connected graph with no K_{6} minor is apex.
This is related to Hadwiger's conjecture [3], the following.

Conjecture 1.2 For every integer $t \geq 1$, if a loopless graph has no K_{t} minor, then it is $(t-1)$-colorable.

Hadwiger's conjecture is known for $t \leq 6$. For $t=6$ it has been proven in [13] by showing that a minimal counterexample to Hadwiger's conjecture for $t=6$ is apex. The proof uses an earlier result of Mader [6] that every minimal counterexample to Conjecture 1.2 is 6 -connected. Thus Conjecture 1.1, if true, would give more structural information. Furthermore, the structure of all graphs with no K_{6} minor is not known, and appears complicated and difficult. On the other hand, Conjecture 1.1 provides a nice and clean statement for 6 -connected graphs. Unfortunately, it, too, appears to be a difficult problem. In this paper we prove Conjecture 1.1 for all sufficiently large graphs, as follows.

Theorem 1.3 There exists an absolute constant N such that every 6-connected graph on at least N vertices with no K_{6} minor is apex.

The second and third author recently announced a generalization [7] of Theorem 1.3, where 6 is replaced by an arbitrary integer t. The result states that for every integer t there exists an integer N_{t} such that every t-connected graph on at least N_{t} vertices with no K_{t} minor has a set of at most $t-5$ vertices whose deletion makes the graph planar. The proof follows a different strategy, but makes use of several ideas developed in this paper and its companion [5].

We use a number of results from the Graph Minor series of Robertson and Seymour, and also three results of our own that are proved in [5]. The first of those is a version of Theorem 1.3 for graphs of bounded tree-width, the following. (We will not define tree-width here, because it is sufficiently well-known, and because we do not need the concept per se, only several theorems that use it.)

Theorem 1.4 For every integer w there exists an integer N such that every 6 -connected graph of tree-width at most w on at least N vertices and with no K_{6} minor is apex.

Figure 1: An elementary wall of height 4.
Theorem 1.4 reduces the proof of Theorem 1.3 to graphs of large tree-width. By a result of Robertson and Seymour [9] those graphs have a large grid minor. However, for our purposes it is more convenient to work with walls instead. Let $h \geq 2$ be even. An elementary wall of height h has vertex-set

$$
\{(x, y): 0 \leq x \leq 2 h+1,0 \leq y \leq h\}-\{(0,0),(2 h+1, h)\}
$$

and an edge between any vertices (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ if either

- $\left|x-x^{\prime}\right|=1$ and $y=y^{\prime}$, or
- $x=x^{\prime},\left|y-y^{\prime}\right|=1$ and x and $\max \left\{y, y^{\prime}\right\}$ have the same parity.

Figure 1 shows an elementary wall of height 4. A wall of height h is a subdivision of an elementary wall of height h. The result of [9] (see also [2, 8, 14]) can be restated as follows.

Theorem 1.5 For every even integer $h \geq 2$ there exists an integer w such that every graph of tree-width at least w has a subgraph isomorphic to a wall of height h.

The perimeter of a wall is the cycle that bounds the infinite face when the wall is drawn as in Figure 1. Now let C be the perimeter of a wall H in a graph G. The compass of H in G is the restriction of G to X, where X is the union of $V(C)$ and the vertex-set of the unique component of $G \backslash V(C)$ that contains a vertex of H. Thus H is a subgraph of its compass, and the compass is connected. A wall H with perimeter C in a graph G is planar if its compass can be drawn in the plane with C bounding the infinite face. In Section 2 we prove the following.

Theorem 1.6 For every even integer $t \geq 2$ there exists an even integer $h \geq 2$ such that if a 5 -connected graph G with no K_{6} minor has a wall of height at least h, then either it is apex, or has a planar wall of height t.

Actually, in the proof of Theorem 1.6 we need Lemma 2.4 that is proved in [5]. The lemma says that if a 5-connected graph with no K_{6} minor has a subgraph isomorphic to subdivision of a pinwheel with sufficiently many vanes (see Figure 3), then it is apex.

By Theorem 1.6 we may assume that our graph G has an arbitrarily large planar wall H. Let C be the perimeter of H, and let K be the compass of H. Then C separates G into K and another graph, say J, such that $K \cup J=G, V(K) \cap V(J)=V(C)$ and $E(K) \cap E(J)=\emptyset$. Next we study the graph J. Since the order of the vertices on C is important, we are lead to the notion of a "society", introduced by Robertson and Seymour in [10].

Let Ω be a cyclic permutation of the elements of some set; we denote this set by $V(\Omega)$. A society is a pair (G, Ω), where G is a graph, and Ω is a cyclic permutation with $V(\Omega) \subseteq V(G)$. Now let J be as above, and let Ω be one of the cyclic permutations of $V(C)$ determined by the order of vertices on C. Then (J, Ω) is a society that is of primary interest to us. We call it the anticompass society of H in G.

We say that $\left(G, \Omega, \Omega_{0}\right)$ is a neighborhood if G is a graph and Ω, Ω_{0} are cyclic permutations, where both $V(\Omega)$ and $V\left(\Omega_{0}\right)$ are subsets of $V(G)$. Let Σ be a plane, with some orientation called "clockwise." We say that a neighborhood $\left(G, \Omega, \Omega_{0}\right)$ is rural if G has a drawing Γ in Σ without crossings (so G is planar) and there are closed discs $\Delta_{0} \subseteq \Delta \subseteq \Sigma$, such that
(i) the drawing Γ uses no point of Σ outside Δ, and none in the interior of Δ_{0}, and
(ii) for $v \in V(G)$, the point of Σ representing v in the drawing Γ lies in $b d(\Delta)$ (respectively, $b d\left(\Delta_{0}\right)$) if and only if $v \in V(\Omega)$ (respectively, $v \in V\left(\Omega_{0}\right)$), and the cyclic permutation of $V(\Omega)$ (respectively, $V\left(\Omega_{0}\right)$) obtained from the clockwise orientation of $b d(\Delta)$ (respectively, $b d\left(\Delta_{0}\right)$) coincides (in the natural sense) with Ω (respectively, Ω_{0}).
We call $\left(\Sigma, \Gamma, \Delta, \Delta_{0}\right)$ a presentation of $\left(G, \Omega, \Omega_{0}\right)$.
Let $\left(G_{1}, \Omega, \Omega_{0}\right)$ be a neighborhood, let $\left(G_{0}, \Omega_{0}\right)$ be a society with $V\left(G_{0}\right) \cap V\left(G_{1}\right)=V\left(\Omega_{0}\right)$, and let $G=G_{0} \cup G_{1}$. Then (G, Ω) is a society, and we say that (G, Ω) is the composition of the society $\left(G_{0}, \Omega_{0}\right)$ with the neighborhood $\left(G_{1}, \Omega, \Omega_{0}\right)$. If the neighborhood ($G_{1}, \Omega, \Omega_{0}$) is rural, then we say that $\left(G_{0}, \Omega_{0}\right)$ is a planar truncation of (G, Ω). We say that a society (G, Ω) is k-cosmopolitan, where $k \geq 0$ is an integer, if for every planar truncation $\left(G_{0}, \Omega_{0}\right)$ of (G, Ω) at least k vertices in $V\left(\Omega_{0}\right)$ have at least two neighbors in $V\left(G_{0}\right)$. At the end of Section 2 we deduce

Theorem 1.7 For every integer $k \geq 1$ there exists an even integer $t \geq 2$ such that if G is a simple graph of minimum degree at least six and H is a planar wall of height t in G, then the anticompass society of H in G is k-cosmopolitan.

For a fixed presentation $\left(\Sigma, \Gamma, \Delta, \Delta_{0}\right)$ of a neighborhood $\left(G, \Omega, \Omega_{0}\right)$ and an integer $s \geq 0$ we define an s-nest for $\left(\Sigma, \Gamma, \Delta, \Delta_{0}\right)$ to be a sequence $\left(C_{1}, C_{2}, \ldots, C_{s}\right)$ of pairwise disjoint cycles of G such that $\Delta_{0} \subseteq \Delta_{1} \subseteq \cdots \subseteq \Delta_{s} \subseteq \Delta$, where Δ_{i} denotes the closed disk in Σ bounded by the image under Γ of C_{i}. We say that a society (G, Ω) is s-nested if it is the

Figure 2: (a),(b) A turtle. (c),(d) A gridlet. (e),(f) A separated doublecross.
composition of a society $\left(G_{1}, \Omega_{0}\right)$ with a rural neighborhood $\left(G_{2}, \Omega, \Omega_{0}\right)$ that has an s-nest for some presentation of $\left(G_{2}, \Omega, \Omega_{0}\right)$.

Let Ω be a cyclic permutation. For $x \in V(\Omega)$ we denote the image of x under Ω by $\Omega(x)$. If $X \subseteq V(\Omega)$, then we denote by $\Omega \mid X$ the restriction of Ω to X. That is, $\Omega \mid X$ is the permutation Ω^{\prime} defined by saying that $V\left(\Omega^{\prime}\right)=X$ and $\Omega^{\prime}(x)$ is the first term of the sequence $\Omega(x), \Omega(\Omega(x)), \ldots$ which belongs to X. Let $v_{1}, v_{2}, \ldots, v_{k} \in V(\Omega)$ be distinct. We say that $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ is clockwise in Ω (or simply clockwise when Ω is understood from context) if $\Omega^{\prime}\left(v_{i-1}\right)=v_{i}$ for all $i=1,2, \ldots, k$, where v_{0} means v_{k} and $\Omega^{\prime}=\Omega \mid\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. For $u, v \in V(\Omega)$ we define $u \Omega v$ as the set of all $x \in V(\Omega)$ such that either $x=u$ or $x=v$ or (u, x, v) is clockwise in Ω.

A separation of a graph is a pair (A, B) such that $A \cup B=V(G)$ and there is no edge with one end in $A-B$ and the other end in $B-A$. The order of (A, B) is $|A \cap B|$. We say that a society (G, Ω) is k-connected if there is no separation (A, B) of G of order at most $k-1$ with $V(\Omega) \subseteq A$ and $B-A \neq \emptyset$. A bump in (G, Ω) is a path in G with at least one edge, both ends in $V(\Omega)$ and otherwise disjoint from $V(\Omega)$.

Let (G, Ω) be a society and let $\left(u_{1}, u_{2}, v_{1}, v_{2}, u_{3}, v_{3}\right)$ be clockwise in Ω. For $i=1,2$ let P_{i} be a bump in G with ends u_{i} and v_{i}, and let L be either a bump with ends u_{3} and v_{3}, or the union of two internally disjoint bumps, one with ends u_{3} and $x \in u_{3} \Omega v_{3}$ and the other
with ends v_{3} and $y \in u_{3} \Omega v_{3}$. In the former case let $Z=\emptyset$, and in the latter case let Z be the subinterval of $u_{3} \Omega v_{3}$ with ends x and y, including its ends. Assume that P_{1}, P_{2}, L are pairwise disjoint. Let $q_{1}, q_{2} \in V\left(P_{1}\right) \cup V\left(P_{2}\right) \cup v_{3} \Omega u_{3}-\left\{u_{3}, v_{3}\right\}$ be distinct such that neither of the sets $V\left(P_{1}\right) \cup v_{3} \Omega u_{1}, V\left(P_{2}\right) \cup v_{2} \Omega u_{3}$ includes both q_{1} and q_{2}. Let Q_{1} and Q_{2} be two not necessarily disjoint paths with one end in $u_{3} \Omega v_{3}-Z-\left\{u_{3}, v_{3}\right\}$ and the other end q_{1} and q_{2}, respectively, both internally disjoint from $V\left(P_{1} \cup P_{2} \cup L\right) \cup V(\Omega)$. In those circumstances we say that $P_{1} \cup P_{2} \cup L \cup Q_{1} \cup Q_{2}$ is a turtle in (G, Ω). We say that P_{1}, P_{2} are the legs, L is the neck, and $Q_{1} \cup Q_{2}$ is the body of the turtle. (See Figure 2(a),(b).)

Let (G, Ω) be a society, let $\left(u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}\right)$ be clockwise in Ω, and let P_{1}, P_{2}, P_{3} be disjoint bumps such that P_{i} has ends u_{i} and v_{i}. In those circumstances we say that P_{1}, P_{2}, P_{3} are three crossed paths in (G, Ω).

Let (G, Ω) be a society, and let $u_{1}, u_{2}, u_{3}, u_{4}, v_{1}, v_{2}, v_{3}, v_{4} \in V(\Omega)$ be such that either $\left(u_{1}, u_{2}, u_{3}, v_{2}, u_{4}, v_{1}, v_{4}, v_{3}\right)$ or $\left(u_{1}, u_{2}, u_{3}, u_{4}, v_{2}, v_{1}, v_{4}, v_{3}\right)$ or $\left(u_{1}, u_{2}, u_{3}, v_{2}=u_{4}, v_{1}, v_{4}, v_{3}\right)$ is clockwise. For $i=1,2,3,4$ let P_{i} be a bump with ends u_{i} and v_{i} such that these bumps are pairwise disjoint, except possibly for $v_{2}=u_{4}$. In those circumstances we say that $P_{1}, P_{2}, P_{3}, P_{4}$ is a gridlet. (See Figure 2(c),(d).)

Let (G, Ω) be a society and let $\left(u_{1}, u_{2}, v_{1}, v_{2}, u_{3}, u_{4}, v_{3}, v_{4}\right)$ be clockwise or counter-clockwise in Ω. For $i=1,2,3,4$ let P_{i} be a bump with ends u_{i} and v_{i} such that these bumps are pairwise disjoint, and let P_{5} be a path with one end in $V\left(P_{1}\right) \cup v_{4} \Omega u_{2}-\left\{u_{2}, v_{1}, v_{4}\right\}$, the other end in $V\left(P_{3}\right) \cup v_{2} \Omega u_{4}-\left\{v_{2}, v_{3}, u_{4}\right\}$, and otherwise disjoint from $P_{1} \cup P_{2} \cup P_{3} \cup P_{4}$. In those circumstances we say that $P_{1}, P_{2}, \ldots, P_{5}$ is a separated doublecross.(See Figure 2(e),(f).)

A society (G, Ω) is rural if G can be drawn in a disk with $V(\Omega)$ drawn on the boundary of the disk in the order given by Ω. A society (G, Ω) is nearly rural if there exists a vertex $v \in V(G)$ such that the society $(G \backslash v, \Omega \backslash v)$ obtained from (G, Ω) by deleting v is rural.

In Sections $4-9$ we prove the following. The proof strategy is explained in Section 5. It uses a couple of theorems from [10] and Theorem 4.1 that we prove in Section 4.

Theorem 1.8 There exists an integer $k \geq 1$ such that for every integer $s \geq 0$ and every 6 -connected s-nested k-cosmopolitan society (G, Ω) either (G, Ω) is nearly rural, or G has a triangle C such that $(G \backslash E(C), \Omega)$ is rural, or (G, Ω) has an s-nested planar truncation that has a turtle, three crossed paths, a gridlet, or a separated doublecross.

Finally, we need to convert a turtle, three crossed paths, gridlet and a separated doublecross into a K_{6} minor. Let G be a 6 -connected graph, let H be a sufficiently high planar wall in G, and let (J, Ω) be the anticompass society of H in G. We wish to apply to Theorem 1.8 to (J, Ω). We can, in fact, assume that H is a subgraph of a larger planar wall H^{\prime} that includes s concentric cycles $C_{1}, C_{2}, \ldots, C_{s}$ surrounding H and disjoint from H, for some suitable integer s, and hence (J, Ω) is s-nested. Theorem 1.8 guarantees a turtle or paths in (J, Ω) forming three crossed paths, a gridlet, or a separated double-cross, but it does not
say how the turtle or paths might intersect the cycles C_{i}. In Section 10 we prove a theorem that says that the cycles and the turtle (or paths) can be changed such that after possibly sacrificing a lot of the cycles, the remaining cycles and the new turtle (or paths) intersect nicely. Using that information it is then easy to find a K_{6} minor in G. We complete the proof of Theorem 1.3 in Section 11.

2 Finding a planar wall

Let a pinwheel with four vanes be the graph pictured in Figure 3. We define a pinwheel with k vanes analogously. A graph G is internally 4-connected if it is simple, 3-connected, has at least five vertices, and for every separation (A, B) of G of order three, one of A, B induces a graph with at most three edges.

Figure 3: A pinwheel with four vanes.
The objective of this section is to prove the following theorem.
Theorem 2.1 For every even integer $t \geq 2$ there exists an even integer h such that if H is a wall of height at least h in an internally 4-connected graph G, then either
(1) G has a K_{6} minor, or
(2) G has a subgraph isomorphic to a subdivision of a pinwheel with t vanes, or
(3) G has a planar wall of height t.

In the proof we will be using several results from [11]. Their statements require the following terminology: distance function, (l, m)-star over H, external (l, m)-star over H, subwall, dividing subwall, flat subwall, cross over a wall. We refer to [11] for precise definitions, but we offer the following informal descriptions. The distance of two distinct vertices s, t of a wall is the minimum number of times a curve in the plane joining s and t intersects the drawing of the wall, when the wall is drawn as in Figure 1. An (l, m)-star over a wall H in G is a subdivision of a star with l leaves such that only the leaves and possibly the center
belong to H, and the leaves are pairwise at distance at least m. The star is external if the center does not belong to H. A subwall of a wall is dividing if its perimeter separates the subwall from the rest of the wall. A cross over a wall is a set of two disjoint paths joining the diagonally opposite pairs of "corners" of the wall, the vertices represented by solid circles in Figure 1. A subwall H is flat in G if there is no cross P, Q over H such that $P \cup Q$ is a subgraph of the compass of H in G.

We begin with the following easy lemma. We leave the proof to the reader.
Lemma 2.2 For every integer t there exist integers l and m such that if a graph G has a wall H with an external (l, m)-star, then it has a subgraph isomorphic to a subdivision of a pinwheel with t vanes.

We need one more lemma, which follows immediately from [11, Theorem 8.6].
Lemma 2.3 Every flat wall in an internally 4-connected graph is planar.

Figure 4: A K_{6} minor in a grid with two crosses.
Proof of Theorem 2.1. Let $t \geq 1$ be given, let l, m be as in Lemma 2.2, let $p=6$, and let k, r be as in [11, Theorem 9.2]. If h is sufficiently large, then H has $k+1$ subwalls of height at least t, pairwise at distance at least r. If at least k of these subwalls are non-dividing, then by [11, Theorem 9.2] G either has a K_{6} minor, or an (l, m)-star over H, in which case it has a subgraph isomorphic to a pinwheel with t vanes by Lemma 2.2. In either case the theorem holds, and so we may assume that at least two of the subwalls, say H_{1} and H_{2}, are dividing. We may assume that H_{1} and H_{2} are not planar, for otherwise the theorem holds. Let $i \in\{1,2\}$. By Lemma 2.3 the wall H_{i} is not flat, and hence its compass has a cross
$P_{i} \cup Q_{i}$. Since the subwalls H_{1} and H_{2} are dividing, it follows that the paths $P_{1}, Q_{1}, P_{2}, Q_{2}$ are pairwise disjoint. Thus G has a minor isomorphic to the graph shown in Figure 4, but that graph has a minor isomorphic to a minor of K_{6}, as indicated by the numbers in the figure. Thus G has a K_{6} minor, and the theorem holds.

To deduce Theorem 1.6 we need the following lemma, proved in [5, Lemma 5.3].
Lemma 2.4 If a 5-connected graph G with no K_{6} minor has a subdivision isomorphic to a pinwheel with 20 vanes, then G is apex.

Proof of Theorem 1.6. Let $t \geq 2$ be an even integer. We may assume that $t \geq 20$. Let h be as in Theorem 2.1, and let G be a 5 -connected graph with no K_{6} minor. From Theorem 2.1 we deduce that G either satisfies the conclusion of Theorem 1.6, or has a subdivision isomorphic to a pinwheel with t vanes. In the latter case the theorem follows from Lemma 2.4.

We need the following theorem of DeVos and Seymour [1].
Theorem 2.5 Let (G, Ω) be a rural society such that G is a simple graph and every vertex of G not in $V(\Omega)$ has degree at least six. Then $|V(G)| \leq|V(\Omega)|^{2} / 12+|V(\Omega)| / 2+1$.

Proof of Theorem 1.7. Let $k \geq 1$ be an integer, and let t be an even integer such that if W is the elementary wall of height t and $|V(W)| \leq \ell^{2} / 12+\ell / 2+1$, then $\ell>6 k-6$. Let K be the compass of H in G, let (J, Ω) be the anticompass society of H in G, let $\left(G_{0}, \Omega_{0}\right)$ be a planar truncation of (J, Ω), and let $\ell=\left|V\left(\Omega_{0}\right)\right|$. Thus (J, Ω) is the composition of $\left(G_{0}, \Omega_{0}\right)$ with a rural neighborhood $\left(G^{\prime}, \Omega, \Omega_{0}\right)$. Then $|V(H)| \leq \ell^{2} / 12+\ell / 2+1$ by Theorem 2.5 applied to the society $\left(K \cup G^{\prime}, \Omega_{0}\right)$, and hence $\ell>6 k-6$. Let L be the graph obtained from $K \cup G^{\prime}$ by adding a new vertex v and joining it to every vertex of $V\left(\Omega_{0}\right)$ and by adding an edge joining every pair of nonadjacent vertices of $V\left(\Omega_{0}\right)$ that are consecutive in Ω_{0}. Then L is planar. Let s be the number of vertices of $V\left(\Omega_{0}\right)$ with at least two neighbors in G_{0}. Then all but s vertices of $K \cup G^{\prime}$ have degree in L at least six. Thus the sum of the degrees of vertices of L is at least $6\left|V\left(K \cup G^{\prime}\right)\right|-6 s+\ell$. On the other hand, the sum of the degrees is at most $6|V(L)|-12$, because L is planar, and hence $s \geq k$, as desired.

3 Rural societies

If P is a path and $x, y \in V(P)$, we denote by $x P y$ the unique subpath of P with ends x and y. Let (G, Ω) be a society. An orderly transaction in (G, Ω) is a sequence of k pairwise disjoint bumps $\mathcal{T}=\left(P_{1}, \ldots, P_{k}\right)$ such that P_{i} has ends u_{i} and v_{i} and $u_{1}, u_{2}, \ldots, u_{k}, v_{k}, v_{k-1}, \ldots, v_{1}$ is clockwise. Let M be the graph obtained from $P_{1} \cup P_{2} \cup \cdots \cup P_{k}$ by adding the vertices
of $V(\Omega)$ as isolated vertices. We say that M is the frame of \mathcal{T}. We say that a path Q in G is \mathcal{T}-coterminal if Q has both ends in $V(\Omega)$ and is otherwise disjoint from it and for every $i=1,2, \ldots, k$ the following holds: if Q intersects P_{i}, then their intersection is a path whose one end is a common end of Q and P_{i}.

Let (G, Ω) be a society, and let M and \mathcal{T} be as in the previous paragraph. Let $i \in$ $\{1,2, \ldots, k\}$ and let Q be a \mathcal{T}-coterminal path in $G \backslash V\left(P_{i}\right)$ with one end in $v_{i} \Omega u_{i}$ and the other end in $u_{i} \Omega v_{i}$. In those circumstances we say that Q is a \mathcal{T}-jump over P_{i}, or simply a \mathcal{T}-jump .

Now let $i \in\{0,1, \ldots, k\}$ and let Q_{1}, Q_{2} be two disjoint \mathcal{T}-coterminal paths such that Q_{j} has ends x_{j}, y_{j} and ($u_{i}, x_{1}, x_{2}, u_{i+1}, v_{i+1}, y_{1}, y_{2}, v_{i}$) is clockwise in Ω, where possibly $u_{i}=x_{1}$, $x_{2}=u_{i+1}, v_{i+1}=y_{1}$, or $y_{2}=v_{i}$, and u_{0} means x_{1}, u_{k+1} means x_{2}, v_{k+1} means y_{1}, and v_{0} means y_{2}. In those circumstances we say that $\left(Q_{1}, Q_{2}\right)$ is a \mathcal{T}-cross in region i, or simply a \mathcal{T}-cross.

Finally, let $i \in\{1,2, \ldots, k\}$ and let Q_{0}, Q_{1}, Q_{2} be three paths such that Q_{j} has ends x_{j}, y_{j} and is otherwise disjoint from all members of $\mathcal{T}, x_{0}, y_{0} \in V\left(P_{i}\right)$, the vertices x_{1}, x_{2} are internal vertices of $x_{0} P_{i} y_{0}, y_{1}, y_{2} \notin V\left(P_{i}\right), y_{1} \in u_{i-1} \Omega u_{i} \cup v_{i} \Omega v_{i-1}, y_{2} \in u_{i} \Omega u_{i+1} \cup v_{i+1} \Omega v_{i}$, and the paths Q_{0}, Q_{1}, Q_{2} are pairwise disjoint, except possibly $x_{1}=x_{2}$. In those circumstances we say that $\left(Q_{0}, Q_{1}, Q_{2}\right)$ is a \mathcal{T}-tunnel under P_{i}, or simply a \mathcal{T}-tunnel.

Intuitively, if we think of the paths in \mathcal{T} as dividing the society into "regions", then a \mathcal{T}-jump arises from a \mathcal{T}-path whose ends do not belong to the same region. A \mathcal{T}-cross arises from two \mathcal{T}-paths with ends in the same region that cross inside that region, and furthermore, each path in \mathcal{T} includes at most two ends of those crossing paths. Finally, a \mathcal{T}-tunnel can be converted into a \mathcal{T}-jump by rerouting P_{i} along Q_{0}. However, in some applications such rerouting will be undesirable, and therefore we need to list \mathcal{T}-tunnels as outcomes.

Let M be a subgraph of a graph G. An M-bridge in G is a connected subgraph B of G such that $E(B) \cap E(M)=\emptyset$ and either $E(B)$ consists of a unique edge with both ends in M, or for some component C of $G \backslash V(M)$ the set $E(B)$ consists of all edges of G with at least one end in $V(C)$. The vertices in $V(B) \cap V(M)$ are called the attachments of B. Now let M be such that no block of M is a cycle. By a segment of M we mean a maximal subpath P of M such that every internal vertex of P has degree two in M. It follows that the segments of M are uniquely determined. Now if B is an M-bridge of G, then we say that B is unstable if some segment of M includes all the attachments of B, and otherwise we say that B is stable.

A society (G, Ω) is rurally 4-connected if for every separation (A, B) of order at most three with $V(\Omega) \subseteq A$ the graph $G[B]$ can be drawn in a disk with the vertices of $A \cap B$ drawn on the boundary of the disk. A society is cross-free if it has no cross. The following, a close relative of Lemma 2.3, follows from [10, Theorem 2.4].

Theorem 3.1 Every cross-free rurally 4-connected society is rural.

Lemma 3.2 Let (G, Ω) be a rurally 4-connected society, let $\mathcal{T}=\left(P_{1}, \ldots, P_{k}\right)$ be an orderly transaction in (G, Ω), and let M be the frame of \mathcal{T}. If every M-bridge of G is stable and (G, Ω) is not rural, then (G, Ω) has a \mathcal{T}-jump, a \mathcal{T}-cross, or a \mathcal{T}-tunnel.

Proof. For $i=1,2, \ldots, k$ let u_{i} and v_{i} be the ends of P_{i} numbered as in the definition of orderly transaction, and for convenience let P_{0} and P_{k+1} be null graphs. We define $k+1$ cyclic permutations $\Omega_{0}, \Omega_{1}, \ldots, \Omega_{k}$ as follows. For $i=1,2, \ldots, k-1$ let $V\left(\Omega_{i}\right):=$ $V\left(P_{i}\right) \cup V\left(P_{i+1}\right) \cup u_{i} \Omega u_{i+1} \cup v_{i+1} \Omega v_{i}$ with the cyclic order defined by saying that $u_{i} \Omega u_{i+1}$ is followed by $V\left(P_{i+1}\right)$ in order from u_{i+1} to v_{i+1}, followed by $v_{i+1} \Omega v_{i}$ followed by $V\left(P_{i}\right)$ in order from v_{i} to u_{i}. The cyclic permutation Ω_{0} is defined by letting $v_{1} \Omega u_{1}$ be followed by $V\left(P_{1}\right)$ in order from u_{1} to v_{1}, and Ω_{k} is defined by letting $u_{k} \Omega v_{k}$ be followed by $V\left(P_{k}\right)$ in order from v_{k} to u_{k}.

Now if for some M-bridge B of G there is no index $i \in\{0,1, \ldots, k\}$ such that all attachments of B belong to $V\left(\Omega_{i}\right)$, then (G, Ω) has a \mathcal{T}-jump. Thus we may assume that such index exists for every M-bridge B, and since B is stable that index is unique. Let us denote it by $i(B)$. For $i=0,1, \ldots, k$ let G_{i} be the subgraph of G consisting of $P_{i} \cup P_{i+1}$, the vertex-set $V\left(\Omega_{i}\right)$ and all M-bridges B of G with $i(B)=i$. The society $\left(G_{i}, \Omega_{i}\right)$ is rurally 4 -connected. If each $\left(G_{i}, \Omega_{i}\right)$ is cross-free, then each of them is rural by Theorem 3.1 and it follows that (G, Ω) is rural. Thus we may assume that for some $i=0,1, \ldots, k$ the society $\left(G_{i}, \Omega_{i}\right)$ has a cross $\left(Q_{1}, Q_{2}\right)$. If neither P_{i} nor P_{i+1} includes three or four ends of the paths Q_{1} and Q_{2}, then (G, Ω) has a \mathcal{T}-cross. Thus we may assume that P_{i} includes both ends of Q_{1} and at least one end of Q_{2}. Let x_{j}, y_{j} be the ends of Q_{j}. Since the M-bridge of G containing Q_{2} is stable, it has an attachment outside P_{i}, and so if needed, we may replace Q_{2} by a path with an end outside P_{i} (or conclude that (G, Ω) has a \mathcal{T}-jump). Thus we may assume that $u_{i}, x_{1}, x_{2}, y_{1}, v_{i}$ occur on P_{i} in the order listed, and $y_{2} \notin V\left(P_{i}\right)$.

The M-bridge of G containing Q_{1} has an attachment outside P_{i}. If it does not include Q_{2} and has an attachment outside $V\left(P_{i}\right) \cup\left\{y_{2}\right\}$, then (G, Ω) has a \mathcal{T}-jump or \mathcal{T}-cross, and so we may assume not. Thus there exists a path Q_{3} with one end x_{3} in the interior of Q_{1} and the other end $y_{3} \in V\left(Q_{2}\right)-\left\{x_{2}\right\}$ with no internal vertex in $M \cup Q_{1} \cup Q_{2}$. We call the triple $\left(Q_{1}, Q_{2}, Q_{3}\right)$ a tripod, and the path $y_{3} Q_{2} y_{2}$ the leg of the tripod. If v is an internal vertex of $x_{1} P_{i} y_{1}$, then we say that v is sheltered by the tripod $\left(Q_{1}, Q_{2}, Q_{3}\right)$. Let L be a path that is the leg of some tripod, and subject to that L is minimal. From now on we fix L and will consider different tripods with leg L; thus the vertices $x_{1}, y_{1}, x_{2}, x_{3}$ may change, but y_{2} and y_{3} will remain fixed as the ends of L.

Let $x_{1}^{\prime}, y_{1}^{\prime} \in V\left(P_{i}\right)$ be such that they are sheltered by no tripod with leg L, but every internal vertex of $x_{1}^{\prime} P_{i} y_{1}^{\prime}$ is sheltered by some tripod with leg L. Let X^{\prime} be the union of $x_{1}^{\prime} P_{i} y_{1}^{\prime}$ and all tripods with leg L that shelter some internal vertex of $x_{1}^{\prime} P_{i} y_{1}^{\prime}$, let $X:=$
$X^{\prime} \backslash V(L) \backslash\left\{x_{1}^{\prime}, y_{1}^{\prime}\right\}$ and let $Y:=V(M \cup L)-x_{1}^{\prime} P_{i} y_{1}^{\prime}-\left\{y_{3}\right\}$. Since (G, Ω) is rurally 4-connected we deduce that the set $\left\{x_{1}^{\prime}, y_{1}^{\prime}, y_{3}\right\}$ does not separate X from Y in G. It follows that there exists a path P in $G \backslash\left\{x_{1}^{\prime}, y_{1}^{\prime}, y_{3}\right\}$ with ends $x \in X$ and $y \in Y$. We may assume that P has no internal vertex in $X \cup Y$. Let $\left(Q_{1}, Q_{2}, Q_{3}\right)$ be a tripod with leg L such that either x is sheltered by it, or $x \in V\left(Q_{1} \cup Q_{2} \cup Q_{3}\right)$. If $y \notin V\left(L \cup P_{i}\right)$, then by considering the paths P, Q_{1}, Q_{2}, Q_{3} it follows that either (G, Ω) has a \mathcal{T}-jump or \mathcal{T}-tunnel. If $y \in V(L)$, then there is a tripod whose leg is a proper subpath of L, contrary to the choice of L. Thus we may assume that $y \in V\left(P_{i}\right)$, and that $y \in V\left(P_{i}\right)$ for every choice of the path P as above. If $x \in V\left(Q_{1} \cup Q_{2} \cup Q_{3}\right)$ then there is a tripod with leg L that shelters x_{1}^{\prime} or y_{1}^{\prime}, a contradiction. Thus $x \in V\left(P_{i}\right)$. Let B be the M-bridge containing P. Since $y \in V\left(P_{i}\right)$ for all choices of P it follows that the attachments of B are a subset of $V\left(P_{i}\right) \cup\left\{y_{2}\right\}$. But B is stable, and hence y_{2} is an attachment of B. The minimality of L implies that B includes a path from y to y_{3}, internally disjoint from L. Using that path and the paths P, Q_{1}, Q_{2}, Q_{3} it is now easy to construct a tripod that shelters either x_{1}^{\prime} or y_{1}^{\prime}, a contradiction.

4 Leap of length five

A leap of length k in a society (G, Ω) is a sequence of $k+1$ pairwise disjoint bumps $P_{0}, P_{1}, \ldots, P_{k}$ such that P_{i} has ends u_{i} and v_{i} and $u_{0}, u_{1}, u_{2}, \ldots, u_{k}, v_{0}, v_{k}, v_{k-1}, \ldots, v_{1}$, is clockwise. In this section we prove the following.

Theorem 4.1 Let (G, Ω) be a 6-connected society with a leap of length five. Then (G, Ω) is nearly rural, or G has a triangle C such that $(G \backslash E(C), \Omega)$ is rural, or (G, Ω) has three crossed paths, a gridlet, a separated doublecross, or a turtle.

The following is a hypothesis that will be common to several lemmas of this section, and so we state it separately to avoid repetition.

Hypothesis 4.2 Let (G, Ω) be a society with no three crossed paths, a gridlet, a separated doublecross, or a turtle, let $k \geq 1$ be an integer, let

$$
\left(u_{0}, u_{1}, u_{2}, \ldots, u_{k}, v_{0}, v_{k}, v_{k-1}, \ldots, v_{1}\right)
$$

be clockwise, and let $P_{0}, P_{1}, \ldots, P_{k}$ be pairwise disjoint bumps such that P_{i} has ends u_{i} and v_{i}. Let \mathcal{T} be the orderly transaction $\left(P_{1}, P_{2}, \ldots, P_{k}\right)$, let M be the frame of \mathcal{T} and let

$$
Z=u_{1} \Omega u_{k} \cup v_{k} \Omega v_{1} \cup V\left(P_{2}\right) \cup V\left(P_{3}\right) \cup \cdots \cup V\left(P_{k-1}\right)-\left\{u_{1}, u_{k}, v_{1}, v_{k}\right\}
$$

Let $Z_{1}=v_{1} \Omega u_{1}-\left\{u_{0}, u_{1}, v_{1}\right\}$ and $Z_{2}=u_{k} \Omega v_{k}-\left\{v_{0}, u_{k}, v_{k}\right\}$.

If H is a subgraph of G, then an H-path is a (possibly trivial) path with both ends in $V(H)$ and otherwise disjoint from H. This is somewhat non-standard, typically an H-path is required to have at least one edge, but we use our definition for convenience. We say that a vertex v of P_{0} is exposed if there exists an $\left(M \cup P_{0}\right)$-path P with one end v and the other in Z.

Lemma 4.3 Assume Hypothesis 4.2 and let $k \geq 3$. Let R_{1}, R_{2} be two disjoint $\left(M \cup P_{0}\right)$ paths in G such that R_{i} has ends $x_{i} \in V\left(P_{0}\right)$ and $y_{i} \in V(M)-\left\{u_{0}, v_{0}\right\}$, and assume that $u_{0}, x_{1}, x_{2}, v_{0}$ occur on P_{0} in the order listed, where possibly $u_{0}=x_{1}$, or $v_{0}=x_{2}$, or both. Then either $y_{1} \in V\left(P_{1}\right) \cup v_{1} \Omega u_{1}$, or $y_{2} \in V\left(P_{k}\right) \cup u_{k} \Omega v_{k}$, or both. In particular, there do not exist two disjoint $\left(M \cup P_{0}\right)$-paths from $V\left(P_{0}\right)$ to Z.

Proof. The second statement follows immediately from the first, and so it suffices to prove the first statement. Suppose for a contradiction that there exist paths R_{1}, R_{2} satisfying the hypotheses but not the conclusion of the lemma. By using the paths $P_{2}, P_{3}, \ldots, P_{k-1}$ we conclude that there exist two disjoint paths Q_{1}, Q_{2} in G such that Q_{i} has ends $x_{i} \in V\left(P_{0}\right)$ and $z_{i} \in V(\Omega)$, and is otherwise disjoint from $V\left(P_{0}\right) \cup V(\Omega)$, and if Q_{i} intersects some P_{j} for $j \in\{1,2, \ldots, k\}$, then $j \in\{2, \ldots, k-1\}$ and $Q_{i} \cap P_{j}$ is a path one of whose ends is a common end of Q_{i} and P_{j}. Furthermore, $z_{1} \in u_{1} \Omega v_{1}-\left\{u_{1}, v_{1}\right\}$ and $z_{2} \in v_{k} \Omega u_{k}-\left\{u_{k}, v_{k}\right\}$. From the symmetry we may assume that either $\left(u_{0}, v_{0}, z_{2}, z_{1}\right)$, or $\left(u_{0}, z_{1}, v_{0}, z_{2}\right)$ or $\left(u_{0}, v_{0}, z_{1}, z_{2}\right)$ is clockwise. In the first two cases (G, Ω) has a separated doublecross (the two pairs of crossing bumps are P_{1} and $Q_{1} \cup u_{0} P_{0} x_{1}$, and P_{k} and $Q_{2} \cup v_{0} P_{0} x_{2}$, and the fifth path is a subpath of P_{2}), unless the second case holds and $z_{1} \in u_{k} \Omega v_{0}$ or $z_{2} \in v_{1} \Omega u_{0}$, or both. By symmetry we may assume that $z_{1} \in u_{k} \Omega v_{0}$. Then, if $z_{2} \in v_{k-2} \Omega u_{0},(G, \Omega)$ has a gridlet formed by the paths $P_{k}, P_{k-1}, u_{0} P_{0} x_{1} \cup Q_{1}$ and $v_{0} P_{0} x_{2} \cup Q_{2}$. Otherwise, $z_{2} \in v_{k} \Omega v_{k-2}-\left\{v_{k}, v_{k-2}\right\}$ and (G, Ω) has a turtle with legs P_{k} and $v_{0} P_{0} x_{2} \cup Q_{2}$, neck P_{1} and body $u_{0} P_{0} x_{2} \cup Q_{1}$.

Finally, in the third case (G, Ω) has a turtle or three crossed paths. More precisely, if $z_{2} \in v_{0} \Omega v_{1}-\left\{v_{1}\right\}$, then (G, Ω) has a turtle described in the paragraph above. Otherwise, by symmetry, we may assume that $z_{2} \in v_{1} \Omega u_{0}$ and $z_{1} \in v_{0} \Omega v_{k}$, in which case $v_{0} P_{0} x_{2} \cup Q_{2}$, $u_{0} P_{0} x_{1} \cup Q_{1}$ and P_{2} are the three crossed paths.

Lemma 4.4 Assume Hypothesis 4.2 and let $k \geq 2$. Then $\left(G \backslash V\left(P_{0}\right), \Omega \backslash V\left(P_{0}\right)\right)$ has no \mathcal{T} jump.

Proof. Suppose for a contradiction that $\left(G \backslash V\left(P_{0}\right), \Omega \backslash V\left(P_{0}\right)\right)$ has a \mathcal{T}-jump. Thus there is an index $i \in\{1,2, \ldots, k\}$ and a \mathcal{T}-coterminal path P in $G \backslash V\left(P_{0} \cup P_{i}\right)$ with ends $x \in v_{i} \Omega u_{i}$ and $y \in u_{i} \Omega v_{i}$. Let $j \in\{1,2, \ldots, k\}-\{i\}$. Then using the paths P_{0}, P_{i}, P_{j} and P we deduce that (G, Ω) has either three crossed paths or a gridlet, in either case a contradiction.

Lemma 4.5 Assume Hypothesis 4.2 and let $k \geq 2$. Let $v \in V\left(P_{0}\right)$ be such that there is no $\left(M \cup P_{0}\right)$-path in $G \backslash v$ from $v P_{0} v_{0}$ to $v P_{0} u_{0} \cup V\left(P_{1} \cup P_{2} \cup \cdots \cup P_{k-1}\right) \cup v_{k} \Omega u_{k}-\left\{v_{k}, u_{k}\right\}$ and none from $v P_{0} u_{0}$ to $V\left(P_{2} \cup P_{3} \cup \cdots \cup P_{k}\right) \cup u_{1} \Omega v_{1}-\left\{u_{1}, v_{1}\right\}$. Then $(G \backslash v, \Omega \backslash v)$ has no \mathcal{T}-jump.

Proof. The hypotheses of the lemma imply that every \mathcal{T}-jump in $(G \backslash v, \Omega \backslash v)$ is disjoint from P_{0}. Thus the lemma follows from Lemma 4.4.

Lemma 4.6 Assume Hypothesis 4.2, let $k \geq 3$, and let $v \in V\left(P_{0}\right)$ be such that no vertex in $V\left(P_{0}\right)-\{v\}$ is exposed. Let $i \in\{0,1, \ldots, k\}$ be such that $(G \backslash v, \Omega \backslash v)$ has a \mathcal{T}-cross $\left(Q_{1}, Q_{2}\right)$ in region i. Then $i \in\{0, k\}$ and v is not exposed. Furthermore, assume that $i=0$, and that there exists an $\left(M \cup P_{0}\right)$-path Q with one end v and the other end in $P_{1} \cup v_{1} \Omega u_{1}-\left\{u_{0}\right\}$, and that $v_{0} P_{0} v$ is disjoint from $Q_{1} \cup Q_{2}$. Then for some $j \in\{1,2\}$ there exist $p \in V\left(Q_{j} \cap u_{0} P_{0} v\right)$ and $q \in V\left(Q_{j} \cap Q\right)$ such that $p P_{0} v$ and $q Q v$ are internally disjoint from $Q_{1} \cup Q_{2}$.

Proof. If $i \notin\{0, k\}$, then the \mathcal{T}-cross is disjoint from P_{0} by the choice of v, and hence the \mathcal{T}-cross and P_{0} give rise to three crossed paths. To complete the proof of the first assertion we may assume that $i=0$ and that v is exposed. Subject to these assumptions we choose Q_{1} and Q_{2} so that $Q_{1} \cup Q_{2} \cup P_{0}$ is minimal. Since v is exposed there exists a \mathcal{T}-coterminal path Q^{\prime} from v to $y \in Z \cap V(\Omega)$ disjoint from $P_{0} \cup P_{1} \cup P_{k} \backslash v$. Let $Q^{\prime \prime}=Q^{\prime} \cup v P_{0} v_{0}$. If $Q^{\prime \prime} \cap\left(Q_{1} \cup Q_{2}\right)=\emptyset$ then (G, Ω) has a separated doublecross, where one pair of crossed paths is obtained from the \mathcal{T}-cross, the other pair is P_{k} and $Q^{\prime \prime}$, and the fifth path is a subpath of P_{2}. Thus we may assume that there exists $x \in V\left(Q^{\prime \prime}\right) \cap V\left(Q_{j}\right)$ for some $j \in\{1,2\}$ and that x is chosen so that $x Q^{\prime \prime} y$ is internally disjoint from $Q_{1} \cup Q_{2}$. For $r=1,2$ let $z_{r} \in v_{1} \Omega u_{1}-\left\{v_{1}, u_{1}\right\}$ be an end of Q_{r} such that Q_{3-r} has one end in $z_{r} \Omega v_{0}$ and another in $v_{0} \Omega z_{r}$. If $x \in V\left(Q^{\prime}\right)$, then Q_{j} is disjoint from P_{0}, because v is the only exposed vertex and $v \notin V\left(Q_{1}\right) \cup V\left(Q_{2}\right)$. Thus $z_{j} Q_{j} x \cup x Q^{\prime} y$ is a \mathcal{T}-jump disjoint from P_{0}, contrary to Lemma 4.4. It follows that $x \in V\left(v_{0} P_{0} v\right)$, and Q^{\prime} is disjoint from $Q_{1} \cup Q_{2}$.

Let $x^{\prime} \in V\left(P_{0}\right) \cap\left(V\left(Q_{1}\right) \cup V\left(Q_{2}\right)\right)$ be chosen so that $x^{\prime} P_{0} v_{0}$ is internally disjoint from $Q_{1} \cup Q_{2}$. Without loss of generality, we assume that $x^{\prime} \in V\left(Q_{1}\right)$. Define $P_{0}^{\prime}=v_{0} P_{0} x^{\prime} \cup x^{\prime} Q_{1} z_{1}$. Let $x^{\prime \prime} \in v P_{0} u_{0} \cap\left(V\left(P_{0}^{\prime}\right) \cup V\left(Q_{2}\right) \cup\left\{u_{0}\right\}\right)$ be chosen so that $v P_{0} x^{\prime \prime}$ is internally disjoint from $P_{0}^{\prime} \cup Q_{2}$. If $x^{\prime \prime} \notin V\left(P_{0}^{\prime}\right)$ then the path $Q^{\prime} \cup v P_{0} u_{0}$, if $x^{\prime \prime}=u_{0}$, or the path $Q^{\prime} \cup v P_{0} x^{\prime \prime} \cup x^{\prime \prime} Q_{2} z_{2}$, if $x^{\prime \prime} \in V\left(Q_{2}\right)$ is a \mathcal{T}-jump, disjoint from P_{0}^{\prime}, contradicting Lemma 4.4. (See Figure 5(a).) If $x^{\prime \prime} \in V\left(P_{0}^{\prime}\right)$ then $x^{\prime \prime} P_{0} v \cup Q^{\prime}$ and $Q_{1} \backslash\left(V\left(P_{0}\right)-\left\{x^{\prime}\right\}\right)$ are paths with one end in $V\left(P_{0}^{\prime}\right)$ and another in $V(\Omega)$, contradicting Lemma 4.3, after we replace P_{0} by P_{0}^{\prime} and P_{1} by Q_{2} in M. (See Figure 5(b).) This proves the first assertion of the lemma.

To prove the second statement of the lemma we assume that $i=0$ and that Q is a path from v to $v^{\prime} \in v_{1} \Omega u_{1}-\left\{u_{0}\right\}$, disjoint from $M \cup P_{0} \backslash v$, except that $P_{1} \cap Q$ may be a path with one end v^{\prime}. Let the ends of Q_{1}, Q_{2} be labeled as in the definition of \mathcal{T}-cross. If P_{0}

Figure 5: Configurations considered in the proof of the first assertion of Lemma 4.6.
is disjoint from $Q_{1} \cup Q_{2}$, then (G, Ω) has three crossed paths (if (y_{2}, u_{0}, x_{1}) is clockwise) or a gridlet with paths $Q_{1}, Q_{2}, P_{0}, P_{2}$ (if $\left(x_{1}, u_{0}, x_{2}\right)$ or (y_{1}, u_{0}, y_{2}) is clockwise), or a separated doublecross with paths $Q_{1}, Q_{2}, P_{0}, P_{2}, P_{k}$ (if $\left(v_{1}, u_{0}, y_{1}\right)$ or $\left(x_{2}, u_{0}, u_{1}\right)$ is clockwise). Thus we may assume that P_{0} intersects $Q_{1} \cup Q_{2}$. (Please note that $v_{0} P_{0} v$ is disjoint from $Q_{1} \cup Q_{2}$ by hypothesis.) Similarly we may assume that Q intersects $Q_{1} \cup Q_{2}$, for otherwise we apply the previous argument with P_{0} replaced by $Q \cup v P_{0} v_{0}$. Let $p \in V\left(Q_{1} \cup Q_{2}\right) \cap u_{0} P_{0} v$ and $q \in V\left(Q_{1} \cup Q_{2}\right) \cap V(Q)$ be chosen to minimize $p P_{0} v$ and $q Q v$. If p and q belong to different paths Q_{1}, Q_{2}, then (G, Ω) has a turtle with legs Q_{1}, Q_{2}, neck P_{k} and body $p P_{0} v_{0} \cup q Q v$. Thus p and q belong to the same Q_{j} and the lemma holds.

In the proof of the following lemma we will be applying Lemma 3.2. To guarantee that the conditions of Lemma 3.2 are satisfied, we will need a result from [5]. We need to precede the statement of this result by a few definitions.

Let M be a subgraph of a graph G, such that no block of M is a cycle. Let P be a segment of M of length at least two, and let Q be a path in G with ends $x, y \in V(P)$ and otherwise disjoint from M. Let M^{\prime} be obtained from M by replacing the path $x P y$ by Q; then we say that M^{\prime} was obtained from M by rerouting P along Q, or simply that M^{\prime} was obtained from M by rerouting. Please note that P is required to have length at least two, and hence this relation is not symmetric. We say that the rerouting is proper if all the attachments of the M-bridge that contains Q belong to P. The following is proved in [5, Lemma 2.1].

Lemma 4.7 Let G be a graph, and let M be a subgraph of G such that no block of M is a cycle. Then there exists a subgraph M^{\prime} of G obtained from M by a sequence of proper reroutings such that if an M^{\prime}-bridge B of G is unstable, say all its attachments belong to
a segment P of M^{\prime}, then there exist vertices $x, y \in V(P)$ such that some component of $G \backslash\{x, y\}$ includes a vertex of B and is disjoint from $M \backslash V(P)$.

Lemma 4.8 Assume Hypothesis 4.2, and let $k \geq$. If every leap of length $k-1$ has at most one exposed vertex, (G, Ω) is 4-connected and $(G \backslash v, \Omega \backslash v)$ is rurally 4-connected for every $v \in V\left(P_{0}\right)$, then (G, Ω) is nearly rural.

Proof. Since (G, Ω) has no separated doublecross it follows that it does not have a \mathcal{T}-cross both in region 0 and region k. Thus we may assume that it has no \mathcal{T}-cross in region k. Similarly, it follows that it does not have a \mathcal{T}-tunnel under both P_{1} and P_{k}, or a \mathcal{T}-cross in region 0 and a \mathcal{T}-tunnel under P_{k}. Thus we may also assume that (G, Ω) has no \mathcal{T}-tunnel under P_{k}. If some leap of length k in (G, Ω) has an exposed vertex, then we may assume that v is an exposed vertex. Otherwise, let the leap $\left(P_{0}, P_{1}, \ldots, P_{k}\right)$ and $v \in V\left(P_{0}\right)$ be chosen such that either $v=u_{0}$ or there exists an $\left(M \cup P_{0}\right)$-path with one end v and the other end in $P_{1} \cup v_{1} \Omega u_{1}-\left\{u_{0}\right\}$, and, subject to that, $v P_{0} v_{0}$ is as short as possible.

By Lemma 4.7 we may assume, by properly rerouting M if necessary, that every M-bridge of $G \backslash v$ is stable. Since the reroutings are proper the new paths P_{i} will still be disjoint from P_{0}, and the property that defines v will continue to hold. Similarly, the facts that there is no \mathcal{T}-cross in region k and no \mathcal{T}-tunnel under P_{k} remain unaffected. We claim that ($G \backslash v, \Omega \backslash v$) is rural.

We apply Lemma 3.2 to the society $(G \backslash v, \Omega \backslash v)$ and orderly transaction \mathcal{T}. We may assume that $(G \backslash v, \Omega \backslash v)$ is not rural, and hence by Lemma 3.2 the society $(G \backslash v, \Omega \backslash v)$ has a \mathcal{T}-jump, a \mathcal{T}-cross or a \mathcal{T}-tunnel. By the choice of v there exists a path Q from v to $v^{\prime} \in v_{k} \Omega u_{k}-\left\{v_{k}, u_{k}\right\}$ such that Q does not intersect $P_{k} \cup P_{0} \backslash v$ and intersects at most one of $P_{1}, P_{2}, \ldots, P_{k-1}$. Furthermore, if it intersects P_{i} for some $i \in\{1,2, \ldots, k-1\}$ then $P_{i} \cap Q$ is a path with one end a common end of both. (If $v=u_{0}$ then we can choose Q to be a one vertex path.)

We claim that v satisfies the hypotheses of Lemma 4.5. To prove this claim suppose for a contradiction that P is an $\left(M \cup P_{0}\right)$-path violating that hypothesis. Suppose first that P and Q are disjoint. Then P joins different components of $P_{0} \backslash v$ by Lemma 4.3. But then changing P_{0} to the unique path in $P_{0} \cup P$ that does not use v either produces a leap with at least two exposed vertices, or contradicts the minimality of $v P_{0} v_{0}$. Thus P and Q intersect. Since no leap of length k has two or more exposed vertices, it follows that v is not exposed. Thus P has one end in $u_{0} P_{0} v$ by the minimality of $v P_{0} v_{0}$, and the other end in $P_{k} \cup u_{k} \Omega v_{k}$, because v is not exposed. But then $P \cup Q$ includes a \mathcal{T}-jump disjoint from P_{0}, contrary to Lemma 4.4. This proves our claim that v satisfies the hypotheses of Lemma 4.5. We conclude that ($G \backslash v, \Omega \backslash v$) has no \mathcal{T}-jump.

Assume now that $(G \backslash v, \Omega \backslash v)$ has a \mathcal{T}-cross $\left(Q_{1}, Q_{2}\right)$ in region i for some integer $i \in$ $\{0,1, \ldots, k\}$. By the first part of Lemma 4.6 and the fact that there is no \mathcal{T}-cross in region
k it follows that $i=0$ and v is not exposed. We have $v \neq u_{0}$, for otherwise $V\left(P_{0}\right) \cap\left(V\left(Q_{1}\right) \cup\right.$ $\left.V\left(Q_{2}\right)\right)=\emptyset$ and either Q_{1}, Q_{2}, P_{0} are three crossed paths, or $Q_{1}, Q_{2}, P_{0}, P_{3}, P_{2}$ is a separated double cross in (G, Ω). Since v is not exposed we deduce that Q satisfies the requirements of Lemma 4.6. By the first part of Lemma 4.6 and the assumption made earlier it follows that $i=0$ and v is not exposed. But the existence of Q and the second statement of Lemma 4.6 imply that some leap of length k has at least two exposed vertices, a contradiction. (To see that let j, p, q be as in Lemma 4.6. Replace P_{1} by Q_{3-j} and replace P_{0} by a suitable subpath of $Q_{j} \cup p P_{0} v_{0} \cup q Q v$.)

We may therefore assume that $(G \backslash v, \Omega \backslash v)$ has a \mathcal{T}-tunnel $\left(Q_{0}, Q_{1}, Q_{2}\right)$ under P_{i} for some $i \in\{1,2, \ldots, k\}$. Then the leap $L^{\prime}=\left(P_{0}, P_{1}, \ldots, P_{i-1}, P_{i+1}, \ldots, P_{k}\right)$ of length $k-1 \geq 3$ has a \mathcal{T}^{\prime}-cross, where \mathcal{T}^{\prime} is the corresponding orderly society, and the result follows in the same way as above.

Lemma 4.9 Assume Hypothesis 4.2 and let $k \geq 3$. If there exist at least two exposed vertices, then there exists a cycle C and three disjoint $(M \cup C)$-paths R_{1}, R_{2}, R_{3} such that R_{i} has ends $x_{i} \in V(C)$ and $y_{i} \in V(M), C \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$ is disjoint from $M, y_{1}=u_{0}, y_{2}=v_{0}$ and $y_{3} \in Z$.

Proof. Let x_{1} be the closest exposed vertex to u_{0} on P_{0}, and let x_{2} be the closest exposed vertex to v_{0}. Let $R_{1}=x_{1} P_{0} u_{0}$ and let $R_{2}=x_{2} P_{0} v_{0}$. For $i=1,2$ let S_{i} be an $\left(M \cup P_{0}\right)$-path with one end x_{i} and the other end in Z. By Lemma $4.3 S_{1}$ and S_{2} intersect, and so we may assume that $S_{1} \cap S_{2}$ is a path R_{3} containing an end of both S_{1} and S_{2}, say y_{3}. Let x_{3} be the other end of R_{3}. Then $P_{0} \cup S_{1} \cup S_{2}$ includes a unique cycle C. The cycle C and paths R_{1}, R_{2}, R_{3} are as desired for the lemma.

If the cycle C in Lemma 4.9 can be chosen to have at least four vertices, then we say that the leap $\left(P_{0}, P_{1}, \ldots, P_{k}\right)$ is diverse.

Lemma 4.10 Assume Hypothesis 4.2, let $k \geq 4$, and let there be no diverse leap of length k. If C is as in Lemma 4.9 and $(G \backslash E(C), \Omega)$ is rurally 4-connected, then $(G \backslash E(C), \Omega)$ is rural.

Proof. Since the leap $\left(P_{0}, P_{1}, \ldots, P_{k}\right)$ is not diverse, it follows that C is a triangle. Let R_{1}, R_{2}, R_{3} and their ends be numbered as in Lemma 4.9. We may assume that $P_{0}=R_{1} \cup$ $R_{2}+x_{1} x_{2}$. Since there is no diverse leap, Lemma 4.3 implies that there is no path in $G \backslash E(C) \backslash V\left(P_{k}\right)$ from x_{2} to $v_{k} \Omega u_{k}$, and none in $G \backslash E(C) \backslash V\left(P_{1}\right)$ from x_{1} to $u_{1} \Omega v_{1}$. It also implies that no vertex on P_{0} is exposed in $G \backslash x_{1} x_{3} \backslash x_{2} x_{3}$.

As in Lemma 4.8, we can apply Lemma 4.7 and assume, by properly rerouting M if necessary, that the conditions of Lemma 3.2 are satisfied. We assume that the society $(G \backslash E(C), \Omega)$ has a \mathcal{T}-jump, a \mathcal{T}-cross, or a \mathcal{T}-tunnel, as otherwise by Lemma $3.2(G \backslash E(C), \Omega)$ is rural.

By the observation at the end of the previous paragraph this \mathcal{T}-jump, \mathcal{T}-cross, or \mathcal{T}-tunnel cannot use both x_{1} and x_{2}; say it does not use x_{2}. But that contradicts Lemma 4.5 or the first part of Lemma 4.6, applied to $v=x_{2}$ and the graph $G \backslash x_{1} x_{3}$, in case of a \mathcal{T}-jump or a \mathcal{T}-cross.

Thus we may assume that $\left(G \backslash E(C) \backslash x_{2}, \Omega \backslash x_{2}\right)$ has a \mathcal{T}-tunnel $\left(Q_{0}, Q_{1}, Q_{2}\right)$ under P_{i} for some $i \in\{1,2, \ldots, k\}$. But then the leap $L^{\prime}=\left(P_{0}, P_{1}, \ldots, P_{i-1}, P_{i+1}, \ldots, P_{k}\right)$ of length $k-1 \geq 3$ has a \mathcal{T}^{\prime}-cross $\left(Q_{1}^{\prime}, Q_{2}^{\prime}\right)$, where \mathcal{T}^{\prime} is the corresponding orderly transaction, Q_{1}^{\prime} is obtained from P_{i} by rerouting along Q_{0} and Q_{2}^{\prime} is the union of $Q_{1} \cup Q_{2}$ with the subpath of P_{i} joining the ends of Q_{1} and Q_{2}. By the first half of Lemma 4.6 applied to the graph $G \backslash x_{1} x_{3}$, the leap $L^{\prime}, v:=x_{2}$ and the \mathcal{T}^{\prime}-cross $\left(Q_{1}^{\prime}, Q_{2}^{\prime}\right)$ we may assume that $i=1$ and that $y_{3} \in v_{2} \Omega u_{2}-\left\{u_{0}\right\}$. By the second half of Lemma 4.6 applied to the same entities and $Q:=R_{3}+x_{3} x_{2}$ there exist $j \in\{1,2\}, p \in V\left(Q_{j}^{\prime} \cap R_{1}\right)$ and $q \in V\left(Q_{j}^{\prime} \cap Q\right)$ such that $p P_{0} x_{2}$ and $q Q x_{2}$ are internally disjoint from $Q_{1}^{\prime} \cup Q_{2}^{\prime}$. If $j=1$, then p, q belong to the interior of Q_{0}, and the leap $\left(P_{0}, P_{1}, \ldots, P_{k}\right)$ is diverse, as a subpath of Q_{0} joins a vertex of R_{1} to a vertex of Q in $G \backslash x_{1} x_{3}$. If $j=2$ then we obtain a diverse leap from $\left(P_{0}, P_{1}, \ldots, P_{k}\right)$ by replacing P_{1} by Q_{1}^{\prime} and replacing P_{0} by a suitable subpath of $Q \cup v_{0} P_{0} p \cup Q_{2}^{\prime}$.

Lemma 4.11 Assume Hypothesis 4.2, let $k \geq 3$, let (G, Ω) be 4-connected, let C, R_{1}, R_{2}, R_{3} be as in Lemma 4.9, and assume that C is not a triangle. Then there exist four disjoint $(M \cup C)$-paths, each with one end in $V(C)$ and the other end respectively in the sets $\left\{u_{0}\right\}$, $\left\{v_{0}\right\}, Z$ and $V\left(P_{1} \cup P_{k}\right)$.

Proof. By an application of the proof of the max-flow min-cut theorem there exist four disjoint $(M \cup C)$-paths, each with one end in $V(C)$ and the other end respectively in the sets $\left\{u_{0}\right\},\left\{v_{0}\right\}, Z$ and $V(M)$. By Lemma 4.3 the fourth path does not end in $V(M)-V\left(P_{1}\right)-$ $V\left(P_{k}\right)$. The result follows.

Lemma 4.12 Assume Hypothesis 4.2, let $k \geq 3$, let C, R_{1}, R_{2}, R_{3} be as in Lemma 4.9, let $D:=M \cup C \cup R_{1} \cup R_{2} \cup R_{3}$, and let R_{4} be a D-path with ends $x_{4} \in V(C)-\left\{x_{1}, x_{2}, x_{3}\right\}$ and $y_{4} \in V\left(P_{1}\right)$. Then $x_{1}, x_{2}, x_{3}, x_{4}$ occur on C in the order listed. Furthermore, if R is a D-path with ends $x \in V(C)-\left\{x_{1}, x_{2}, x_{3}\right\}$ and $y \in V(M)$, then x_{1}, x_{2}, x_{3}, x occur on C in the order listed and $y \in V\left(P_{1}\right)$.

Proof. The vertices $x_{1}, x_{2}, x_{3}, x_{4}$ occur on C in the order listed by Lemma 4.3. Now let R be as stated. By Lemma 4.3 we have $y \in V\left(P_{1} \cup P_{k}\right)$, and so by the first part of the lemma we may assume that $y \in V\left(P_{k}\right)$. By the symmetric statement to the first half of the lemma it follows that x_{1}, x_{2}, x, x_{3} occur on C in the order listed. We may assume that P_{0} is the unique path from u_{0} to v_{0} in $R_{1} \cup R_{2} \cup C \backslash x_{3}$. Then $R_{4} \cup R \cup C \backslash V\left(P_{0}\right)$ includes a \mathcal{T}-jump disjoint from P_{0}, contrary to Lemma 4.4.

Figure 6: Hypothesis 4.13.

We need to further upgrade the assumptions of Hypothesis 4.2, as follows.

Hypothesis 4.13 Assume Hypothesis 4.2. Let C be a cycle with distinct vertices x_{1}, x_{2}, x_{3} such that $C \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$ is disjoint from M. Let R_{1}, R_{2}, R_{3} be pairwise disjoint $(M \cup C)$ paths such that R_{i} has ends x_{i} and y_{i}, where $y_{1}=u_{0}, y_{2}=v_{0}$, and $y_{3} \in Z$. By a ray we mean an $(M \cup C)$-path from C to M, disjoint from $R_{1} \cup R_{2} \cup R_{3}$. We say that a vertex $v \in V\left(P_{1}\right)$ is illuminated if there is a ray with end v. Let $x_{4}, x_{5} \in V\left(P_{1}\right)$ be illuminated vertices such that either $x_{4}=x_{5}$, or $u_{1}, x_{4}, x_{5}, v_{1}$ occur on P_{1} in the order listed, and $x_{4} P_{1} x_{5}$ includes all illuminated vertices. Let $R_{4}:=u_{1} P_{1} x_{4}$ and $R_{5}:=v_{1} P_{1} x_{5}$, and let $y_{4}:=u_{1}$ and $y_{5}:=v_{1}$. Let S_{4} and S_{5} be rays with ends x_{4} and x_{5}, respectively, and let $A_{0}:=V(M)-V\left(P_{1}\right)$ and $B_{0}:=V\left(C \cup S_{4} \cup S_{5} \cup x_{4} P_{1} x_{5}\right)$. (See Figure 6.)

Lemma 4.14 Assume Hypothesis 4.13, let $k \geq 3$, and let (G, Ω) be 6-connected. Then $x_{4} \neq x_{5}$, and the path $x_{4} P_{1} x_{5}$ has at least one internal vertex.

Proof. If $x_{4}=x_{5}$ or $x_{4} P_{1} x_{5}$ has no internal vertex, then by Lemma 4.12 the set $\left\{x_{1}, x_{2}, \ldots, x_{5}\right\}$ is a cutset separating C from $M \backslash V\left(P_{1}\right)$, contrary to the 6 -connectivity of (G, Ω). Note that $V(C)-\left\{x_{1}, x_{2}, \ldots, x_{5}\right\}$ is non-empty as it includes an end of a ray.

Assume Hypothesis 4.13. By Lemma 4.14 the paths $R_{1}, R_{2}, \ldots, R_{5}$ are disjoint paths from A_{0} to B_{0}. The following lemma follows by a standard "augmenting path" argument.

Lemma 4.15 Assume Hypothesis 4.13, and let $k \geq 2$. If there is no separation (A, B) of order at most five with $A_{0} \subseteq A$ and $B_{0} \subseteq B$, then there exist an integer n and internally
disjoint paths $Q_{1}, Q_{2}, \ldots, Q_{n}$ in G, where Q_{i} has distinct ends a_{i} and b_{i} such that
(i) $a_{1} \in A_{0}-\left\{y_{1}, y_{2}, \ldots, y_{5}\right\}$ and $b_{n} \in B_{0}-\left\{x_{1}, x_{2}, \ldots, x_{5}\right\}$,
(ii) for all $i=1,2, \ldots, n-1, a_{i+1}, b_{i} \in V\left(R_{t}\right)$ for some $t \in\{1,2, \ldots, 5\}$, and $y_{t}, a_{i+1}, b_{i}, x_{t}$ are pairwise distinct and occur on R_{t} in the order listed,
(iii) if $a_{i}, b_{j} \in V\left(R_{t}\right)$ for some $t \in\{1,2, \ldots, 5\}$ and $i, j \in\{1,2, \ldots, 5\}$ with $i>j+1$, then either $a_{i}=b_{j}$, or $y_{t}, b_{j}, a_{i}, x_{t}$ occur on R_{t} in the order listed, and
(iv) for $i=1,2, \ldots, n$, if a vertex of Q_{i} belongs to $A_{0} \cup B_{0} \cup V\left(R_{1} \cup R_{2} \cup \cdots \cup R_{5}\right)$, then it is an end of Q_{i}.

The sequence of paths $\left(Q_{1}, Q_{2}, \ldots, Q_{n}\right)$ as in Lemma 4.15 will be called an augmenting sequence.

Lemma 4.16 Assume Hypothesis 4.13, and let $k \geq 3$. Then there is no augmenting sequence $\left(Q_{1}, Q_{2}, \ldots, Q_{n}\right)$, where Q_{1} is disjoint from P_{2}.

Proof. Suppose for a contradiction that there is an augmenting sequence ($Q_{1}, Q_{2}, \ldots, Q_{n}$), where Q_{1} is disjoint from P_{2}, and let us assume that the leap ($P_{0}, P_{1}, \ldots, P_{k}$), cycle C, paths $R_{1}, R_{2}, R_{3}, S_{4}, S_{5}$ and augmenting sequence $\left(Q_{1}, Q_{2}, \ldots, Q_{n}\right)$ are chosen with n minimum. Let the ends of the paths Q_{i} be labeled as in Lemma 4.15. We may assume that P_{0} is the unique path from u_{0} to v_{0} in $R_{1} \cup R_{2} \cup C \backslash x_{3}$. We proceed in a series of claims.
(1) The vertex b_{n} belongs to the interior of $x_{4} P_{1} x_{5}$.

To prove (1) suppose for a contradiction that $b_{n} \in V\left(C \cup S_{4} \cup S_{5}\right)$. By Lemma 4.12, the choice of x_{4}, x_{5} and the fact that $a_{n} \neq x_{4}, x_{5}$ by Lemma 4.15(ii) we deduce that $a_{n} \in V\left(R_{i}\right)$ for some $i \in\{1,2,3\}$. Then we can use Q_{n} to modify C to include $a_{n} R_{i} x_{i}$ (and modify R_{1}, R_{2}, R_{3} accordingly), in which case $\left(Q_{1}, Q_{2}, \ldots, Q_{n-1}\right)$ is an augmentation contradicting the choice of n. This proves (1).

$$
\begin{equation*}
a_{i}, b_{i} \in V\left(R_{j}\right) \text { for no } i \in\{1,2, \ldots, n\} \text { and no } j \in\{1,2, \ldots, 5\} \tag{2}
\end{equation*}
$$

To prove (2) suppose to the contrary that $a_{i}, b_{i} \in V\left(R_{j}\right)$. Then $1<i<n$ and by rerouting R_{j} along Q_{i} we obtain an augmentation $\left(Q_{1}, Q_{2}, \ldots, Q_{i-2}, Q_{i-1} \cup b_{i-1} R_{j} a_{i+1} \cup\right.$ $\left.Q_{i+1}, Q_{i+2}, \ldots, Q_{n}\right)$, contrary to the minimality of n. This proves (2).

$$
\begin{equation*}
a_{i}, b_{i} \in V\left(R_{1} \cup R_{2} \cup R_{3}\right) \text { for no } i \in\{1,2, \ldots, n\} \tag{3}
\end{equation*}
$$

Using (2) the proof of (3) is analogous to the argument at the end of the proof of Claim (1).
(4) $a_{i}, b_{i} \in V\left(R_{4} \cup R_{5}\right)$ for no $i \in\{1,2, \ldots, n\}$.

By (2) one of a_{i}, b_{i} belongs to R_{4} and the other to R_{5}. We can reroute P_{1} along Q_{i}, and then $\left(Q_{1}, Q_{2}, \ldots, Q_{i-1}\right)$ becomes an augmentation, contrary to the minimality of n.

For $i=1,2, \ldots, n-1$, the graph $Q_{i} \cup R_{1} \cup R_{2} \cup R_{3}$ includes no \mathcal{T}-jump.
This claim follows from (3), Lemma 4.3 and Lemma 4.4 applied to P_{0}.
(6) $a_{1} \notin v_{1} \Omega u_{1}$.

To prove (6) suppose for a contradiction that $a_{1} \in v_{1} \Omega u_{1}$. Since $a_{1} \neq y_{1}$, we may assume from the symmetry that $a_{1} \in v_{1} \Omega y_{1}-\left\{y_{1}\right\}$. Then $b_{1} \in V\left(P_{1} \cup R_{1}\right)$ by (5). But if $b_{1} \in V\left(R_{i}\right)$, where $i=1$ or $i=5$, then by rerouting R_{i} along Q_{1} we obtain an augmenting sequence $\left(Q_{2} \cup x_{1} R_{i} a_{2}, Q_{3}, Q_{4}, \ldots, Q_{n}\right)$, contrary to the choice of n. Thus $b_{1} \in u_{1} P_{1} x_{5}$. By replacing P_{1} by the path $Q_{1} \cup u_{1} P_{1} b_{1}$ and considering the paths R_{3} and $S_{5} \cup R_{5}$ we obtain contradiction to Lemma 4.3. This proves (6).

$$
\begin{equation*}
a_{1} \notin u_{k} \Omega v_{k} . \tag{7}
\end{equation*}
$$

Similarly as in the proof of (6), if $a_{1} \in u_{k} \Omega v_{k}$, then $b_{1} \in V\left(R_{2}\right)$ by (5), and we reroute R_{2} along Q_{1} to obtain a contradiction to the minimality of n. This proves (7).
(8) $a_{1} \in V\left(P_{k}\right)$.

To prove (8) we may assume by (6) and (7) that $a_{1} \in Z$. Then $b_{1} \in V\left(R_{3} \cup P_{1}\right)$ by (5). If $b_{1} \in V\left(R_{3}\right)$, then we reroute R_{3} along Q_{1} as before. Thus $b_{1} \in V\left(P_{1}\right)$. It follows from (5) and the hypothesis $V\left(P_{2}\right) \cap V\left(Q_{1}\right)=\emptyset$ that $a_{1} \in u_{1} \Omega u_{2}-\left\{u_{1}, u_{2}\right\}$ or $a_{1} \in v_{2} \Omega v_{1}-\left\{v_{1}, v_{2}\right\}$, and so from the symmetry we may assume the latter.

Let us assume for a moment that $y_{3} \in a_{1} \Omega v_{1}$. We reroute P_{1} along $Q_{1} \cup b_{1} P_{1} v_{1}$. The union of R_{3}, R_{2} and a path in C between x_{2} and x_{3}, avoiding x_{1}, x_{4}, x_{5}, will play the role of P_{0} after rerouting. If $b_{1} \in x_{4} P_{1} v_{1}-\left\{x_{4}\right\}$, then $R_{1} \cup C \cup S_{4} \cup R_{4}$ includes two disjoint paths that contradict Lemma 4.3 applied to the new frame and new path P_{0}. Therefore $b_{1} \in V\left(R_{4}\right)$, and hence $\left(u_{1} P_{1} a_{2} \cup Q_{2}, Q_{3}, \ldots, Q_{n}\right)$ is an augmenting sequence after the rerouting, contrary to the choice of n.

It follows that $y_{3} \notin a_{1} \Omega v_{1}$. If $b_{1} \in V\left(R_{5}\right)$, we replace P_{1} by $Q_{1} \cup u_{1} P_{1} b_{1}$; then $\left(v_{1} P_{1} a_{2} \cup\right.$ $\left.Q_{2}, Q_{3}, \ldots, Q_{n}\right)$ is an augmenting sequence that contradicts the choice of n. So it follows that $b_{1} \in u_{1} P_{1} x_{5}$. But now (G, Ω) has a gridlet using the paths $P_{0}, P_{k}, Q_{1} \cup u_{1} P_{1} b_{1}$ and a subpath of $R_{5} \cup S_{5} \cup R_{3} \cup C \backslash V\left(P_{0}\right)$. This proves (8).
(9) $n>1$.

To prove (9) suppose for a contradiction that $n=1$. Thus b_{1} belongs to the interior of $x_{4} P x_{5}$ by (1), and $a_{1} \in V\left(P_{k}\right)$ by (8). But then Q_{1} is a \mathcal{T}-jump, contrary to (5).
(10) $\quad b_{1} \in V\left(R_{3}\right)$.

To prove (10) we first notice that $b_{1} \in V\left(R_{2} \cup R_{3}\right)$ by (5), (9) and (1). Suppose for a contradiction that $b_{1} \in V\left(R_{2}\right)$. Then $a_{2} \in V\left(R_{2}\right)$, but $b_{2} \notin V\left(R_{1} \cup R_{2} \cup R_{3}\right)$ by (3) and $b_{2} \notin V\left(P_{1}\right)$ by (5), a contradiction. This proves (10).

Let P_{12} and P_{34} be two disjoint subpaths of C, where the first has ends x_{1}, x_{2}, and the second has ends x_{3}, x_{4}. By (8) and (10) the path $Q_{1} \cup b_{1} R_{3} x_{3} \cup P_{34} \cup S_{4}$ is a \mathcal{T}-jump disjoint from $R_{1} \cup P_{12} \cup R_{2}$, contrary to Lemma 4.4.

We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1. Let (G, Ω) be a 6 -connected society with a leap of length five. Thus we may assume that Hypothesis 4.2 holds for $k=5$. By Lemma 4.8 either (G, Ω) is nearly rural, in which case the theorem holds, or there exists a leap of length at least four with at least two exposed vertices. Thus we may assume that there exists a leap of length four with at least two exposed vertices. Let C be a cycle as in Lemma 4.9. If there is no diverse leap, then C is a triangle, $(G \backslash E(C), \Omega)$ is rurally 4 -connected and hence rural by Lemma 4.10, and the theorem holds. Thus we may assume that the cycle C is not a triangle, and so by Lemma 4.11 we may assume that Hypothesis 4.13 for $k=4$ holds. By Lemma 4.14 and the 6 -connectivity of G there is no separation (A, B) as described in Lemma 4.15, and hence by that lemma there exists an augmenting sequence $\left(Q_{1}, Q_{2}, \ldots, Q_{n}\right)$. By Lemma 4.16 the path Q_{1} intersects P_{2}, and hence Q_{1} is disjoint from P_{3}, contrary to Lemma 4.16 applied to the leap $\left(P_{0}, P_{1}, P_{3}, P_{4}\right)$ of length three and an augmenting sequence $\left(Q_{1}^{\prime}, Q_{2}, \ldots, Q_{n}\right)$, where Q_{1}^{\prime} is the union of Q_{1} and $a_{1} P_{2} u_{2}$ or $a_{1} P_{2} v_{2}$.

5 Societies of bounded depth

Let (G, Ω) be a society. A linear decomposition of (G, Ω) is an enumeration $\left\{t_{1}, \ldots, t_{n}\right\}$ of $V(\Omega)$ where $\left(t_{1}, \ldots, t_{n}\right)$ is clockwise, together with a family $\left(X_{i}: 1 \leq i \leq n\right)$ of subsets of $V(G)$, with the following properties:
(i) $\bigcup\left(G\left[X_{i}\right]: 1 \leq i \leq n\right)=G$,
(ii) for $1 \leq i \leq n, t_{i} \in X_{i}$, and
(iii) for $1 \leq i \leq i^{\prime} \leq i^{\prime \prime} \leq n, X_{i} \cap X_{i^{\prime \prime}} \subseteq X_{i^{\prime}}$.

The depth of such a linear decomposition is

$$
\max \left(\left|X_{i} \cap X_{i^{\prime}}\right|: 1 \leq i<i^{\prime} \leq n\right)
$$

and the depth of (G, Ω) is the minimum depth of a linear decomposition of (G, Ω). Theorems (6.1), (7.1) and (8.1) of [10] imply the following.

Theorem 5.1 There exists an integer d such that every 4-connected society (G, Ω) either has a separated doublecross, three crossed paths or a leap of length five, or some planar truncation of (G, Ω) has depth at most d.

In light of Theorems 4.1 and 5.1, in the remainder of the paper we concentrate on societies of bounded depth. We need a few definitions. Let (G, Ω) be a society, let $u_{1}, u_{2}, \ldots, u_{4 t}$ be clockwise in Ω, and let $P_{1}, P_{2}, \ldots, P_{2 t}$ be disjoint bumps in G such that for $i=1,2, \ldots, 2 t$ the path $P_{2 i-1}$ has ends $u_{4 i-3}$ and $u_{4 i-1}$, and the path $P_{2 i}$ has ends $u_{4 i-2}$ and $u_{4 i}$. In those circumstances we say that (G, Ω) has t disjoint consecutive crosses.

Now let $u_{1}, v_{1}, w_{1}, u_{2}, v_{2}, w_{2}, \ldots, u_{t}, v_{t}, w_{t}$ be clockwise in Ω, let $x \in V(G)-\left\{u_{1}, v_{1}\right.$, $\left.w_{1}, \ldots, u_{t}, v_{t}, w_{t}\right\}$, for $i=1,2, \ldots, t$ let P_{i} be a path in $G \backslash x$ with ends u_{i} and w_{i} and otherwise disjoint from $V(\Omega)$, let Q_{i} be a path with ends x and v_{i} and otherwise disjoint from $V(\Omega)$, and assume that the paths P_{i} and Q_{i} are pairwise disjoint, except that the paths Q_{i} meet at x. Let W be the union of all the paths P_{i} and Q_{i}. We say that W is a windmill with t vanes, and that the graph $P_{i} \cup Q_{i}$ is a vane of the windmill.

Finally, let $u_{1}, u_{2}, \ldots, u_{t}$ and $v_{1}, v_{2}, \ldots, v_{t}$ be vertices of $V(\Omega)$ such that for all $x_{i} \in\left\{u_{i}, v_{i}\right\}$ the sequence $x_{1}, x_{2}, \ldots, x_{t}$ is clockwise in Ω. Let $z_{1}, z_{2} \in V(G)-\left\{u_{1}, v_{1}, \ldots, u_{t}, v_{t}\right\}$ be distinct, for $i=1,2, \ldots, t$ let P_{i} be a path in $G \backslash z_{2}$ with ends z_{1} and u_{i} and otherwise disjoint from $V(\Omega)$, and let Q_{i} be a path in $G \backslash z_{1}$ with ends z_{2} and v_{i} and otherwise disjoint from $V(\Omega)$. Assume that the paths P_{i} and Q_{j} are disjoint, except that the P_{i} share z_{1}, the Q_{i} share z_{2} and P_{i} and Q_{i} are allowed to intersect. Let F be the union of all the paths P_{i} and Q_{i}. Then we say that F is a fan with t blades, and we say that $P_{i} \cup Q_{i}$ is a blade of the fan. The vertices z_{1} and z_{2} will be called the hubs of the fan. In Section 8 we prove the following theorem.

Theorem 5.2 For every two integers d and t there exists an integer k such that every 6connected k-cosmopolitan society (G, Ω) of depth at most d contains one of the following:
(1) t disjoint consecutive crosses, or
(2) a windmill with t vanes, or
(3) a fan with t blades.

Unfortunately, windmills and fans are nearly rural, and so for our application we need to improve Theorem 5.2. We need more definitions.

Let $x, u_{i}, v_{i}, w_{i}, P_{i}, Q_{i}$ be as in the definition of a windmill W with t vanes, let $a, b, c, d \in$ $V(G)$ be such that $u_{1}, v_{1}, w_{1}, \ldots, u_{t}, v_{t}, w_{t}, a, b, c, d$ is clockwise in Ω, and let (P, Q) be a cross disjoint from W whose paths have ends in $\{a, b, c, d\}$. In those circumstances we say that $W \cup P \cup Q$ is a windmill with t vanes and a cross.

Now let $u_{i}, v_{i}, P_{i}, Q_{i}$ be as in the definition of a fan F with t blades, and let $a, b, c, d \in V(\Omega)$ be such that all $x_{i} \in\left\{u_{i}, v_{i}\right\}$ the sequence $x_{1}, x_{2}, \ldots, x_{t}, a, b, c, d$ is clockwise in Ω. Let (P, Q) be a cross disjoint from F whose paths have ends in $\{a, b, c, d\}$. In those circumstances we say that $W \cup P \cup Q$ is a fan with t blades and a cross.

Let $z_{1}, z_{2}, u_{i}, v_{i}, P_{i}, Q_{i}$ be as in the definition of a fan F with t blades, and let $a_{1}, b_{1}, c_{1}, a_{2}$, $b_{2}, c_{2} \in V(G)$ be such that all $x_{i} \in\left\{u_{i}, v_{i}\right\}$ the sequence $x_{1}, x_{2}, \ldots, x_{t}, a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}$ is clockwise in Ω, except that we permit $c_{1}=a_{2}$. For $i=1,2$ let L_{i} be a path in $G \backslash V(F)$ with
ends a_{i} and c_{i} and otherwise disjoint from $V(\Omega)$, and let S_{i} be a path with ends z_{i} and b_{i} and otherwise disjoint from $V(F) \cup V(\Omega)$. If the paths $L_{1}, L_{2}, S_{1}, S_{2}$ are pairwise disjoint, except possibly for L_{1} intersecting L_{2} at $c_{1}=a_{2}$, then we say that $F \cup L_{1} \cup L_{2} \cup S_{1} \cup S_{2}$ is a fan with t blades and two jumps.

Now let $u_{i}, v_{i}, P_{i}, Q_{i}$ be as in the definition of a fan F with $t+1$ blades, and let $a, b \in V(\Omega)$ be such that all $x_{i} \in\left\{u_{i}, v_{i}\right\}$ the sequence $x_{1}, x_{2}, \ldots, x_{t}, a, x_{t+1}, b$ is clockwise in Ω. Let P be a path in $G \backslash V(F)$ with ends a and b, and otherwise disjoint from $V(F)$. We say that $F \cup P$ is a fan with t blades and a jump. In Section 9 we improve Theorem 5.2 as follows.

Theorem 5.3 For every two integers d and t there exists an integer k such that every 6 connected k-cosmopolitan society (G, Ω) of depth at most d is either nearly rural, or contains one of the following:
(1) t disjoint consecutive crosses, or
(2) a windmill with t vanes and a cross, or
(3) a fan with t blades and a cross, or
(4) a fan with t blades and a jump, or
(5) a fan with t blades and two jumps.

For $t=4$ each of the above outcomes gives a turtle, and hence we have the following immediate corollary.

Corollary 5.4 For every integer d there exists an integer k such that every 6 -connected k-cosmopolitan society (G, Ω) of depth at most d is either nearly rural, or has a turtle.

The next four sections are devoted to proofs of Theorems 5.2 and 5.3. The proof of Theorem 5.2 will be completed in Section 8 and the proof of Theorem 5.3 will be completed in Section 9. At that time we will be able to deduce Theorem 1.8.

6 Crosses and goose bumps

In this section we prove that a society (G, Ω) either satisfies Theorem 5.2, or it has many disjoint bumps. If X is a set and Ω is a cyclic permutation, we define $\Omega \backslash X$ to be $\Omega \mid(V(\Omega)-$ $X)$. Let $P_{1}, P_{2}, \ldots, P_{k}$ be a set of pairwise disjoint bumps in (G, Ω), where P_{i} has ends u_{i} and v_{i} and $u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{k}, v_{k}$ is clockwise in Ω. In those circumstances we say that $P_{1}, P_{2}, \ldots, P_{k}$ is a goose bump in (G, Ω) of strength k.

Lemma 6.1 Let b, d and t be positive integers, and let (G, Ω) be a society of depth at most d. Then either (G, Ω) has a goose bump of strength b, or there is a set $X \subseteq V(G)$ of size at most $(b-1) d$ such that the society $(G \backslash X, \Omega \backslash X)$ has no bump.

Proof. Let $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ and $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a linear decomposition of (G, Ω) of depth at most d, and for $i=1,2, \ldots, n-1$ let $Y_{i}=X_{i} \cap X_{i+1}$. If P is a bump in (G, Ω), then the axioms of a linear decomposition imply that

$$
I_{P}:=\left\{i \in\{1,2, \ldots, n-1\}: Y_{i} \cap V(P) \neq \emptyset\right\}
$$

is a nonempty subinterval of $\{1,2, \ldots, n-1\}$. It follows that either there exist bumps $P_{1}, P_{2}, \ldots, P_{b}$ such that $I_{P_{1}}, I_{P_{2}}, \ldots, I_{P_{b}}$ are pairwise disjoint, or there exists a set $I \subseteq$ $\{1,2, \ldots, n-1\}$ of size at most $b-1$ such that $I \cap I_{P} \neq \emptyset$ for every bump P. In the former case $P_{1}, P_{2}, \ldots, P_{b}$ is a desired goose bump, and in the latter case the set $X:=\bigcup_{i \in I} Y_{i}$ is as desired.

The proof of the following lemma is similar and is omitted.
Lemma 6.2 Let t and d be positive integers, and let (G, Ω) be a society of depth at most d. Then either (G, Ω) has t disjoint consecutive crosses, or there is a set $X \subseteq V(G)$ of size at most $(t-1) d$ such that the society $(G \backslash X, \Omega \backslash X)$ is cross-free.

Lemma 6.3 Let d, b, t be positive integers, let $k \geq(b-1) d+(t-1)\binom{(b-1) d}{2}+1$ and let (G, Ω) be a 3-connected society of depth at most d such that at least k vertices in $V(\Omega)$ have at least two neighbors in $V(G)$. Then (G, Ω) has either a fan with t blades, or a goose bump of strength b.

Proof. By Lemma 6.1 we may assume that there exists a set $X \subseteq V(G)$ of size at most $(b-1) d$ such that $(G \backslash X, \Omega \backslash X)$ has no bump. There are at least $(t-1)\binom{(b-1) d}{2}+1$ vertices in $V(\Omega)-X$ with at least two neighbors in $V(G)$. Let v be one such vertex, and let H be the component of $G \backslash X$ containing v. Since $(G \backslash X, \Omega \backslash X)$ has no bumps it follows that $V(H) \cap V(\Omega)=\{v\}$. By the fact that v has at least two neighbors in G (if $V(H)=\{v\}$) or the 3-connectivity of (G, Ω) (if $V(H) \neq\{v\})$ it follows that H has at least two neighbors in X. Thus there exist distinct vertices z_{1}, z_{2} such that for at least t vertices of $v \in V(\Omega)-X$ the component of $G \backslash X$ containing v has z_{1} and z_{2} as neighbors. It follows that (G, Ω) has a fan with t blades, as desired.

7 Intrusions, invasions and wars

Let Ω be a cyclic permutation. A base in Ω is a pair (X, Y) of subsets of $V(\Omega)$ such that $|X \cap Y|=2, X \cup Y=V(\Omega)$ and for distinct elements $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in Y$ the sequence $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ is not clockwise. Now let (G, Ω) be a society. A separation (A, B) of G is called an intrusion in (G, Ω) if there exists a base (X, Y) in Ω such that $X \subseteq A, Y \subseteq B$ and there exist disjoint paths $\left(P_{v}\right)_{v \in A \cap B}$, each with one end in X, the other end in Y and with
$v \in V\left(P_{v}\right)$. The intrusion (A, B) is minimal if there is no intrusion $\left(A^{\prime}, B^{\prime}\right)$ of order $|A \cap B|$ with base (X, Y) such that A^{\prime} is a proper subset of A. The paths P_{v} will be called longitudes for the intrusion (A, B). We say that (A, B) is based at (X, Y), and that (X, Y) is a base for (A, B). An intrusion (A, B) in (G, Ω) is an invasion if $|A \cap B \cap V(\Omega)|=2$.

Lemma 7.1 Let d be a positive integer, and let (G, Ω) be a society of depth at most $d-1$. Then for every base (X, Y) in Ω there exists an intrusion of order at most $2 d$ based at (X, Y).

Proof. Let $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ and $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a linear decomposition of (G, Ω) of depth at most $d-1$, and let $X \cap Y=\left\{t_{i}, t_{j}\right\}$. Let $i^{\prime}, j^{\prime} \in\{1,2, \ldots, n\}$ be such that $\left|i-i^{\prime}\right|=$ $\left|j-j^{\prime}\right|=1$, and let $Z:=\left(X_{i} \cap X_{i^{\prime}}\right) \cup\left(X_{j} \cap X_{j^{\prime}}\right) \cup\left\{t_{i}, t_{j}\right\}$. It follows from the axioms of a linear decomposition that $|Z| \leq 2 d$ and that Z separates X from Y in G. Thus there exists a separation (A, B) of G of order at most $2 d$ with $X \subseteq A$ and $Y \subseteq B$. Any such separation (A, B) with $|A \cap B|$ minimum is as desired by Menger's theorem.

An intrusion (A, B) in a society (G, Ω) is t-separating if (G, Ω) has goose bumps $P_{1}, P_{2}, \ldots, P_{t}$ and $Q_{1}, Q_{2}, \ldots, Q_{t}$ such that $V\left(P_{i}\right) \subseteq A-B$ and $V\left(Q_{i}\right) \subseteq B-A$ for all $i=1,2, \ldots, t$.

Lemma 7.2 Let d, s, t be positive integers, and let (G, Ω) be a society of depth at most $d-1$ with a goose bump of strength $t(s+2 d)$. Then there exist s-separating minimal intrusions $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \ldots,\left(A_{t}, B_{t}\right)$ of order at most $2 d$ such that $A_{i} \cap A_{j} \subseteq B_{i} \cap B_{j}$ for all pairs of distinct indices $i, j=1,2, \ldots, t$.

Proof. Let \mathcal{P} be the set of paths comprising a goose bump of strength $t(s+2 d)$. Thus there exist bases $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots\left(X_{t}, Y_{t}\right)$ such that the sets X_{i} are pairwise disjoint and for each $i=1,2, \ldots, t$ exactly $s+2 d$ of the paths in \mathcal{P} have both ends in X_{i}. By Lemma 7.1 there exists, for each $i=1,2, \ldots, t$, an intrusion $\left(A_{i}, B_{i}\right)$ of order at most $2 d$ based at $\left(X_{i}, Y_{i}\right)$.

Let us choose, for each $i=1,2, \ldots, t$, an intrusion $\left(A_{i}, B_{i}\right)$ of order at most $2 d$ based at $\left(X_{i}, Y_{i}\right)$ in such a way that

$$
\begin{equation*}
\sum_{i=1}^{t}\left|A_{i}\right| \text { is minimum. } \tag{1}
\end{equation*}
$$

We claim that $A_{i} \cap A_{j} \subseteq B_{i} \cap B_{j}$. To prove the claim suppose to the contrary that say $x \in A_{1} \cap A_{2}-B_{1} \cap B_{2}$. Let

$$
\begin{aligned}
A_{1}^{\prime} & =A_{1} \cap B_{2}, \\
B_{1}^{\prime} & =A_{2} \cup B_{1}, \\
A_{2}^{\prime} & =A_{2} \cap B_{1}, \\
B_{2}^{\prime} & =A_{1} \cup B_{2} .
\end{aligned}
$$

Then $\left(A_{1}^{\prime}, B_{1}^{\prime}\right)$ and $\left(A_{2}^{\prime}, B_{2}^{\prime}\right)$ are separations of G with $X_{1} \subseteq A_{1}^{\prime}, Y_{1} \subseteq B_{1}^{\prime}, X_{2} \subseteq A_{2}^{\prime}$ and $Y_{2} \subseteq B_{2}^{\prime}$. We have

$$
\left|A_{1} \cap B_{1}\right|+\left|A_{2} \cap B_{2}\right|=\left|A_{1}^{\prime} \cap B_{1}^{\prime}\right|+\left|A_{2}^{\prime} \cap B_{2}^{\prime}\right| .
$$

Furthermore, since each longitude for $\left(A_{1}, B_{1}\right)$ intersects $A_{1}^{\prime} \cap B_{1}^{\prime}$ we deduce that $\left|A_{1}^{\prime} \cap B_{1}^{\prime}\right| \geq$ $\left|A_{1} \cap B_{1}\right|$, and similarly $\left|A_{2}^{\prime} \cap B_{2}^{\prime}\right| \geq\left|A_{2} \cap B_{2}\right|$. Thus the last two inequalities hold with equality, and hence the longitudes for $\left(A_{1}, B_{1}\right)$ are also longitudes for $\left(A_{1}^{\prime}, B_{1}^{\prime}\right)$, and the longitudes for (A_{2}, B_{2}) are longitudes for $\left(A_{2}^{\prime}, B_{2}^{\prime}\right)$. It follows that for $i=1,2$ the separation $\left(A_{i}^{\prime}, B_{i}^{\prime}\right)$ is an intrusion in (G, Ω) based at $\left(X_{i}, Y_{i}\right)$ of order $\left|A_{i} \cap B_{i}\right|$. Since $A_{1} \cap A_{2}-\left(B_{1} \cap B_{2}\right)=$ $\left(A_{1} \cap A_{2}-B_{1}\right) \cup\left(A_{1} \cap A_{2}-B_{2}\right)$ we may assume that $x \in A_{1}-B_{2}$. But then replacing $\left(A_{1}, B_{1}\right)$ by $\left(A_{1}^{\prime}, B_{1}^{\prime}\right)$ produces a set of intrusions that contradict (1). This proves our claim that $A_{i} \cap A_{j} \subseteq B_{i} \cap B_{j}$ for all distinct integers $i, j=1,2, \ldots, t$.

Since at most $2 d$ of the paths in \mathcal{P} with ends in X_{i} can intersect $A_{i} \cap B_{i}$, we deduce that each intrusion $\left(A_{i}, B_{i}\right)$ is s-separating. Moreover, each $\left(A_{i}, B_{i}\right)$ is clearly minimal by (1).

We need a lemma about subsets of a set.
Lemma 7.3 Let d and t be positive integers, and let \mathcal{F} be a family of $2\left(\begin{array}{c}\binom{+1}{2}\end{array} t^{d}\right.$ distinct subsets of a set S, where each member of \mathcal{F} has size at most d. Then there exist a set $X \subset S$ of size at most $\binom{d+1}{2}$ and a family $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ of size at least t such that $F \cap F^{\prime} \subseteq X$ for every two distinct sets $F, F^{\prime} \in \mathcal{F}^{\prime}$.

Proof. We proceed by induction on $d+t$. If $d=1$ or $t=1$, then the lemma clearly holds, and so we may assume that $d, t>1$. Let $F_{0} \in \mathcal{F}$ be minimal with respect to inclusion. If \mathcal{F} has a subfamily \mathcal{F}_{1} of at least $2\left(\begin{array}{c}\binom{d+1}{2} \\ (t-1)^{d}\end{array}\right.$ sets disjoint from F_{0}, then the result follows from the induction hypothesis applied to \mathcal{F}_{1} and by adding F_{0} to the family thus obtained. If the family $\mathcal{F}_{2}=\left\{F-F_{0}: F \in \mathcal{F}, F \cap F_{0} \neq \emptyset\right\}$ includes at least $2^{\binom{d}{2}} t^{d-1}$ distinct sets, then the result follows from the induction hypothesis applied to \mathcal{F}_{2} by adding F_{0} to the set thus obtained. Thus we may assume neither of the two cases holds. Thus

$$
|\mathcal{F}| \leq 2^{\binom{d+1}{2}}(t-1)^{d}-1+2^{d} 2^{\binom{d}{2}} t^{d-1}-1+1<2^{\binom{d+1}{2}} t^{d}
$$

a contradiction.

Lemma 7.4 Let d, s, t be positive integers, and let (G, Ω) be a society of depth at most $d-1$ with a goose bump of strength $2\binom{2 d+1}{2} t^{2 d}(s+2 d)$. Then there exist a set $X \subseteq V(G)$ of size at most $\binom{2 d+1}{2}$ and s-separating intrusions $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \ldots,\left(A_{t}, B_{t}\right)$ in $(G \backslash X, \Omega \backslash X)$ such that $A_{i} \cap A_{j}=\emptyset$ for all pairs of distinct indices $i, j=1,2, \ldots, t$.
Proof. Let $T=2\left(\begin{array}{c}2 d+1\end{array} t^{2 d}\right.$. By Lemma 7.2 there exist s-separating minimal intrusions $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \ldots,\left(A_{T}, B_{T}\right)$ of order at most $2 d$ such that $A_{i} \cap A_{j} \subseteq B_{i} \cap B_{j}$ for all pairs of distinct indices $i, j=1,2, \ldots, t$. By Lemma 7.3 applied to the sets $A_{i} \cap B_{i}$ there exist a set $X \subseteq \bigcup_{i=1}^{T}\left(A_{i} \cap B_{i}\right)$ of size at most $\binom{2 d+1}{2}$ and a subset of t of those intrusions, say $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \ldots,\left(A_{t}, B_{t}\right)$, such that $A_{i} \cap B_{i} \cap A_{j} \cap B_{j} \subseteq X$ for all distinct integers $i, j=1,2, \ldots, t$. It follows that $\left(A_{i}-X, B_{i}-X\right)$ are as required for $(G \backslash X, \Omega \backslash X)$.

Our next objective is to prove, albeit with weaker bounds, that the conclusion of Lemma 7.4 can be strengthened to assert that the intrusions $\left(A_{i}, B_{i}\right)$ therein are actually invasions.

Let (A, B) be an intrusion in a society (G, Ω) based at (X, Y). A path P in $G[A]$ is a meridian for (A, B) if its ends are the two vertices of $X \cap Y$. If P is a meridian for (A, B) and $\left(L_{v}\right)_{v \in A \cap B}$ are longitudes for (A, B), then the graph $\left(P \cup \bigcup_{v \in A \cap B} L_{v}\right) \backslash(B-A)$ is called a frame for (A, B).

Lemma 7.5 Let λ and s be positive integers, let $s^{\prime}=(s-1)(\lambda-1)+1$, let (G, Ω) be a cross-free society, and let (A, B) be an s^{\prime}-separating minimal intrusion in (G, Ω) of order at most λ. Then there exists an s-separating minimal invasion (C, D) in (G, Ω) of order at most λ with a frame F such that $V(F)-V(\Omega) \subseteq A$.

Proof. We may assume that
(1) there is no integer $\lambda^{\prime} \leq \lambda$ and an $\left((s-1)\left(\lambda^{\prime}-1\right)+1\right)$-separating minimal intrusion $\left(A^{\prime}, B^{\prime}\right)$ in (G, Ω) of order at most λ^{\prime} with A^{\prime} a proper subset of A,
for if $\left(A^{\prime}, B^{\prime}\right)$ exists, and it satisfies the conclusion of the lemma, then so does (A, B). We first show that (A, B) has a meridian. Indeed, suppose not. Let (X, Y) be a base of (A, B) and let $X \cap Y=\{u, v\}$; then $G[A]$ has no $u-v$ path. Since (G, Ω) is cross-free it follows that $G[A]$ has a separation $\left(A_{1}, A_{2}\right)$ of order zero such that both $X_{1}=X \cap A_{1}$ and $X_{2}=X \cap A_{2}$ are intervals in Ω. It follows that there exist Y_{1}, Y_{2} such that $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ are bases. Thus $\left(A_{1}, A_{2} \cup B \cup\left(X_{1} \cap Y_{1}\right)\right)$ and $\left(A_{2}, A_{1} \cup B \cup\left(X_{2} \cap Y_{2}\right)\right)$ are minimal intrusions, and one of them violates (1). This proves that (A, B) has a meridian.

Let M be a meridian in (A, B), let $\left(L_{v}\right)_{v \in A \cap B}$ be a collection of longitudes for (A, B) and let $F=M \cup \bigcup_{v \in A \cap B}\left(L_{v} \backslash(B-A)\right)$. By the same argument that justifies (1) we may assume that
(2) there is no integer $\lambda^{\prime}<\lambda$ and an $\left((s-1)\left(\lambda^{\prime}-1\right)+1\right)$-separating minimal intrusion $\left(A^{\prime}, B^{\prime}\right)$ in (G, Ω) of order at most λ^{\prime} with frame F^{\prime} such that $F^{\prime} \backslash V(\Omega)$ is a subgraph of F.

We claim that $|A \cap B \cap V(\Omega)|=2$. We first prove that $A \cap B \cap X=\{u, v\}$. To this end suppose for a contradiction that $w \in A \cap B \cap X-\{u, v\}$; then w divides X into two cyclic intervals X_{1} and X_{2} with ends u, w and w, v, respectively. Let Y_{1} and Y_{2} be the complementary cyclic intervals so that $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ are bases.

For $i=1,2$ let A_{i} consist of w and all vertices $a \in A$ such that there exists a path in $G[A] \backslash w$ with one end a and the other end in $X_{i}-\{w\}$, and let $A_{3}=A-A_{1}-A_{2}$. It follows that $A_{1} \cap A_{2}=\{w\}$, for if P is a path in $G[A] \backslash w$ with one end in X_{1} and the other end in X_{2}, then $\left(P, P_{w}\right)$ is a cross in (G, Ω), a contradiction. Thus $\left(A_{1}, A_{2} \cup A_{3} \cup B\right)$ and $\left(A_{2}, A_{1} \cup A_{3} \cup B\right)$ are minimal intrusions based on $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$, respectively, with $A_{1}, A_{2} \subseteq A$. Thus one of them violates (2).

Next we show that $|A \cap B \cap Y|=2$, and so we suppose for a contradiction that there exists $z \in A \cap B \cap Y-\{u, v\}$. We define $B_{1}, B_{2}, B_{3}, X_{1}, Y_{1}, X_{2}, Y_{2}$ analogously as in the previous paragraph, but with the roles of A and B reversed. Similarly we find that one of $\left(A \cup B_{1} \cup B_{3}, B_{2}\right)$ and $\left(A \cup B_{2} \cup B_{3}, B_{1}\right)$ is an $\left((s-1)\left(\lambda^{\prime}-1\right)+1\right)$-separating minimal intrusion in (G, Ω) of order at most λ^{\prime}, for some $\lambda^{\prime}<\lambda$, and so from the symmetry we may assume that $\left(A \cup B_{1} \cup B_{3}, B_{2}\right)$ has this property. Since $\left(M, P_{z}\right)$ is not a cross in (G, Ω) it follows that M and P_{z} intersect. Thus $M \cup P_{z}$ includes a meridian for $\left(A \cup B_{1} \cup B_{3}, B_{2}\right)$. Finally, since $Z=B_{2} \cap\left(A \cup B_{1} \cup B_{3}\right) \subseteq A \cap B$, the paths $\left(L_{v}\right)_{v \in Z}$ form longitudes for $\left(A \cup B_{1} \cup B_{3}, B_{2}\right)$, contrary to (2).

Thus we have shown that $A \cap B \cap V(\Omega)=\{u, v\}$. Let Z be the set of all vertices $z \in A$ such that there is no path in $G[A]$ with one end z and the other end in X, let $C=A-Z$ and $D=B \cup Z$. Then (C, D) is an intrusion with $C \cap D=A \cap B$ and F is a frame for (C, D) with $V(F)-V(\Omega) \subseteq C$. Since the order of (C, D) is at least two, it satisfies the conclusion of the lemma.

We are ready to deduce the main result of this section. By a war in a society (G, Ω) we mean a set \mathcal{W} of minimal invasions such that each invasion in \mathcal{W} has a meridian, and $A \cap A^{\prime}=\emptyset$ for every two distinct invasions $(A, B),\left(A^{\prime}, B^{\prime}\right) \in \mathcal{W}$. We say that the war \mathcal{W} is s-separating if each invasion in \mathcal{W} is s-separating, we say \mathcal{W} has order at most λ if each member of \mathcal{W} has order at most λ, and we say that \mathcal{W} is a war of intensity $|\mathcal{W}|$.

Lemma 7.6 Let s, t and d be positive integers, and let $b=2^{\binom{2 d+1}{2}}(2 d t)^{2 d}(s(2 d-1)+2)$. Then if a cross-free society (G, Ω) of depth at most $d-1$ has a goose bump of strength b, then it has a set X of at most $\binom{2 d+1}{2}$ vertices such that the society $(G \backslash X, \Omega \backslash X)$ has an s-separating war of intensity t and order order at most $2 d$.

Proof. Let $s^{\prime}=(2 d-1)(s-1)+1$. By Lemma 7.4 there exist a set $X \subseteq V(G)$ with at most $\binom{2 d+1}{2}$ elements and s^{\prime}-separating intrusions $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \ldots,\left(A_{2 d t}, B_{2 d t}\right)$ in $(G \backslash X, \Omega \backslash X)$ of order at most $2 d$ such that $A_{i} \cap A_{j}=\emptyset$ for every pair $i, j=1,2, \ldots, 2 d t$ of distinct integers. By $2 d t$ applications of Lemma 7.5 there exist, for each $i=1,2, \ldots, 2 d t$, and s-separating minimal invasion $\left(C_{i}, D_{i}\right)$ in $(G \backslash X, \Omega \backslash X)$ of order at most $2 d$ with a frame F_{i} such that $V\left(F_{i}\right)-V(\Omega) \subseteq V\left(A_{i}\right)$. Let M_{i} be a meridian for $\left(C_{i}, D_{i}\right)$, and let $\left(X_{i}, Y_{i}\right)$ be the base for $\left(C_{i}, D_{i}\right)$. Since (G, Ω) has depth at most d there exists a set $I \subseteq\{1,2, \ldots, 2 d t\}$ of size t such that the sets $\left\{X_{i}\right\}_{i \in I}$ are pairwise disjoint. By symmetry we may assume that $I=\{1,2, \ldots, t\}$. We claim that $\left(C_{1}, D_{1}\right),\left(C_{2}, D_{2}\right), \ldots,\left(C_{t}, D_{t}\right)$ are as desired. To prove the claim suppose for a contradiction that say $x \in C_{i} \cap C_{j}$. Since $\left(C_{i}, D_{i}\right)$ is an invasion there exists a path in $G\left[C_{i}\right]$ from x to $X_{i} \subseteq Y_{j}$; therefore this path intersects $C_{j} \cap D_{j}$. Thus there exists a vertex $v \in C_{j} \cap D_{j} \cap C_{i}$; let L be the longitude of F_{j} that includes v. But L connects $v \in C_{i}$ to a vertex of $X_{j} \subseteq Y_{i} \subseteq D_{i}$, and hence intersects $C_{i} \cap D_{i} \subseteq V\left(F_{i}\right)$. Thus F_{i} and F_{j}
intersect. But $V\left(F_{i}\right) \cap V\left(F_{j}\right)-V(\Omega) \subseteq A_{i} \cap A_{j}=\emptyset$ and $V\left(F_{i}\right) \cap V\left(F_{j}\right) \cap V(\Omega) \subseteq X_{i} \cap X_{j}=\emptyset$, a contradiction. Thus $\left(C_{1}, D_{1}\right),\left(C_{2}, D_{2}\right), \ldots,\left(C_{t}, D_{t}\right)$ satisfy the conclusion of the lemma.

8 Using wars

Lemma 8.1 Let l, t, r be positive integers such that $r \geq(t-1)\binom{l}{2}+1$, let (G, Ω) be a connected society, and let $Z \subseteq V(G)$ be a set of size at most l such that the society $(G \backslash Z, \Omega \backslash Z)$ has a war \mathcal{W} of intensity r such that for every $(A, B) \in \mathcal{W}$ at least two distinct members of Z have at least one neighbor in A. Then (G, Ω) has a fan with t blades.

Proof. There exist distinct vertices $z_{1}, z_{2} \in Z$ and a subset \mathcal{W}^{\prime} of \mathcal{W} of size t such that for every $(A, B) \in \mathcal{W}^{\prime}$ both z_{1} and z_{2} have a neighbor in A. Furthermore, since (A, B) is a minimal intrusion, it follows that for every vertex $a \in A$ there exists a path in $G[A]$ from a to $V(\Omega)$. It follows that (G, Ω) has a fan with t blades, as desired.

Let (A, B) be an invasion in a cross-free society (G, Ω), based at (X, Y), and let $\left(L_{v}\right)_{v \in A \cap B}$ be longitudes for (A, B). Let Ω^{\prime} be a cyclic permutation in A defined as follows: for each $u \in Y$, if u is an end of L_{v}, then we replace u by v, and otherwise we delete u. Then $\left(G[A], \Omega^{\prime}\right)$ is a society, and we will call it the society induced by (A, B). Since (G, Ω) is cross-free the definition does not depend on the choice of longitudes for (A, B).

Assume now that $\left(G[A], \Omega^{\prime}\right)$ is rural. A path P in $G[A]$ is called a perimeter path in $\left(G[A], \Omega^{\prime}\right)$ if $A \cap B \subseteq V(P)$ and $G[A]$ has a drawing in a disk with vertices of Ω^{\prime} appearing on the boundary of the disk in the order specified by Ω^{\prime} and with every edge of P drawn in the boundary of the disk.

The next lemma is easy and we omit its proof.
Lemma 8.2 Let (A, B) be an invasion with longitudes $\left\{P_{v}\right\}_{v \in A \cap B}$ in a cross-free society (G, Ω). Then the society induced by (A, B) is cross-free.

Lemma 8.3 Let (G, Ω) be a 5-connected society, let $Z \subseteq V(G)$ be such that $(G \backslash Z, \Omega \backslash Z)$ is cross-free, and let (A, B) be an invasion in $(G \backslash Z, \Omega \backslash Z)$. If at most one vertex of Z has a neighbor in A, then the society induced in $(G \backslash Z, \Omega \backslash Z)$ by (A, B) is rural and has a perimeter path.

Proof. Let $\left(G[A], \Omega^{\prime}\right)$ be the society induced in $(G \backslash Z, \Omega \backslash Z)$ by (A, B). By Lemma 8.2 it is cross-free and by Theorem 3.1 it is rural. Thus it has a drawing in a disk Δ with $V\left(\Omega^{\prime}\right)$ drawn on the boundary of Δ in the order specified by Ω^{\prime}. When Δ is regarded as a subset of the plane, the unbounded face of $G[A]$ is bounded by a walk W. Let P be a subwalk of W containing $A \cap B$. If P is not a path, then it has a repeated vertex, say x, and $G[A]$ has a separation (C, D) with $C \cap D=\{x\}$ and $A \cap B \cap V(\Omega) \subseteq C$. Since $\left(G[A], \Omega^{\prime}\right)$ is cross-free,
the latter inclusion implies that $D-C$ is disjoint from $V(\Omega)$ or from $A \cap B$. However, the latter is impossible, which can be seen by considering the drawing of $G[A]$ in Δ. Thus $(D-C) \cap V(\Omega)=\emptyset$, and since (A, B) has longitudes we deduce that $|(D-C) \cap A \cap B| \leq 1$. Let $z \in Z$ be such that no vertex of $Z-\{z\}$ has a neighbor in A. Since (G, Ω) is 4-connected, the fact that $((D-C) \cap A \cap B) \cup\{x, z\}$ does not separate G implies that $D-C$ consists of a unique vertex, say d, and $d \in A \cap B$. Furthermore, the only neighbor of d in A is x. But then $(A-\{d\}, B \cup\{x\})$ contradicts the minimality of (A, B). This proves that P is a path, and it follows that it is a perimeter path for $\left(G[A], \Omega^{\prime}\right)$.

Let (G, Ω) be a society. A set \mathcal{T} of bumps in (G, Ω) is called a transaction in (G, Ω) if there exist elements $u, v \in V(\Omega)$ such that each member of \mathcal{T} has one end in $u \Omega v$ and the other end in $V(\Omega)-u \Omega v$. The first part of the next lemma is easy, and the second part is proved in [10, Theorem (8.1)].

Lemma 8.4 Let (G, Ω) be a society, and let $d \geq 1$ be an integer. If (G, Ω) has depth d, then it has no transaction of cardinality exceeding $2 d$. Conversely, if (G, Ω) has no transaction of cardinality exceeding d, then it has depth at most d.

Lemma 8.5 Let (G, Ω) be a society of depth d, and let $X \subseteq V(G)$. Then the society $(G \backslash X, \Omega \backslash X)$ has depth at most $2 d$.

Proof. By Lemma 8.4 the society (G, Ω) has no transaction of cardinality exceeding $2 d$. Then clearly $(G \backslash X, \Omega \backslash X)$ has no transaction of cardinality exceeding $2 d$, and hence has depth at most $2 d$ by another application of Lemma 8.4.

We need one last lemma before we can prove Theorem 5.2. The lemma we need is concerned with the situation when a society of bounded depth "almost" has a windmill with t vanes, except that the paths P_{i} are not necessarily disjoint and their ends do not necessarily appear in the right order. We begin with a special case when the ends of the paths P_{i} do appear in the right order.

Lemma 8.6 Let $t \geq 1$ be an integer, and let $\rho=d(t-1)\left(t^{\prime}-1\right)+1$, where $t^{\prime}=d(t-1)^{2}+t$. Let (G, Ω) be a society of depth d, let $\left(u_{1}, z_{1}, v_{1}, u_{2}, z_{2}, v_{2}, \ldots, u_{\rho}, z_{\rho}, v_{\rho}\right)$ be clockwise, let $z \in V(G)$, for $i=1,2, \ldots, \rho$ let P_{i} be a bump with ends u_{i} and v_{i}, and let Q_{i} be a path of length at least one with ends z and z_{i} disjoint from $V(\Omega)-\left\{z, z_{i}\right\}$. Assume that the paths Q_{i} are pairwise disjoint except for z, and that each is disjoint from every P_{j}. Then (G, Ω) has either a windmill with t vanes, or a fan with t blades.

Proof. By the proof of Lemma 6.1 applied to the paths P_{i} either some t of those paths are vertex-disjoint, in which case (G, Ω) has a windmill with t vanes, or there exists a set $X \subseteq V(G)$ of size at most $(t-1) d$ such that each P_{i} uses at least one vertex of X. We may
therefore assume the latter. For $i=1,2, \ldots, \rho$ the path P_{i} has a subpath P_{i}^{\prime} with one end u_{i}, the other end $x_{i} \in X$ and no internal vertex in X. Thus there exist $x \in X$ and a set $I \subseteq\{1,2, \ldots, \rho\}$ of size t^{\prime} such that $x=x_{i}$ for all $i \in I$. Let H be the union of all P_{i}^{\prime} over $i \in I$. By an application of Lemma 6.1 to the graph $H \backslash x$ we deduce that either $H \backslash x$ has a goose bump of strength t, in which case (G, Ω) has a windmill with t vanes, or H has a set Y of size at most $(t-1) d$ such that $H \backslash Y \backslash x$ has no bumps. In the latter case for each $i \in I$ there is a path $P_{i}^{\prime \prime}$ in H with one end u_{i}, the other end $y_{i} \in Y \cup\{x\}$ and otherwise disjoint from $Y \cup\{x\}$. Thus there is a vertex $y \in Y \cup\{x\}$ and a set $J \subseteq I$ of size t such that $y_{i}=y$ for every $i \in J$. Since $H \backslash Y \backslash x$ has no bumps it follows that $P_{j}^{\prime \prime}$ and $P_{j^{\prime}}^{\prime \prime}$ share only y for distinct $j, j^{\prime} \in J$. Thus (G, Ω) has a fan with t blades, as desired.

Now we are ready to prove the last lemma in full generality.
Lemma 8.7 Let $t \geq 1$ be an integer, and let $\xi=(d+1) \rho$, where ρ is as in Lemma 8.6. Let (G, Ω) be a society of depth d, let $z \in V(G)$, for $i=1,2, \ldots, \xi$ let $\left(u_{i}, z_{i}, v_{i}\right)$ be clockwise, and let $\left(u_{1}, z_{1}, u_{2}, z_{2}, \ldots, u_{\xi}, z_{\xi}\right)$ be clockwise. Let P_{i} be a bump with ends u_{i} and v_{i}, and let Q_{i} be a path of length at least one with ends z and z_{i} disjoint from $V(\Omega)-\left\{z, z_{i}\right\}$. Assume that the paths Q_{i} are pairwise disjoint except for z, and that each is disjoint from every P_{j}. Then (G, Ω) has either a windmill with t vanes, or a fan with t blades.

Proof. Let $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ be a clockwise enumeration of $V(\Omega)$, and let $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a corresponding linear decomposition of (G, Ω) of depth d. Let us fix an integer $i=1,2, \ldots, \rho$, and let $I=\{(i-1)(d+1)+1,(i-1)(d+1)+2, \ldots, i(d+1)\}$. For each such i we will construct paths P_{i}^{*} and Q_{i}^{*} satisfying the hypothesis of Lemma 8.6. In the construction we will make use of the paths P_{j} and Q_{j} for $j \in I$.

If $\left(u_{j}, z_{j}, v_{j}, u_{i(d+1)+1}\right)$ is clockwise for some $j \in I$, then we put $P_{i}^{*}=P_{j}$ and $Q_{i}^{*}=Q_{j}$. Otherwise, letting s be such that $t_{s}=u_{i(d+1)}$, we deduce that P_{j} intersects $X_{t_{s}} \cap X_{t_{s+1}}$ for all $j \in I$. Since $|I|>\left|X_{t_{s}} \cap X_{t_{s+1}}\right|$ it follows that there exist $j<j^{\prime} \in I$ such that P_{j} and $P_{j^{\prime}}$ intersect. Let P_{i}^{*} be a subpath of $P_{j} \cup P_{j^{\prime}}$ with ends u_{j} and $u_{j^{\prime}}$, and let $Q_{i}^{*}=Q_{j}$.

This completes the construction. The lemma follows from Lemma 8.6.
Proof of Theorem 5.2. Let the integers d and t be given, let ξ be as in Lemma 8.7, let $\ell=2(t-1) d+\binom{4 d+2}{2}$, let $\tau=(t-1)\binom{\ell}{2}+\left(2(t-1) d+\binom{8 d+2}{2}\right)(6 \xi-1)+1$, let b be as in Lemma 7.6 with $s=1, t=\tau$ and d replaced by $4 d+1$, and let k be as in Lemma 6.3 applied to b, t, and $4 d$. We will prove that k satisfies the conclusion of the theorem.

To that end let (G, Ω) be a k-cosmopolitan society of depth at most d, and let $\left(G_{0}, \Omega_{0}\right)$ be a planar truncation of (G, Ω). Let $S \subseteq V\left(\Omega_{0}\right)$. We say that S is sparse if whenever $u_{1}, u_{2} \in S$ are such that there does not exist $w \in S$ such that $\left(u_{1}, w, u_{2}\right)$ is clockwise, then there exist two disjoint bumps P_{1}, P_{2} in $\left(G_{0}, \Omega_{0}\right)$ such that u_{i} is an end of P_{i}. The reader should notice that if H is one of the graphs listed as outcomes (1)-(3) of Theorem 5.2, then $V(H) \cap V\left(\Omega_{0}\right)$
is sparse. We say that $\left(G_{0}, \Omega_{0}\right)$ is weakly linked if for every sparse set $S \subseteq V\left(\Omega_{0}\right)$ there exist $|S|$ disjoint paths from S to $V(\Omega)$ with no internal vertex in $V\left(G_{0}\right)$. Thus if the conclusion of the theorem holds for some weakly linked truncation of $\left(G_{0}, \Omega_{0}\right)$, then it holds for (G, Ω) as well. Thus we may assume that $\left(G_{0}, \Omega_{0}\right)$ is a weakly linked truncation of (G, Ω) with $\left|V\left(G_{0}\right)\right|$ minimum. We will prove that $\left(G_{0}, \Omega_{0}\right)$ satisfies the conclusion of Theorem 5.2. Since (G_{0}, Ω_{0}) is weakly linked, Lemma 8.4 implies that $\left(G_{0}, \Omega_{0}\right)$ has no transaction of cardinality exceeding $2 d$, and hence has depth at most $2 d$ by Lemma 8.4.

By Lemma 6.2 there exists a set $Z_{1} \subseteq V\left(G_{0}\right)$ such that $\left|Z_{1}\right| \leq 2(t-1) d$ and the society $\left(G_{0} \backslash Z_{1}, \Omega_{1} \backslash Z_{1}\right)$ is cross-free. By Lemma 8.5 the society $\left(G_{0} \backslash Z_{1}, \Omega_{0} \backslash Z_{1}\right)$ has depth at most $4 d$. By Lemma 6.3 we may assume that $\left(G_{0} \backslash Z_{1}, \Omega_{0} \backslash Z_{1}\right)$ has a goose bump of strength b. By Lemma 7.6 there exists a set $Z_{2} \subseteq V(G)-Z_{1}$ such that $\left|Z_{2}\right| \leq\binom{ 4 d+2}{2}$ and in the society $\left(G_{0} \backslash Z, \Omega_{0} \backslash Z\right)$ there exists a 1-separating war \mathcal{W} of intensity τ and order at most $8 d+2$, where $Z=Z_{1} \cup Z_{2}$. If there exist at least $(t-1)\binom{\ell}{2}+1$ invasions $(A, B) \in \mathcal{W}$ such that at least two distinct vertices of Z have a neighbor in A, then the theorem holds by Lemma 8.1. We may therefore assume that this is not the case, and hence \mathcal{W} has a subset \mathcal{W}^{\prime} of size at least $|Z|(6 \xi-1)+1$ such that for every $(A, B) \in \mathcal{W}^{\prime}$ at most one vertex of Z has a neighbor in A.

Let $(A, B) \in \mathcal{W}^{\prime}$ and let $z \in Z$ be such that no vertex in $Z-\{z\}$ has a neighbor in A. By Lemma 8.3 the society $\left(G_{0}[A], \Omega^{\prime}\right)$ induced in $\left(G_{0} \backslash Z, \Omega_{0} \backslash Z\right)$ by (A, B) is rural and has a perimeter path P. It follows that $(A \cup\{z\}, B \cup\{z\})$ is a separation of G_{0}. Let $A \cap B=\left\{w_{0}, w_{1}, \ldots, w_{s}\right\}$, and let L_{i} be the longitude containing w_{i}. Let the ends of L_{i} be $u_{i} \in A$ and $v_{i} \in B$. We may assume that $\left(u_{0}, u_{1}, \ldots, u_{s}\right)$ is clockwise. The vertices w_{i} divide P into paths $P_{0}, P_{1}, \ldots, P_{s}$, where P_{i} has ends w_{i-1} and w_{i}. We claim that no P_{i} includes all neighbors of z. Suppose for a contradiction that P_{i} does. Let (G, Ω) be the composition of $\left(G_{0}, \Omega_{0}\right)$ with a rural neighborhood $\left(G_{1}, \Omega, \Omega_{0}\right)$. Let $G_{1}^{\prime}=G_{1} \cup G[A \cup\{z\}]$, let $G_{0}^{\prime}=G_{0} \backslash(A-B)$ and let Ω_{0}^{\prime} consist of $w_{s} \Omega w_{0}$ followed by $w_{s-1}, w_{s-2}, \ldots, w_{i}$ followed by z followed by $w_{i-1}, w_{i-2}, \ldots, w_{1}$. Since $\left(G[A], \Omega^{\prime}\right)$ is rural and all neighbors of z belong to P_{i}, it follows that $\left(G_{1}^{\prime}, \Omega, \Omega_{0}^{\prime}\right)$ is a rural neighborhood and (G, Ω) is the composition of ($G_{0}^{\prime}, \Omega_{0}^{\prime}$) with this neighborhood. Thus $\left(G_{0}^{\prime}, \Omega_{0}^{\prime}\right)$ is a planar truncation of (G, Ω). We claim that $\left(G_{0}^{\prime}, \Omega_{0}^{\prime}\right)$ is weakly linked. To prove that let $S^{\prime} \subseteq V\left(\Omega_{0}^{\prime}\right)$ be sparse. Since (A, B) is a minimal intrusion there exists a set \mathcal{P}^{\prime} of $\left|S^{\prime}\right|$ disjoint paths from S^{\prime} to $V\left(\Omega_{0}\right)$ with no internal vertex in G_{0}^{\prime}; let S be the set of their ends in $V\left(\Omega_{0}\right)$. Since S^{\prime} is sparse in $\left(G_{0}^{\prime}, \Omega_{0}^{\prime}\right)$, it follows that S is sparse in $\left(G_{0}, \Omega_{0}\right)$. Since $\left(G_{0}, \Omega_{0}\right)$ is weakly linked there exists a set \mathcal{P} of $|S|$ disjoint paths in G from S to $V(\Omega)$ with no internal vertex in G_{0}. By taking unions of members of \mathcal{P} and \mathcal{P}^{\prime} we obtain a set of paths proving that $\left(G_{0}^{\prime}, \Omega_{0}^{\prime}\right)$ is weakly linked, as desired. Since \mathcal{W} is 1 -separating this contradicts the minimality of G_{0}, proving our claim that no P_{i} includes all neighbors of z. The same argument, but with $G_{1}^{\prime}=G_{1} \cup G[A]$ and Ω_{0}^{\prime} not including z shows that z has a neighbor in $A-B$.

We have shown, in particular, that exactly one vertex of Z has a neighbor in $A-B$. Thus there exists a subset $\mathcal{W}^{\prime \prime}$ of \mathcal{W}^{\prime} of size 6ξ and a vertex $z \in Z$ such that for every $(A, B) \in \mathcal{W}^{\prime \prime}$ the vertex z has a neighbor in $A-B$. Now let $w=(A, B) \in \mathcal{W}^{\prime \prime}$, and let the notation be as before. We will construct paths P_{w}, Q_{w} such that the hypotheses of Lemma 8.7 will be satisfied for at least half the members $w \in \mathcal{W}^{\prime \prime}$.

The facts that (A, B) is a minimal intrusion and that z has a neighbor in $A-B$ imply that there exists a path Q_{w} in $G[A \cup\{z\}]$ from z to $z_{w} \in V\left(\Omega_{0}\right) \cap A$ and a choice of longitudes ($\left.L_{v}: v \in A \cap B\right)$ for (A, B) such that Q_{w} is disjoint from all L_{v}. Referring to the subpaths P_{i} of the perimeter path P defined above, since no P_{i} includes all neighbors of z it follows that there exists $v \in A \cap B-V\left(\Omega_{0}\right)$. We define P_{w} to be a path obtained from L_{v} by suitably modifying L_{v} inside B such that P_{w} intersects A^{\prime} for at most one $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{W}^{\prime \prime}-\{(A, B)\}$. Such modification is easy to make, using the perimeter path of $\left(A^{\prime}, B^{\prime}\right)$. Let $u_{w} \in A$ and $v_{w} \in B$ be the ends of P_{w}.

The set $\mathcal{W}^{\prime \prime}$ has a subset $\mathcal{W}^{\prime \prime \prime}$ of size ξ such that, using to the notation of the previous paragraph, either $\left(u_{w}, z_{w}, v_{w}\right)$ is clockwise for every $w \in \mathcal{W}^{\prime \prime \prime}$ or $\left(v_{w}, z_{w}, u_{w}\right)$ is clockwise for every $w \in \mathcal{W}^{\prime \prime \prime}$, and for every $w \in \mathcal{W}^{\prime \prime \prime}$ the path P_{w} is disjoint from A^{\prime} for every $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{W}^{\prime \prime \prime}-\{w\}$. The theorem now follows from Lemma 8.7.

9 Using lack of near-planarity

In this section we prove Theorems 5.3 and 1.8. The first follows immediately from Theorem 5.2 and the two lemmas below.

Lemma 9.1 Let (G, Ω) be a rurally 5-connected society that is not nearly rural, and let t be a positive integer. If (G, Ω) has a windmill with $4 t+1$ vanes, then it has a windmill with t vanes and a cross.

Proof. Let $x, u_{i}, v_{i}, w_{i}, P_{i}, Q_{i}$ be as in the definition of a windmill W with $4 t+1$ vanes. Since $(G \backslash x, \Omega \backslash\{x\})$ is rurally 4 -connected and not rural, it has a cross (P, Q) by Theorem 3.1. We may choose the windmill W and $\operatorname{cross}(P, Q)$ in $(G \backslash x, \Omega \backslash\{x\})$ such that $W \cup P \cup Q$ is minimal with respect to inclusion. If the cross does not intersect the windmill, then the lemma clearly holds, and so we may assume that a vane $P_{i} \cup Q_{i}$ intersects $P \cup Q$. Let v be a vertex that belongs to both $P_{i} \cup Q_{i}$ and $P \cup Q$ such that some subpath R of $P_{i} \cup Q_{i}$ with one end v and the other end in $V(\Omega)$ has no vertex in $(P \cup Q) \backslash v$. If R has at least one edge, then $P \cup Q \cup R$ has a proper subgraph that is a cross, contrary to the minimality of $W \cup P \cup Q$. Thus v is an end of P or Q. Since P and Q have a total of four ends, it follows that $P \cup Q$ intersects at most four vanes of W. By ignoring those vanes we obtain a windmill with $4(t-1)+1$ vanes, and a cross (P, Q) disjoint from it. The lemma follows.

Lemma 9.2 Let (G, Ω) be a rurally 6 -connected society that is not nearly rural, and let t be a positive integer. If (G, Ω) has a fan with $16 t+5$ blades, then it has a fan with t blades and a cross, or a fan with t blades and a jump, or a fan with t blades and two jumps.

Proof. Let z_{1}, z_{2} be the hubs of a fan F_{2} with $16 t+5$ blades. If ($G \backslash\left\{z_{1}, z_{2}\right\}, \Omega \backslash\left\{z_{1}, z_{2}\right\}$) has a cross, then the lemma follows in the same way as Lemma 9.1, and so we may assume not. Since $\left(G \backslash z_{1}, \Omega \backslash\left\{z_{1}\right\}\right)$ has a cross, an argument analogous to the proof of Lemma 9.1 shows that there exists a subfan F_{1} of F_{2} with $4 t+1$ blades (that is, F_{1} is obtained by ignoring a set of $12 t+4$ blades), and two paths L_{2}, S_{2} with ends a_{2}, c_{2} and b_{2}, z_{2}, respectively, such that $x_{1}, x_{2}, \ldots, x_{4 t+1}, a_{2}, b_{2}, c_{2}$ is clockwise in Ω for every choice of $x_{1}, x_{2}, \ldots, x_{4 t+1}$ as in the definition of a fan, and the graphs $L_{2}, S_{2} \backslash z_{2}, F_{1}$ are pairwise disjoint. By using the same argument and the fact that $\left(G \backslash z_{2}, \Omega \backslash\left\{z_{2}\right\}\right)$ has a cross we arrive at a subfan F of F_{1} with t blades and paths L_{1}, S_{1} satisfying the same properties, but with the index 2 replaced by 1. We may assume that $F, L_{1}, L_{2}, S_{1}, S_{2}$ are chosen so that $F \cup L_{1} \cup L_{2} \cup S_{1} \cup S_{2}$ is minimal with respect to inclusion. This will be referred to as "minimality."

If the paths $L_{1}, L_{2}, S_{1}, S_{2}$ are pairwise disjoint, except possibly for shared ends and possibly S_{1} and S_{2} intersecting, then it is easy to see that the lemma holds, and so we may assume that an internal vertex of L_{1} belongs to $L_{2} \cup S_{2}$. Let v be the first vertex on L_{1} (in either direction) that belongs to $L_{2} \cup S_{2}$, and suppose for a contradiction that v is not an end of L_{1}. Let L_{1}^{\prime} be a subpath of L_{1} with one end v, the other end in $V(\Omega)$ and no internal vertex in $L_{2} \cup S_{2}$. Then by replacing a subpath of L_{2} or S_{2} by L_{1}^{\prime} we obtain either a contradiction to minimality, or a cross that is a subgraph of $L_{1} \cup L_{2} \cup S_{1} \cup S_{2} \backslash\left\{z_{1}, z_{2}\right\}$, also a contradiction. This proves that v is an end of L_{1}, and hence both ends of L_{1} are also ends of L_{2} or S_{2}. In particular, L_{1} and L_{2} share at least one end.

Suppose first that one end of L_{1} is an end of S_{2}. Thus from the symmetry we may assume that a_{1} is an end of L_{2} and $c_{1}=b_{2}$; thus $a_{2}=a_{1}$, because a_{2}, b_{2}, c_{2} is clockwise. But now c_{2} is not an end of L_{1} or S_{1}, and so the argument of the previous paragraph implies that no internal vertex of L_{2} belongs to $S_{1} \cup L_{1}$. The paths S_{1}, S_{2}, L_{2} now show that (G, Ω) has a fan with t blades and a jump.

We may therefore assume that $a_{1}=a_{2}$ and $c_{1}=c_{2}$. Let H be the union of $L_{1}, L_{2}, S_{1} \backslash z_{1}$, $S_{2} \backslash z_{2}$, and $V(\Omega)$. Then the society (H, Ω) is rural, as otherwise $\left(G \backslash\left\{z_{1}, z_{2}\right\}, \Omega\right)$ has a cross. Let Γ be a drawing of (H, Ω) in a disk Δ such that the vertices of $V(\Omega)$ are drawn on the boundary of Δ in the clockwise order specified by Ω. Let $\Delta^{\prime} \subseteq \Delta$ be a disk such that Δ^{\prime} includes every path in Γ with ends a_{1} and c_{1}, and the boundary of Δ^{\prime} includes $a_{1} \Omega c_{1}$ and a path P of Γ from a_{1} to c_{1}. Then L_{1} and L_{2} lie in Δ^{\prime}, and since L_{i} is disjoint from $S_{i} \backslash z_{i}$ it follows that $S_{1} \backslash z_{1}$ and $S_{2} \backslash z_{2}$ are inside Δ^{\prime} and, in particular, are disjoint from P. By considering P, S_{1} and S_{2} we obtain a fan with t blades and a jump.

Proof of Theorem 5.3. Let d and t be integers, let k be an integer such that Theorem 5.2 holds for d and $16 t+5$, and let (G, Ω) be a 6 -connected k-cosmopolitan society of depth at most d. We may assume that (G, Ω) is not nearly rural, for otherwise the theorem holds. By Theorem 5.2 the society (G, Ω) has t disjoint consecutive crosses, or a windmill with $4 t+1$ vanes, or a fan with $16 t+5$ blades. In the first case the theorem holds, and in the second and third case the theorem follows from Lemma 9.1 and Lemma 9.2, respectively.

For the proof of Theorem 1.8 we need one more lemma. Let us recall that presentation of a neighborhood was defined prior to Theorem 1.7.

Lemma 9.3 Let d and s be integers, let (G, Ω) be an s-nested society, and let $\left(G^{\prime}, \Omega^{\prime}\right)$ be a planar truncation of (G, Ω) of depth at most d. Then (G, Ω) has an s-nested planar truncation of depth at most $2(d+2 s)$.

Proof. By a vortical decomposition of a society (G, Ω) we mean a collection $\left(Z_{v}: v \in V(\Omega)\right)$ of sets such that
(i) $\bigcup\left(Z_{v}: v \in V(\Omega)\right)=V(G)$ and every edge of G has both ends in Z_{v} for some $v \in V(\Omega)$,
(ii) for $v \in V(\Omega), v \in Z_{v}$, and
(iii) if ($v_{1}, v_{2}, v_{3}, v_{4}$) is clockwise in Ω, then $Z_{v_{1}} \cap Z_{v_{3}} \subseteq Z_{v_{2}} \cup Z_{v_{4}}$.

The depth of such a vortical decomposition is $\max \left|Z_{u} \cap Z_{v}\right|$, taken over all pairs of distinct vertices $u, v \in V(\Omega)$ that are consecutive in Ω, and the depth of (G, Ω) is the minimum depth of a vortical decomposition of (G, Ω). Thus if (G, Ω) has depth at most d, then the corresponding linear decomposition also serves as a vortical decomposition of depth at most d.

Let (G, Ω) be an s-nested society, and let it be the composition of a society $\left(G_{0}, \Omega_{0}\right)$ with a rural neighborhood $\left(G_{1}, \Omega, \Omega_{0}\right)$, where the neighborhood has a presentation $\left(\Sigma, \Gamma_{1}, \Delta, \Delta_{0}\right)$ with an s-nest $C_{1}, C_{2}, \ldots, C_{s}$. Let $\Delta_{0}, \Delta_{1}, \ldots, \Delta_{s}$ be as in the definition of s-nest. Let ($G^{\prime}, \Omega^{\prime}$) be a planar truncation of (G, Ω) of depth at most d. Then (G, Ω) is the composition of ($G^{\prime}, \Omega^{\prime}$) with a rural neighborhood $\left(G_{2}, \Omega, \Omega^{\prime}\right)$, and we may assume that $\left(G_{2}, \Omega, \Omega^{\prime}\right)$ has a presentation $\left(\Sigma, \Gamma_{2}, \Delta, \Delta^{\prime}\right)$, where $\Delta_{0} \subseteq \Delta^{\prime}$. We may assume that the s-nest $C_{1}, C_{2}, \ldots, C_{s}$ is chosen as follows: first we select C_{1} such that $\Delta_{0} \subseteq \Delta_{1}$ and the disk Δ_{1} is as small as possible, subject to that we select C_{2} such that $\Delta_{1} \subseteq \Delta_{2}$ and the disk Δ_{2} is as small as possible, subject to that we select C_{3}, and so on.

Let Δ^{*} be a closed disk with $\Delta^{\prime} \subseteq \Delta^{*} \subseteq \Delta$. We say that Δ^{*} is normal if whenever an interior point of an edge $e \in E\left(\Gamma_{1}\right)$ belongs to the boundary of Δ^{*}, then e is a subset of the boundary of Δ^{*}. A normal disk Δ^{*} defines a planar truncation $\left(G^{*}, \Omega^{*}\right)$ in a natural way as follows: G^{*} is consists of all vertices and edges that of G either belong to G^{\prime}, or their image under Γ_{1} belongs to Δ^{*}, and Ω^{*} consists of vertices of G whose image under Γ_{1} belongs to the boundary Δ^{*} in the order determined by the boundary of Δ^{*}.

Given a normal disk Δ^{*} and two vertices $u, v \in V(G)$ we define $\xi_{\Delta^{*}}(u, v)$, or simply $\xi(u, v)$ as follows. If u is adjacent to v, and the image e under Γ_{1} of the edge $u v$ is a subset of the boundary of Δ^{*}, and for every internal point x on e there exists an open neighborhood U of x such that $U \cap \Delta^{*}=U \cap \Delta_{i}$, then we let $\xi(u, v)=i$. Otherwise we define $\xi(u, v)=0$. A short explanation may be in order. If the image e of $u v$ is a subset of the boundary of Δ^{*}, then this can happen in two ways: if we think of e as having two sides, either Δ^{*} and Δ_{i} appear on the same side, or on opposite sides of e. In the definition of ξ it is only edges with Δ^{*} and Δ_{i} on the same side that count.

We may assume, by shrinking Δ^{\prime} slightly, that the boundary of Δ^{\prime} does not include an interior point of any edge of Γ_{2}. Then Δ^{\prime} is normal, and the corresponding planar truncation is $\left(G^{\prime}, \Omega^{\prime}\right)$. Since a linear decomposition of $\left(G^{\prime}, \Omega^{\prime}\right)$ of depth at most d may be regarded as a vortical decomposition of $\left(G^{\prime}, \Omega^{\prime}\right)$ of depth at most d, we may select a normal disk Δ^{*} that gives rise to a planar truncation $\left(G^{*}, \Omega^{*}\right)$ of (G, Ω), and we may select a vortical decomposition $\left(Z_{v}: v \in V\left(\Omega^{*}\right)\right)$ of $\left(G^{*}, \Omega^{*}\right)$ such that $\left|Z_{u} \cap Z_{v}\right| \leq d+2 \xi(u, v)$ for every pair of consecutive vertices of Ω^{*}. Furthermore, subject to this, we may choose Δ^{*} such that the number of unordered pairs u, v of distinct vertices of G with $\xi(u, v)=s$ is maximum, subject to that the number of unordered pairs u, v of distinct vertices of G with $\xi(u, v)=s-1$ is maximum, subject to that the number of unordered pairs u, v of distinct vertices of G with $\xi(u, v)=s-2$ is maximum, and so on.

We will show that $\left(G^{*}, \Omega^{*}\right)$ satisfies the conclusion of the theorem. Let $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ be an arbitrary clockwise enumeration of $V\left(\Omega^{*}\right)$, and let $X_{i}:=Z_{t_{i}} \cup\left(Z_{t_{1}} \cap Z_{t_{n}}\right)$. Then $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a linear decomposition of $\left(G^{*}, \Omega^{*}\right)$ of depth at most $2(d+2 s)$.

To complete the proof we must show that $\left(G^{*}, \Omega^{*}\right)$ is s-nested, and we will do that by showing that each C_{i} is a subgraph of G^{*}. To this end we suppose for a contradiction that it is not the case, and let $i_{0} \in\{1,2, \ldots, s\}$ be the minimum integer such that $C_{i_{0}}$ is not a subgraph of G^{*}.

If $C_{i_{0}}$ has no edge in G^{*}, then we can construct a new society $\left(G_{3}, \Omega_{3}\right)$, where Ω_{3} consists of the vertices of $C_{i_{0}}$ in order, and obtain a contradiction to the choice of $\left(G^{*}, \Omega^{*}\right)$. Since the construction is very similar but slightly easier than the one we are about to exhibit, we omit the details. Instead, we assume that $C_{i_{0}}$ includes edges of both G^{*} and $G \backslash E\left(G^{*}\right)$. Thus there exist vertices $x, y \in V\left(C_{i_{0}}\right) \cap V\left(\Omega^{*}\right)$ such that some subpath P of $C_{i_{0}}$ with ends x and y has no internal vertex in $V\left(\Omega^{*}\right)$. Let B denote the boundary of Δ^{*}. There are three closed disks with boundaries contained in $B \cup P$. One of them is Δ^{*}; let D be the one that is disjoint from Δ_{0}. If the interior of D is a subset of $\Delta_{i_{0}}$ and includes no edge of $C_{i_{0}}$, then we say that P is a good segment. It follows by a standard elementary argument that there is a good segment.

Thus we may assume that P is a good segment, and that the notation is as in the previous paragraph. There are two cases: either D is a subset of Δ^{*}, or the interiors of D
and Δ^{*} are disjoint. Since the former case is handled by a similar, but easier construction, we leave it to the reader and assume the latter case. Let $\left(s_{0}, s_{1}, \ldots, s_{t+1}\right)$ be clockwise in Ω^{*} such that $s_{0}, s_{1}, \ldots, s_{t+1}$ are all the vertices that belong to $D \cap \Delta^{*}$. Thus $\left\{s_{0}, s_{t+1}\right\}=$ $\{x, y\}$. Let $r_{0}=s_{0}, r_{1}, \ldots, r_{k}, r_{k+1}=s_{t+1}$ be all the vertices of P, in order, let H be the subgraph of G^{*} consisting of all vertices and edges whose images under Γ_{1} belong to D, and let $X:=\left\{s_{0}, s_{1}, \ldots, s_{t+1}, r_{0}, r_{1}, \ldots, r_{k+1}\right\}$. We can regard H as drawn in a disk with the vertices $s_{0}, s_{1}, \ldots, s_{t+1}, r_{k}, r_{k-1}, \ldots, r_{1}$ drawn on the boundary of the disk in order. We may assume that every component of H intersects X. The way we chose the cycles $C_{i_{0}}$ implies that every path in $H \backslash\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ that joins two vertices of P is a subpath of P. We will refer to this property as the convexity of H. For $i=0,1, \ldots, k+1$ let b_{i} be the maximum index j such that the vertex s_{j} can be reached from $\left\{r_{0}, r_{1}, \ldots, r_{i}\right\}$ by a path in H with no internal vertex in X. We define $b_{-1}:=-1$, and let R_{i} be the set of all vertices of H that can be reached from $\left\{r_{i}, s_{b_{i-1}+1}, s_{b_{i-1}+2}, \ldots, s_{b_{i}}\right\}$ by a path with no internal vertex in X. The convexity of H implies that for $i<j$ the only possible member of $R_{i} \cap R_{j}$ is $s_{b_{i}}$. We now define a new society $\left(G^{* *}, \Omega^{* *}\right)$ as follows. The graph $G^{* *}$ will be the union of G^{*} and H, and the cyclic permutation is defined by replacing the subsequence $s_{0}, s_{1}, \ldots, s_{t+1}$ of Ω^{*} by the sequence $r_{0}, r_{1}, \ldots, r_{k}, r_{k+1}$. We define the sets $Z_{v}^{* *}$ as follows. For $v \in V\left(\Omega^{*}\right)-V\left(\Omega^{* *}\right)$ we let $Z_{v}^{* *}:=Z_{v}$. If $v=r_{i}$ and $b_{i}>b_{i-1}$ we define $Z_{v}^{* *}$ to be the union of $R_{i} \cup\left\{s_{b_{i}}, r_{i-1}\right\}$ and all $Z_{s_{j}}$ for $j=b_{i-1}+1, b_{i-1}+2, \ldots, b_{i}$. If $v=r_{i}$ and $b_{i}=b_{i-1}$ we define $Z_{v}^{* *}:=R_{i} \cup\left\{s_{b_{i}}, r_{i-1}\right\} \cup\left(Z_{s_{b_{i}}} \cap Z_{s_{b_{i}+1}}\right)$. It is straightforward to verify that $\left(G^{* *}, \Omega^{* *}\right)$ is a planar truncation of (G, Ω) and that $\left(Z_{v}^{* *}: v \in V\left(\Omega^{* *}\right)\right)$ is a vortical decomposition of $\left(G^{* *}, \Omega^{* *}\right)$. We claim that $\xi_{\Delta^{*}}\left(s_{j}, s_{j+1}\right)<i_{0}$ for all $j=0,1, \ldots, t$. To prove this we may assume that s_{j} is adjacent to s_{j+1}, and let e be the image under Γ_{1} of the edge $s_{j} s_{j+1}$. It follows that e is a subset of $\Delta_{i_{0}}$, and hence if $s_{j} s_{j+1} \in E\left(C_{k}\right)$ for some k, then $k \leq i_{0}$. Furthermore, if equality holds, then $\Delta_{i_{0}}$ and Δ^{*} lie on opposite sides of e, and hence $\xi_{\Delta^{*}}\left(s_{j}, s_{j+1}\right)=0$. This proves our claim that $\xi_{\Delta^{*}}\left(s_{j}, s_{j+1}\right)<i_{0}$. Since for $i=0,1, \ldots, k$ we have $Z_{r_{i}}^{* *} \cap Z_{r_{i+1}}^{* *} \subseteq\left(Z_{s_{b_{i}}} \cap Z_{s_{b_{i}+1}}\right) \cup\left\{r_{i}, s_{b_{i}}\right\}$, and $\xi_{\Delta^{* *}}\left(r_{i}, r_{i+1}\right)=i_{0}$, we deduce that

$$
\left|Z_{r_{i}}^{* *} \cap Z_{r_{i+1}}^{* *}\right| \leq\left|Z_{s_{b_{i}}} \cap Z_{s_{b_{i}+1}}\right|+2 \leq d+\xi_{\Delta^{*}}\left(s_{b_{i}}, s_{b_{i}+1}\right) \leq d+2 \xi_{\Delta^{* *}}\left(r_{i}, r_{i+1}\right)
$$

Thus the existence of $\left(G^{* *}, \Omega^{* *}\right)$ contradicts the choice of $\left(G^{*}, \Omega^{*}\right)$. This completes our proof that $C_{1}, C_{2}, \ldots, C_{s}$ are subgraphs of G^{*}, and hence $\left(G^{*}, \Omega^{*}\right)$ is s-nested, as desired.

Proof of Theorem 1.8. Let d be as in Theorem 5.1, and let k be as in Corollary 5.4 applied to $2(d+2 s)$ in place of d. We claim that k satisfies Theorem 1.8. To prove that let (G, Ω) be a 6 -connected s-nested k-cosmopolitan society that is not nearly rural. Since (G, Ω) is an s-nested planar truncation of itself, by Theorem 5.1 we may assume that (G, Ω) has either a leap of length five, in which case it satisfies Theorem 1.8 by Theorem 4.1, or it has a planar truncation of depth at most d. In the latter case it has an s-nested planar
truncation $\left(G^{\prime}, \Omega^{\prime}\right)$ of depth at most $2(d+2 s)$ by Lemma 9.3, and the theorem follows from Corollary 5.4 applied to the society $\left(G^{\prime}, \Omega^{\prime}\right)$.

10 Finding a planar nest

In this section we prove a technical result that applies in the following situation. We will be able to guarantee that some societies (G, Ω) contain certain configurations consisting of disjoint trees connecting specified vertices in $V(\Omega)$. The main result of this section, Theorem 10.3 below, states that if the society is sufficiently nested, then we can make sure that the cycles in some reasonably big nest and the trees of the configuration intersect nicely.

A target in a society (G, Ω) is a subgraph F of G such that
(i) F is a forest and every leaf of F belongs to $V(\Omega)$, and
(ii) if $u, v \in V(\Omega)$ belong to a component T of F, then there exists a component $T^{\prime} \neq T$ of F and $w \in V\left(T^{\prime}\right) \cap V(\Omega)$ such that (u, w, v) is clockwise.
We say that a vertex $v \in V(G)$ is F-special if either v has degree at least three in F, or v has degree at least two in F and $v \in V(\Omega)$.

Now let F be a target in (G, Ω) and let T be a component of F. Let P be a path in $G \backslash V(\Omega)$ with ends u, v such that $u, v \in V(T)$ and P is otherwise disjoint from F. Let C be the unique cycle in $T \cup P$, and assume that C has at most one F-special vertex. If $C \backslash u \backslash v$ has no F-special vertex, then let P^{\prime} be the subpath of C that is complementary to P, and if $C \backslash u \backslash v$ has an F-special vertex, say w, then let P^{\prime} be either the subpath of $C \backslash u$ with ends v and w, or the subpath of $C \backslash v$ with ends u and w. Finally, let F^{\prime} be obtained from $F \cup P$ by deleting all edges and internal vertices of P^{\prime}. In those circumstances we say that F^{\prime} was obtained from F by rerouting.

A subgraph F of a rural neighborhood $\left(G, \Omega, \Omega_{0}\right)$ is perpendicular to an s-nest $\left(C_{1}, C_{2}, \ldots, C_{s}\right)$ if for every component P of F
(i) P is a path with one end in $V(\Omega)$ and the other in $V\left(\Omega_{0}\right)$, and
(ii) $P \cap C_{i}$ is a path for all $i=1,2, \ldots, s$.

The complexity of a forest F in a society (G, Ω) is

$$
\sum\left(\operatorname{deg}_{F}(v)-2\right)^{+}+\sum_{v \in V(\Omega)}\left(\operatorname{deg}_{F}(v)-1\right)^{+}
$$

where the first summation is over all $v \in V(G)-V(\Omega)$ and x^{+}denotes $\max (x, 0)$.
The following is a preliminary version of the main result of this section.

Theorem 10.1 Let w, s, k be positive integers, and let $s^{\prime}=2 w(k+1)+s$. Then for every s^{\prime}-nested society (G, Ω) such that G has tree-width at most w and for every target F_{0} in (G, Ω) of complexity at most k there exists a target F in (G, Ω) obtained from F_{0} by repeated
rerouting such that (G, Ω) can be expressed as a composition of some society with a rural neighborhood $\left(G^{\prime}, \Omega, \Omega^{\prime}\right)$ that has a presentation with an s-nest $\left(C_{1}, C_{2}, \ldots, C_{s}\right)$ such that $G^{\prime} \cap F$ is perpendicular to $\left(C_{1}, C_{2}, \ldots, C_{s}\right)$.

Proof. Suppose that the theorem is false for some integers w, s, k, a society (G, Ω) and target F_{0}, and choose these entities with $|V(G)|+|E(G)|$ minimum. Let (G, Ω) be the composition of a society $\left(G_{0}, \Omega_{0}\right)$ with a rural neighborhood $\left(G_{1}, \Omega, \Omega_{0}\right)$. Let κ be the complexity of $F \cap G_{1}$ in the society $\left(G_{1}, \Omega\right)$, and let $s^{\prime \prime}=2 w(\kappa+1)+s$. Since (G, Ω) is s^{\prime}-nested and $s^{\prime \prime} \leq s^{\prime}$ we may choose a presentation $\left(\Sigma, \Gamma, \Delta, \Delta_{0}\right)$ of $\left(G_{1}, \Omega, \Omega_{0}\right)$ and an $s^{\prime \prime}$-nest $\left(C_{1}, C_{2}, \ldots, C_{s^{\prime \prime}}\right)$ for it. We may assume that $G_{0}, \Omega_{0}, G_{1}, F, \Sigma, \Gamma, \Delta, \Delta_{0}, C_{1}, C_{2}, \ldots, C_{s^{\prime \prime}}$ are chosen to minimize κ. The minimality of G implies that $G=C_{1} \cup C_{2} \cup \cdots \cup C_{s^{\prime}} \cup F$. Likewise, $C_{1} \cup C_{2} \cup \cdots \cup C_{s^{\prime}}$ is edge-disjoint from F, for otherwise contracting an edge belonging to the intersection of the two graphs contradicts the minimality of G.

By a dive we mean a subpath of $F \cap G_{1}$ with both ends in $V\left(\Omega_{0}\right)$ and otherwise disjoint from $V\left(\Omega_{0}\right)$. Let P be a dive with ends u, v, and let P^{\prime} be the corresponding path in Γ. Then $\Delta_{0} \cup P^{\prime}$ separates Σ; let $\Delta\left(P^{\prime}\right)$ denote the component of $\Sigma-\Delta_{0}-P^{\prime}$ that is contained in Δ, and let $H(P)$ denote the subgraph of G_{1} consisting of all vertices and edges that correspond to vertices or edges of Γ that belong to the closure of $\Delta\left(P^{\prime}\right)$. Thus P is a subgraph of $H(P)$. We say that a dive P is clean if $H(P) \backslash V\left(\Omega_{0}\right)$ includes at most one F-special vertex, and if it includes one, say v, then $v \in V(P)$, and no edge of $E(F)-E(P)$ incident with v belongs to $H(P)$. The depth of a dive P is the maximum integer $d \in\left\{1,2, \ldots, s^{\prime}\right\}$ such that $V(P) \cap V\left(C_{d}\right) \neq \emptyset$, or 0 if no such integer exists. It follows from planarity that $\left|V(P) \cap V\left(C_{i}\right)\right| \geq 2$ for all $i=1,2, \ldots, d-1$.
(1) Every clean dive has depth at most $2 w$.

To prove the claim suppose for a contradiction that P_{1} is a clean dive of depth $d \geq 2 w+1$. Thus $V\left(P_{1}\right) \cap V\left(C_{d}\right) \neq \emptyset$. Assume that we have already constructed dives $P_{1}, P_{2}, \ldots, P_{t}$ for some $t \leq w$ such that $V\left(P_{i}\right) \cap V\left(C_{d-i+1}\right) \neq \emptyset$ for all $i=1,2, \ldots, t$ and $H\left(P_{t}\right) \subseteq$ $H\left(P_{t-1}\right) \subseteq \cdots \subseteq H\left(P_{1}\right)$. Since $V\left(P_{t}\right) \cap V\left(C_{d-t+1}\right) \neq \emptyset$, there exist distinct vertices $x, y \in$ $V\left(P_{t}\right) \cap V\left(C_{d-t}\right)$. Furthermore, it is possible to select x, y such that one of subpaths of C_{d-t} with ends x, y, say Q, is a subgraph of $H\left(P_{t}\right)$ and no internal vertex of Q belongs to P_{t}.

We claim that some internal vertex of Q belongs to F. Indeed, if not, then we can reroute $x P_{t} y$ along Q to produce a target F^{\prime} and delete an edge of $x P_{t} y$; since P_{1} is clean and $H\left(P_{t}\right)$ is a subgraph of $H\left(P_{1}\right)$ this is indeed a valid rerouting as defined above. But this contradicts the minimality of G, and hence some internal vertex of Q, say q, belongs to F. Since P_{1} is clean and $H\left(P_{t}\right)$ is a subgraph of $H\left(P_{1}\right)$ it follows that q belongs to a dive P_{t+1} that is a subgraph of $H\left(P_{t}\right) \backslash V\left(P_{t}\right)$. It follows that $H\left(P_{t+1}\right)$ is a subgraph of $H\left(P_{t}\right)$, thus completing the construction. (See Figure 7.)

The dives $P_{1}, P_{2}, \ldots, P_{w+1}$ just constructed are pairwise disjoint and all intersect C_{d-w}.

Figure 7: Construction of $H\left(P_{t+1}\right)$.
Since $d \geq 2 w+1$ this implies that $P_{1}, P_{2}, \ldots, P_{w+1}$ all intersect each of $C_{1}, C_{2}, \ldots, C_{w+1}$, and hence $C_{1} \cup P_{1}, C_{2} \cup P_{2}, \ldots, C_{w+1} \cup P_{w+1}$ is a "screen" in G of "thickness" at least $w+1$. By [16, Theorem (1.4)] the graph G has tree-width at least w, a contradiction. This proves (1).

Our next objective is to prove that $\kappa=0$. That will take several steps. To that end let us define a dive P to be special if $P \backslash V\left(\Omega_{0}\right)$ contains exactly one F-special vertex. By a bridge we mean a subgraph B of $G_{1} \cap F$ consisting of a component C of $G_{1} \backslash V\left(\Omega_{0}\right)$ together with all edges from $V(C)$ to $V\left(\Omega_{0}\right)$ and all ends of these edges.
(2) If a bridge B includes an F-special vertex not in $V\left(\Omega_{0}\right)$, then B includes a special dive.

To prove Claim (2) let B be a bridge containing an F-special vertex not in $V\left(\Omega_{0}\right)$. For an F-special vertex $b \in V(B)-V\left(\Omega_{0}\right)$ and an edge $e \in E(B)$ incident with b let P_{e} be the maximal subpath of B containing e such that one end of P_{e} is b and no internal vertex of P_{e} is F-special or belongs to $V\left(\Omega_{0}\right)$. Let u_{e} be the other end of P_{e}. The second axiom in the definition of target implies that at most one vertex of F belongs to $V(\Omega)$. Since every F-special vertex in $V\left(G_{1}\right)-V(\Omega)$ has degree at least three, it follows that there exists an F-special vertex $b \in V(B)-V\left(\Omega_{0}\right)$ such that $u_{e_{1}}, u_{e_{2}} \in V\left(\Omega_{0}\right)$ for two distinct edges $e_{1}, e_{2} \in E(B)$ incident with b. Then $P_{e_{1}} \cup P_{e_{2}}$ is as desired. This proves (2).

By (2) we may select a special dive P with $H(P)$ minimal. We claim that P is clean. For let $v \in V(P)-V\left(\Omega_{0}\right)$ be F-special. If some edge $e \in E(F)-E(P)$ incident with v belongs to $H(P)$, then there exists a subpath P^{\prime} of F containing e with one end v and the other end in $V\left(\Omega_{0}\right) \cup V(\Omega)$. But P^{\prime} is a subgraph of $H(P)$, and hence the other end of P^{\prime} belongs to $V\left(\Omega_{0}\right)$ by planarity. It follows that $P \cup P^{\prime}$ includes a dive that contradicts the minimality of $H(P)$. This proves that the edge e as above does not exist.

It remains to show that no vertex of $H(P) \backslash V\left(\Omega_{0}\right)$ except v is F-special. So suppose for a contradiction that such vertex, say v^{\prime}, exists. Then $v^{\prime} \notin V(P)$, because P is special, and hence v^{\prime} belongs to a bridge $B^{\prime} \neq B$. But B^{\prime} includes a special dive by (2), contrary to the choice of P. This proves our claim that P is clean.

By (1) P has depth at most $2 w$. In particular, the image under Γ of some F-special vertex belongs to the open disk $\Delta_{2 w+1}$ bounded by the image under Γ of $C_{2 w+1}$. Let G_{0}^{\prime} consist of G_{0} and all vertices and edges of G whose images under Γ belong to the closure of $\Delta_{2 w+1}$, let G_{1}^{\prime} consist of all vertices and edges whose images under Γ belong to the complement of $\Delta_{2 w+1}$, and let Ω_{0}^{\prime} be defined by $V\left(\Omega_{0}^{\prime}\right)=V\left(C_{2 w+1}\right)$ and let the cyclic order of Ω_{0}^{\prime} be determined by the order of $V\left(C_{2 w+1}\right)$. Then (G, Ω) can be regarded as a composition of $\left(G_{0}^{\prime}, \Omega_{0}^{\prime}\right)$ with the rural neighborhood $\left(G_{1}^{\prime}, \Omega, \Omega_{0}^{\prime}\right)$. This rural neighborhood has a presentation with a σ-nest, where $\sigma=2 w \kappa+s$. On the other hand, the complexity of $F \cap G_{1}^{\prime}$ is at most $\kappa-1$, contrary to the minimality of κ. This proves our claim that $\kappa=0$.

By repeating the argument of the previous paragraph and sacrificing $2 w$ of the cycles C_{i} we may assume that $\left(G_{1}, \Omega, \Omega_{0}\right)$ has a presentation with an s-nest $C_{1}, C_{2}, \ldots, C_{s}$ and that there are no dives. It follows that every component P of $F \cap G_{1}$ is a path with one end in $V(\Omega)$ and the other in $V\left(\Omega_{0}\right)$. To complete the proof of the theorem we must show that $P \cap C_{i}$ is a path for all $i=1,2, \ldots, s$. Suppose for a contradiction that that is not the case. Thus for some $i \in\{1,2, \ldots, s\}$ and some component P of $F \cap G_{1}$ the intersection $P \cap C_{i}$ is not a path. Thus there exist distinct vertices $x, y \in V\left(P \cap C_{i}\right)$ such that $x P y$ is a path with no edge or internal vertex in C_{i}. Let us choose P, i, x, y such that, subject to the conditions stated, i is maximum. If $i<s$ and $x P y$ intersects C_{i+1}, then $P \cap C_{i+1}$ is not a path, contrary to the choice of i. If $i=1$ or $x P y$ does not intersect C_{i-1}, then by rerouting one of the subpaths of C_{i} with ends x, y along $x P y$ we obtain contradiction to the minimality of G. Thus we may assume that $i>1$ and that $x P y$ intersects C_{i-1}.

Exactly one of the subpaths of C_{i} with ends x, y, say Q, has the property that the image under Γ of $x P y \cup Q$ bounds a disk contained in Δ and disjoint from Δ_{0}. If no component of $F \cap G_{1}$ other than P intersects Q, then by rerouting F along Q we obtain a contradiction to the minimality of G. Thus there exists a component P^{\prime} of $F \cap G_{1}$ other that P that intersects Q, say in a vertex u. The vertex u divides P^{\prime} into two subpaths P_{1}^{\prime} and P_{2}^{\prime}. If both P_{1}^{\prime} and P_{2}^{\prime} intersect C_{i+1}, then P^{\prime} contradicts the choice of i. Thus we may assume that say P_{1}^{\prime} does not intersect C_{i+1}. But P_{1}^{\prime} includes a subpath $P^{\prime \prime}$ with both ends on C_{i} and otherwise disjoint from $C_{1} \cup C_{2} \cup \cdots \cup C_{s}$, and hence by rerouting C_{i} along $P^{\prime \prime}$ we obtain a contradiction to the minimality of G. This completes the proof of the theorem.

Before we state the main result of this section we need the following deep result from [12]. A linkage in a graph G is a subgraph of G, every component of which is a path. A linkage L in a graph G is vital if $V(L)=V(G)$ and there is no linkage $L^{\prime} \neq L$ in G such that for every two vertices $u, v \in V(G)$, the vertices u, v are the ends of a component of L if and
only if they are the ends of a component of L^{\prime}.
Theorem 10.2 For every integer $p \geq 0$ there exists an integer w such that every graph that has a vital linkage with p components has tree-width at most w.

Now we are ready to state and prove the main theorem of this section. If F is a target in a society (G, Ω) we say that a vertex $v \in V(G)$ is critical for F if v is either F-special or a leaf of F. We say that two targets F, F^{\prime} are hypomorphic if they have the same set of critical vertices, say X, and $u, v \in X$ are joined by a path in F with no internal vertices in X if and only if they are so joined in F^{\prime}.

Theorem 10.3 For every two positive integers s, k there exists an integer s^{\prime} such that for every s^{\prime}-nested society (G, Ω) and for every target F in (G, Ω) of complexity at most k there exists a target F in (G, Ω) obtained from a target hypomorphic to F_{0} by repeated rerouting such that (G, Ω) can be expressed as a composition of some society with a rural neighborhood $\left(G^{\prime}, \Omega, \Omega^{\prime}\right)$ that has a presentation with an s-nest $\left(C_{1}, C_{2}, \ldots, C_{s}\right)$ such that $G^{\prime} \cap F$ is perpendicular to $\left(C_{1}, C_{2}, \ldots, C_{s}\right)$.

Proof. We proceed by induction on $|V(G)|+|E(G)|$. Let $p=k+2$, and let w be the bound guaranteed by Theorem 10.2. By hypothesis (G, Ω) is the composition of a society $\left(G_{0}, \Omega_{0}\right)$ with a rural neighborhood $\left(G_{1}, \Omega, \Omega_{0}\right)$, where $\left(G_{1}, \Omega, \Omega_{0}\right)$ has a presentation $\left(\Sigma, \Gamma, \Delta, \Delta_{0}\right)$ and an s^{\prime}-nest $\left(C_{1}, C_{2}, \ldots, C_{s^{\prime}}\right)$. Let X be the set of all vertices critical for F, and let $L=F \backslash X$. Then L is a linkage in $G \backslash X$. If it is vital, then G has tree-width at most $|X|+w \leq 2 k+1+w$, and hence the theorem follows from Theorem 10.1.

Thus we may assume that L is not vital. Assume first that there exists a vertex $v \in$ $V(G)-V(L)$. If $v \in V\left(C_{i}\right)$ for some $i \in\left\{1,2, \ldots, s^{\prime}\right\}$, then the theorem follows by induction applied to the graph obtained from G by contracting one of the edges of C_{i} incident with v; otherwise, the theorem follows by induction applied to the graph $G \backslash v$.

Thus we may assume that $V(L)=V(G)$, and hence there exists a linkage $L^{\prime} \neq L$ linking the same pairs of terminals. Thus there exists an edge $e \in E(L)-E\left(L^{\prime}\right)$. If $e \in E\left(C_{i}\right)$ for some $i \in\left\{1,2, \ldots, s^{\prime}\right\}$, then the theorem follows by induction by contracting the edge e; otherwise it follows by induction by deleting e, because the linkage L^{\prime} guarantees that $G \backslash e$ has a target hypomorphic to F.

11 Chasing a turtle

In this section we prove Theorem 1.3, but first we need the following two theorems.

Theorem 11.1 There is an integer such that if an s-nested society (G, Ω) has a turtle, then G has a K_{6} minor.

Figure 8: A turtle giving rise to a K_{6} minor.
Proof. Let k be the maximum complexity of a turtle, let $s=3$, and let s^{\prime} be as in Theorem 10.3. We claim that s^{\prime} satisfies the theorem. Indeed, let (G, Ω) be an s^{\prime}-nested society that has a turtle. Since every turtle is a target, and every target obtained from a target hypomorphic to a turtle is again a turtle, we deduce from Theorem 10.3 that (G, Ω) has a turtle F and can be expressed as a composition of a society with a rural neighborhood $\left(G^{\prime}, \Omega, \Omega^{\prime}\right)$ that has a presentation with a 3-nest $\left(C_{1}, C_{2}, C_{3}\right)$ such that $G^{\prime} \cap F$ is perpendicular to $\left(C_{1}, C_{2}, C_{3}\right)$. It is now fairly straightforward to deduce that G has a K_{6} minor. The argument is illustrated in Figure 8.

Theorem 11.2 There is an integers such that if an s-nested society (G, Ω) has three crossed paths, a separated doublecross or a gridlet, then G has a K_{6} minor.

Proof. The argument is analogous to the proof of the previous theorem, using Figures 9, 10 and 11 instead. We omit the details.

Proof of Theorem 1.3. Let s be an integer large enough that both Theorem 11.1 and Theorem 11.2 hold for s. Let k be an integer such that Theorem 1.8 holds for this integer. Let t be such that Theorem 1.7 holds for t and the integer k just defined. Let h be an integer such that Theorem 1.6 holds with t replaced by $t+2 s$. Let w be an integer such that Theorem 1.5 holds for the integer h just defined. Finally, let N be as in Theorem 1.4.

Figure 9: Three crossed paths giving rise to a K_{6} minor.

Figure 10: A gridlet giving rise to a K_{6} minor.

Figure 11: A separated doublecross giving rise to a K_{6} minor.

Suppose for a contradiction that G is a 6 -connected graph on at least N vertices that is not apex. By Theorem 1.4 G has tree-width exceeding w. By Theorem $1.5 G$ has a wall of height h. By Theorem 1.6 G has a planar wall H_{0} of height $t+2 s$. By considering a subwall H of H_{0} of height t and s cycles of $H_{0} \backslash V(H)$ we find, by Theorem 1.7, that the anticompass society (K, Ω) of H in G is s-nested and k-cosmopolitan. By Theorem 1.8 the society (K, Ω) has a turtle, three crossed paths, a separated doublecross, or a gridlet. By Theorems 11.1 and 11.2 the graph G has a K_{6} minor, a contradiction.

Acknowledgment

We would like to acknowledge the contributions of Matthew DeVos and Rajneesh Hegde, who worked with us in March 2005 and contributed to this paper, but did not want to be included as a coauthors.

References

[1] M. DeVos and P. D. Seymour, Extending partial 3-colourings in a planar graph, J. Combin. Theory Ser. B 88 (2003), 219-225.
[2] R. Diestel, K. Yu. Gorbunov, T. R. Jensen, and C. Thomassen, Highly connected sets and the excluded grid theorem, J. Combin. Theory Ser. B 75 (1999), 61-73.
[3] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch. Gessellsch. Zürich 88 (1943), 133-142.
[4] L. Jørgensen, Contraction to K_{8}, J. Graph Theory 18 (1994), 431-448.
[5] K. Kawarabayashi, S. Norine, R. Thomas and P. Wollan, K_{6} minors in 6-connected graphs of bounded tree-width, submitted.
[6] W. Mader, Über trennende Eckenmengen in homomorphiekritische Graphen, Math. Ann. 175 (1968), 245-252.
[7] S. Norine and R. Thomas, in preparation.
[8] B. A. Reed, Tree width and tangles: a new connectivity measure and some applications, Surveys in Combinatorics, London Mathematical Society Lecture Series 241, R. A. Bailey ed., Cambridge University Press 1997.
[9] N. Robertson and P. D. Seymour, Graph Minors V. Excluding a planar graph, J. Combin. Theory Ser. B 41 (1986), 92-114.
[10] N. Robertson and P. D. Seymour, Graph Minors IX. Disjoint crossed paths, J. Combin. Theory Ser. B 49 (1990), 40-77.
[11] N. Robertson and P. D. Seymour, Graph Minors XIII. The disjoint paths problem, J. Combin. Theory Ser. B 63 (1995), 65-110.
[12] N. Robertson and P. D. Seymour, Graph Minors XXI. Graphs with unique linkages, J. Combin. Theory Ser. B 99 (2009), 583-616.
[13] N. Robertson, P. D. Seymour and R. Thomas, Hadwiger's conjecture for K_{6}-free graphs, Combinatorica 13 (1993), 279-361.
[14] N. Robertson, P. D. Seymour and R. Thomas, Quickly excluding a planar graph, J. Combin. Theory Ser. B 62 (1994), 323-348.
[15] N. Robertson, P. D. Seymour and R. Thomas, Non-planar extensions of planar graphs, Available from http://www.math.gatech.edu/~thomas/PAP/ext.pdf.
[16] P. D. Seymour and R. Thomas, Graph searching, and a min-max theorem for tree-width, J. Combin. Theory Ser. B 58 (1993), 22-33.

This material is based upon work supported by the National Science Foundation under Grants No. DMS-0200595, DMS-0354742, DMS-0701033, and DMS-0701077. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

[^0]: ${ }^{1}$ Partially supported by NSF under Grants No. DMS-0200595 and DMS-0701033.
 ${ }^{2}$ Partially supported by NSF under Grants No. DMS-0200595, DMS-0354742, and DMS-0701077.

