8,082 research outputs found

    An attentive neural architecture for joint segmentation and parsing and its application to real estate ads

    Get PDF
    In processing human produced text using natural language processing (NLP) techniques, two fundamental subtasks that arise are (i) segmentation of the plain text into meaningful subunits (e.g., entities), and (ii) dependency parsing, to establish relations between subunits. In this paper, we develop a relatively simple and effective neural joint model that performs both segmentation and dependency parsing together, instead of one after the other as in most state-of-the-art works. We will focus in particular on the real estate ad setting, aiming to convert an ad to a structured description, which we name property tree, comprising the tasks of (1) identifying important entities of a property (e.g., rooms) from classifieds and (2) structuring them into a tree format. In this work, we propose a new joint model that is able to tackle the two tasks simultaneously and construct the property tree by (i) avoiding the error propagation that would arise from the subtasks one after the other in a pipelined fashion, and (ii) exploiting the interactions between the subtasks. For this purpose, we perform an extensive comparative study of the pipeline methods and the new proposed joint model, reporting an improvement of over three percentage points in the overall edge F1 score of the property tree. Also, we propose attention methods, to encourage our model to focus on salient tokens during the construction of the property tree. Thus we experimentally demonstrate the usefulness of attentive neural architectures for the proposed joint model, showcasing a further improvement of two percentage points in edge F1 score for our application.Comment: Preprint - Accepted for publication in Expert Systems with Application

    On Correcting Inputs: Inverse Optimization for Online Structured Prediction

    Get PDF
    Algorithm designers typically assume that the input data is correct, and then proceed to find "optimal" or "sub-optimal" solutions using this input data. However this assumption of correct data does not always hold in practice, especially in the context of online learning systems where the objective is to learn appropriate feature weights given some training samples. Such scenarios necessitate the study of inverse optimization problems where one is given an input instance as well as a desired output and the task is to adjust the input data so that the given output is indeed optimal. Motivated by learning structured prediction models, in this paper we consider inverse optimization with a margin, i.e., we require the given output to be better than all other feasible outputs by a desired margin. We consider such inverse optimization problems for maximum weight matroid basis, matroid intersection, perfect matchings, minimum cost maximum flows, and shortest paths and derive the first known results for such problems with a non-zero margin. The effectiveness of these algorithmic approaches to online learning for structured prediction is also discussed.Comment: Conference version to appear in FSTTCS, 201

    Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers

    Full text link
    Scene parsing, or semantic segmentation, consists in labeling each pixel in an image with the category of the object it belongs to. It is a challenging task that involves the simultaneous detection, segmentation and recognition of all the objects in the image. The scene parsing method proposed here starts by computing a tree of segments from a graph of pixel dissimilarities. Simultaneously, a set of dense feature vectors is computed which encodes regions of multiple sizes centered on each pixel. The feature extractor is a multiscale convolutional network trained from raw pixels. The feature vectors associated with the segments covered by each node in the tree are aggregated and fed to a classifier which produces an estimate of the distribution of object categories contained in the segment. A subset of tree nodes that cover the image are then selected so as to maximize the average "purity" of the class distributions, hence maximizing the overall likelihood that each segment will contain a single object. The convolutional network feature extractor is trained end-to-end from raw pixels, alleviating the need for engineered features. After training, the system is parameter free. The system yields record accuracies on the Stanford Background Dataset (8 classes), the Sift Flow Dataset (33 classes) and the Barcelona Dataset (170 classes) while being an order of magnitude faster than competing approaches, producing a 320 \times 240 image labeling in less than 1 second.Comment: 9 pages, 4 figures - Published in 29th International Conference on Machine Learning (ICML 2012), Jun 2012, Edinburgh, United Kingdo

    Parsing Thai Social Data: A New Challenge for Thai NLP

    Full text link
    Dependency parsing (DP) is a task that analyzes text for syntactic structure and relationship between words. DP is widely used to improve natural language processing (NLP) applications in many languages such as English. Previous works on DP are generally applicable to formally written languages. However, they do not apply to informal languages such as the ones used in social networks. Therefore, DP has to be researched and explored with such social network data. In this paper, we explore and identify a DP model that is suitable for Thai social network data. After that, we will identify the appropriate linguistic unit as an input. The result showed that, the transition based model called, improve Elkared dependency parser outperform the others at UAS of 81.42%.Comment: 7 Pages, 8 figures, to be published in The 14th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP 2019

    The CoNLL 2007 shared task on dependency parsing

    Get PDF
    The Conference on Computational Natural Language Learning features a shared task, in which participants train and test their learning systems on the same data sets. In 2007, as in 2006, the shared task has been devoted to dependency parsing, this year with both a multilingual track and a domain adaptation track. In this paper, we define the tasks of the different tracks and describe how the data sets were created from existing treebanks for ten languages. In addition, we characterize the different approaches of the participating systems, report the test results, and provide a first analysis of these results

    An Empirical Comparison of Parsing Methods for Stanford Dependencies

    Full text link
    Stanford typed dependencies are a widely desired representation of natural language sentences, but parsing is one of the major computational bottlenecks in text analysis systems. In light of the evolving definition of the Stanford dependencies and developments in statistical dependency parsing algorithms, this paper revisits the question of Cer et al. (2010): what is the tradeoff between accuracy and speed in obtaining Stanford dependencies in particular? We also explore the effects of input representations on this tradeoff: part-of-speech tags, the novel use of an alternative dependency representation as input, and distributional representaions of words. We find that direct dependency parsing is a more viable solution than it was found to be in the past. An accompanying software release can be found at: http://www.ark.cs.cmu.edu/TBSDComment: 13 pages, 2 figure
    corecore