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Abstract
Algorithm designers typically assume that the input data is correct, and then proceed to find
“optimal” or “sub-optimal” solutions using this input data. However this assumption of correct
data does not always hold in practice, especially in the context of online learning systems where
the objective is to learn appropriate feature weights given some training samples. Such scenarios
necessitate the study of inverse optimization problems where one is given an input instance as
well as a desired output and the task is to adjust the input data so that the given output is indeed
optimal. Motivated by learning structured prediction models, in this paper we consider inverse
optimization with a margin, i.e., we require the given output to be better than all other feasible
outputs by a desired margin. We consider such inverse optimization problems for maximum
weight matroid basis, matroid intersection, perfect matchings in bipartite graphs, minimum cost
maximum flows, and shortest paths and derive the first known results for such problems with
a non-zero margin. The effectiveness of these algorithmic approaches to online learning for
structured prediction is also discussed.

1998 ACM Subject Classification I.2.6 Learning

Keywords and phrases Inverse Optimization, Structured Prediction, Online Learning

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.38

1 Introduction

Algorithm designers generally assume that the input data is sacrosanct and correct. Al-
gorithms are then typically run on this input data to compute “optimal” or “sub-optimal”
solutions quickly whether it be the computation of a maximum spanning tree, a maximum
matching, max weight arborescence, or shortest paths. However, with an increasing reliance
on automatic methods to collect data, as well as in systems that learn, this assumption does
not always hold. The input data can be erroneous (even though it may be approximately
correct), and it becomes important to “adjust” the input data to achieve certain desired
conditions.

A simple example can be used to illustrate the main point – suppose we are given a
weighted graph G = (V,E) and a spanning tree T , and told that T should be a maximum
weight spanning tree in G. The goal now is to perturb the edge weights of the graph G,
minimizing the L2 norm of the perturbation, so that T is indeed the optimal spanning tree.
This kind of problem has been studied previously in the form of “Inverse Optimization”
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A dog catches the red ball
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Figure 1 Example dependency parse tree. The tree describes the relations between head words
and their dependents in the sentence.

problems. However, we wish to accomplish a stronger goal of making sure that the given
tree T is better than every other tree in G by a given margin δ.

Our initial motivation for studying this problem comes from the structured prediction
task in machine learning [15, 20, 3, 22, 24]. For concreteness and ease of exposition, we
now describe structured prediction in the context of predicting dependency parse trees for
natural language sentences. Given an English sentence, its dependency parse is a rooted,
directed tree that indicates the dependencies between different words in the sentence as
shown in Figure 1. The input sentence can be represented as a complete, directed graph on
the words of the sentence that is parameterized by features on the edges. Given a learned
model (represented as a vector of parameters), the weight of an edge is computed as the
inner product of its feature vector and the model. As linguistic constraints dictate that the
required dependency parse must form a rooted, spanning arborescence of the graph, one can
use off-the-shelf combinatorial algorithms [9, 2] to find the highest weight arborescence. The
learning problem is thus to find a parameter vector such that once the edges are weighted by
the inner products, running a combinatorial optimization algorithm would return the desired
parse tree. At “training time”, we are given a sentence as well as its correct parse tree and the
problem that we need to solve is exactly the inverse optimization problem - given the current
model and the parse tree, say T , find the minimum perturbation to the model so that the
combinatorial optimization algorithm would return T . It is well established in the learning
theory literature that achieving a large margin solution enables better generalization [6]. We
consider minimizing the L2 norm because of connections to prior work [14]. In particular, for
applications in structured prediction, the convergence and error bounds (included in Section
6) require L2 norm minimization.

In our work we consider such inverse optimization problems with a margin in a general
matroid setting. We consider both the problem of modifying the weights of the elements of a
matroid, so that a given basis is a maximum weight basis (with a given margin of δ) and
the considerably harder problem of matroid intersection where a given basis of two matroids
should have weight higher (by at least δ) than any other set of elements that is a basis in
the two matroids. This framework captures two special cases which are useful for structured
prediction - namely maximum weight bipartite matching (useful for language translation)
and maximum weight arborescence (useful for sentence parsing). We also consider δ-margin
inverse optimization problems for a number of other classical combinatorial optimization
problems such as perfect matchings, minimum cost flows and shortest path trees. In addition,
we present a generic framework for online learning for structured prediction using the
corresponding inverse optimization problem as a subroutine and present convergence and
error bounds on this framework.

1.1 Related Work
Inverse optimization problems have been widely studied in the Operations Research literature.
Most prior work however has focused on minimizing the L1 or L∞ norms between the weight
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vectors and, more importantly, do not allow non-zero margin (δ). Heuberger [13] provides
an excellent survey of the diverse inverse optimization problems that have been tackled.
Both the inverse matroid optimization [8] and matroid intersection [16] have previously been
studied in the setting of minimizing the L1 norm and with zero margin. However, they use
techniques that are specialized to minimizing the L1 norm of the perturbation and do not
extend to minimizing the L2 norm. At the same time, these approaches to do not generalize
to the general case of inverse optimization with non-zero margins.

In typical global models for structured prediction (for e.g. see [15, 17, 24, 3, 5, 18]), the
discrete optimization problem is considered a “black box”. By treating the combinatorial
problem as a black box, these methods lose the ability to precisely reason about how certain
changes to the underlying parameter vector can affect the eventual output. The simplest
approach to solving the online structured prediction problem is the structured perceptron [3].
On each example, the structured perceptron makes a prediction based on its current model.
If this prediction is incorrect, the algorithm suffers unit loss and updates its parameters with
a simple linear update that moves the predictor closer to the truth and further from the
current best guess. While empirically successful in a number of problems, this particular
update is relatively imprecise: there are typically an exponential number of possible outputs
for any given input, and simply promoting the correct one and demoting the models’ current
prediction may do very little to move the model as far as it needs to go. An alternative
approach is the large margin discriminative approach [6] that seeks to change the parameters
as little as possible subject to the constraint that the true output has a higher score than
all incorrect outputs. However, such an approach is often computationally infeasible for
structured prediction as there are usually an exponential number of potential outputs.
McDonald et al. [18] circumvent this infeasibility by using a k-best list of possible outputs
and restrict the set of constraints to require that the true output has a higher score than the
incorrect outputs on the k-best list. This has been shown to be effective for small values of k
on simple parsing tasks [18]. However, for more complex tasks, like machine translation, one
needs more complicated update frameworks [1]. In this work we show that the large margin
discriminative approach is applicable to a wide range of problems in structured prediction
using techniques from inverse combinatorial optimization.

In the context of online prediction, the most related work to ours is that of Taskar et
al. [22], who also consider structured prediction using inverse bipartite matchings. They define
a loss function that measures, against a ground truth matching, the number of mispredicted
edges in the found matching. This “Hamming distance” style loss function nicely decomposes
over the structure of the graph and thereby admits an efficient “loss augmented” inference
solution, in which correct edges are penalized during learning. (The idea is that if correct
edges are penalized, but the model still produces the correct matching, then it has done
so with a sufficiently large margin.) This idea only works in the case of decomposable loss
functions, or the simpler 0-margin formulation. In comparison, our approach works both for
decomposable loss functions as well as “zero/one loss” over the entire structure. Furthermore,
our approach generalizes to arbitrary matroid intersection problems and minimum cost flows
and thus is applicable to a much wider range of structured prediction problems.

1.2 Contribution and Techniques
A lot of prior work in the inverse optimization literature formulates the problem as a linear
program and then uses strong duality conditions to find the new perturbed weights. However,
such techniques cannot be extended to handle a non-zero margin that is required by the
application to structured prediction. We formulate inverse optimization to minimize the
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L2 norm of the perturbations as a quadratic program and use problem specific optimality
conditions to determine a concise set of linear constraints that are both necessary and
sufficient to guarantee the required margin. In particular, one of the key ingredients is a set
of polynomially many linear constraints that ensure that an appropriately defined auxiliary
graph does not contain small directed cycles. We note that our formulations can easily be
adapted to minimize the L1 norm of the perturbations by simply modifying the objective
and using linear programming.

We obtain concise formulations for exactly solving δ-margin inverse optimization problems
for (i) maximum weight matroid basis, (ii) maximum weight basis in the intersection of two
matroids, (iii) shortest s-t path, (iv) shortest path tree, (v) minimum cost maximum flow in
a directed graph.

We also present convergence results for the generic online learning framework for structured
prediction motivating our study.

The rest of the paper is organized as follows. In Section 2, we formally define δ-margin
inverse optimization. In Sections 3 and 4, we present our results on inverse optimization for
matroids, and matroid intersections respectively. In Section 5, we present a more efficient
algorithm for the special case of inverse perfect matchings in bipartite graphs. In Section
6, we describe an online learning framework for structured prediction as an application.
The proofs of convergence and error bounds for this learning framework as well as some
preliminary experimental results for our learning model are included in the full version of
this paper [7]. We also defer the results for inverse optimization for shortest path trees and
minimum cost flow problems to the full version.

2 Problem Description

As explained in the introduction, we require a given solution to be better than all other
feasible solutions by a margin of δ. We now formalize this notion of δ-optimality.

I Definition 1 (δ-Optimality). For a maximization problem P , let F denote the set of feasible
solutions, let w be the weight vector, c(w,A) denote the cost of feasible solution A under
weights w, and let δ ≥ 0 be a scalar. A feasible solution S ∈ F is called δ-optimal under
weights w if and only if

c(w, S) ≥ c(w, S′) + δ, ∀S′(6= S) ∈ F .

δ-optimality for minimization problems is defined similarly. All problems we consider in
this work can be classified as δ-margin inverse optimization.

I Definition 2 (δ-Margin Inverse Optimization). For a given optimization problem P , let F
denote the set of feasible solutions, let w be the weight vector, let δ ≥ 0 be a scalar, and let
S ∈ F be a given feasible solution. δ-Margin Inverse optimization is to find a new weight
vector w′ minimizing ||w′ − w||2 (L2 norm) such that S is the δ-optimal solution of P under
weights w′.

In the following sections we consider δ-margin inverse optimization for a number of
problems mentioned earlier.

3 Maximum weight matroid basis

In order to provide intuition about the type of problems we propose to solve in this paper,
we first begin with the simple case of Inverse Matroid Optimization. We recall the definition
of a matroid.
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I Definition 3 (Matroid). A matroid is a pair M = (X, I) where X is a ground set of
elements and I is a family of subsets of X (called Independent sets) such that
(i) I 6= φ.
(ii) (Hereditary) If B ∈ I, and A ⊆ B, then A ∈ I.
(iii) (Exchange property) If A,B ∈ I, and |A| < |B|, then there exists some element e ∈ B\A

such that A ∪ {e} ∈ I.

I Definition 4 (Matroid Basis and Circuit). Let M = (X, I) be a matroid. Then any maximal
independent set in I is called a basis of the matroid. Conversely, any minimal dependent set
is called a circuit.

For the inverse problem we are given a matroid M = (X, I), a weight function w on the
elements, and a basis B of M. The goal is to find a weight function w′ so that B is the
δ-optimal basis of M under the new weights. As it is well known that a spanning tree is a
basis of a graphical matroid, this inverse matroid optimization problem directly generalizes
the inverse maximum spanning tree problem.

We first state a simple optimality condition for a given basis B of a matroid M. An easy
generalization of [21] for δ ≥ 0 gives the following lemma.

I Lemma 5 (Corollary 39.12b in [21]). A given basis B of a matroid M is δ-optimal (under
weight function w) if and only if for any f /∈ B, and each e ∈ CB(f), w(e)−w(f) ≥ δ, where
CB(f) denotes the unique circuit in B ∪ {f}.

We thus have a set of polynomially many linear constraints that are necessary and sufficient
for the given basis B to be δ-optimal. The inverse matroid optimization problem can then
be formulated as a linearly constrained quadratic problem as follows -

min
w′

∑
e∈X

(w′(e)− w(e))2 subj. to: (1)

w′(e)− w′(f) ≥ δ, ∀f /∈ B, ∀e ∈ CB(f) (2)

Such a program with a quadratic objective and linear constraints can be solved in
polynomial time and a number of practical solvers such as [12] are available.

4 Matroid Intersection

Similar to the case with a single matroid, we need to derive a necessary and sufficient
condition for a common basis B of two matroids to be δ-optimal. We can establish such an
optimality condition with the help of an exchange graph associated with the basis B and
matroids M1 and M2.

I Definition 6 (Exchange Graph). Given two matroids M1 = (X, I1) and M2 = (X, I2),
a weight function w : X → R+, and a common basis B, an exchange graph is a directed,
bipartite graph G = (V,A) with a length function l on edges that is defined as follows.

V = B ∪X \B (3)
A = A1 ∪A2 (4)
A1 = {(x, y)|x ∈ B, y ∈ X \B,B − {x}+ {y} ∈ I1} (5)
A2 = {(y, x)|x ∈ B, y ∈ X \B,B − {x}+ {y} ∈ I2} (6)

l(s) =
{
w(x) if s = (x, y) ∈ A1

−w(y) if s = (y, x) ∈ A2
(7)
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The above graph captures the exchange operations that can be performed. An edge
(e, f) implies that deleting e and adding f to B preserves independence w.r.t matroid
M1 and similarly for the other direction. As the graph is bipartite, every cycle is of
even length - a cycle C = (x1, y1, x2, y2, . . . xk, yk, x1) corresponds to constructing a set
B′′ = B − {x1, x2, . . . xk} ∪ {y1, y2, . . . , yk}. Further

w(B′′) = w(B)−
k∑
i=1

w(xi) +
k∑
i=1

w(yi) = w(B)− l(C)

where l(C) =
∑
e∈C l(e) is the sum of lengths of edges in the cycle C. We are now in a position

to present the δ-optimality condition of B in terms of the exchange graph. Fujishige [11]
shows the following lemma for the case of δ = 0. We include the extended proof for general δ
margin here for completeness. It is important to note that while there are other optimality
conditions for matroid intersection such as the weight decomposition theorem by Frank [10],
these conditions do not easily generalize for non-zero δ.

I Lemma 7 (Matroid Intersection δ-optimality condition). The given common basis B is
δ-optimal if and only if the exchange graph G contains no directed cycle C such that∑
e∈C l(e) ≤ δ.

Proof. We’ll refer to two well-known lemmas [21] regarding the relationship between bases of
a matroid and matchings in the exchange graph. Let G1 = (V,A1) and G2 = (V,A2) be the
subgraphs of G induced by the two matroids respectively. Further for B′ ⊂ X, let G(B,B′)
denote the subgraph induced on the G by the vertex sets B \B′ and B′ \B.

I Lemma 8 (Corollary 39.12a in [21]). If B′ is a basis of matroid M1 [M2], then G1(B,B′)
[G2(B,B′)] contains a perfect matching.

I Lemma 9 (Corollary 39.13 in [21]). For B′ ⊆ X, if G1(B,B′)[G2(B,B′)] has a unique
perfect matching, then B′ is a basis of M1 [M2].

Sufficiency: This is the easy direction. Let B′ be any common basis other than B. Applying
Lemma 8, we know that G(B,B′) has two perfect matchings (one each in G1(B,B′) and
G2(B,B′)). Union of these two perfect matchings yields a collection of cycles C. Further,
by construction, by traversing these cycles, one can transform B → B′ and hence, we
have w(B′) = w(B)−

∑
C∈C l(C). Therefore, since we have l(C) > δ for all cycles, we are

guaranteed that w(B′) < w(B)− δ as desired.

Necessity: Ideally, we would like to say that every cycle in G leads to a swapping such that
the set so obtained is also independent in both the matroids. This would immediately imply
that a cycle of small length would lead to a common basis B′ which is not much smaller
than B.

However, the presence of a cycle simply implies the presence of a perfect matching (one
in each direction) which may not be unique. For example, Figure 2 shows an instance of an
arborescence problem (left), and the associated exchange graph (right). Here G contains a
cycle a-x-b-y-a which leads to a new set x, y, c which is not an arborescence.

In the previous example, observe that if the cycle a-x-b-y-a were to have small weight,
that would imply that at least one of a-y-a or b-x-b cycles too has small weight both of which
lead to a feasible solution. This observation motivates us to look at the smallest cycle of
weight less than δ and hope that it does induce an unique perfect matching.
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Figure 2 Instance showing every cycle in G need not lead to a common basis.

Suppose that the graph has a cycle having weight less than δ. Let C be the smallest (in
terms of number of arcs) such cycle. Look at the graph induced by the vertex set of the cycle.
We claim that this induced subgraph has a unique perfect matching (one in each direction).
Here we prove the claim for one direction. C being an even cycle trivially contains a perfect
matching M from B-side to X \B-side. Suppose there exists another perfect matching M ′.
For every edge (x, y) in M ′ \M , the edge along with the path between y and x in C cause a
cycle. Further, each such cycle is smaller (number of edges) than C.

Let M̄ denote the matching M with edge directions reversed. The union of M ′ and
M̄ now forms a collection of cycles. Consider any such cycle D. WLOG let the cycle be
(x0, y0, x1, y1, . . . , xk, yk, x0) such that the (xi+1, yi) are edges in M (i.e. (yi, xi+1) ∈ M̄) and
(xi, yi) ∈M ′. [All arithmetic is modulo k + 1]. We’ll now be interested in the length of the
path between these vertices in the original cycle C. Let Ci denote the cycle formed by the
edge (xi, yi) and the path between yi and xi in C. We have,

l(Ci) = l(C)− l(Path from xi to yi in C) + l((xi, yi))

Since (xi, yi−1) ∈M ,

l(Path from xi to yi in C) = l((xi, yi−1)) + l(Path from yi−1 to yi in C)

Further since by construction l((x, yi)) = l((x, yj))(= ±w(x)), we have

l(Ci) = l(C)− l(Path from yi−1 to yi in C)

Let Pi−1→i denote this path. Summing over all (xi, yi) edges in D, we get

k∑
i=0

l(Ci) = kl(C)− (l(Pk→0) + l(P0→1) + . . .+ l(Pk−1→k))

= kl(C)− k′l(C)

↑ Since we start from yk, go around the C and reach yk back

= k′′l(C)
< k′′δ

The sum of k weights is less than k′′δ with k′′ < k, which implies

∃Ci, such that l(Ci) < δ

But this is a contradiction since C was the smallest cycle having weight less than δ.
Hence, the perfect matching M is unique. Similarly, the perfect matching induced by C in
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the other direction too is unique. Applying Lemma 9 successively on both sides, we know
that B′ obtained by exchanging as per C is a common basis for both matroids. Further, we
have

w(B′) = w(B)− l(C)
w(B′) > w(B)− δ

Hence we have proved that if G has a cycle with small weight, then B is not δ-optimal,
thus proving the necessity of the claim. J

4.1 Lower bounding cycles
In order to use Lemma 7 to solve the inverse matroid intersection problem efficiently using
quadratic programming, we need a way to formulate this condition as a polynomial number
of linear constraints. We now explore a technique to express the condition that a given
graph has no small (of length less than δ) cycles concisely. Say we are given a directed graph
G = (V,A) and our task is to assign edge-lengths so that all cycles in G have weight at least
δ. Letting the edge-lengths to be variables, the feasible region in this case is unbounded and
is defined by a constraint for every cycle in G, i.e. we have the region R1 in m dimensions
defined by

R1 :∑
e∈C

le ≥ δ For all cycles C (8)

Of course, this formulation has an exponential number of constraints. Although the ellipsoid
algorithm can be used to solve the quadratic program in polynomial time, it is often too
slow for practical use. We now show that we can obtain a concise extended formulation by
adding a few extra variables.

Suppose we have variables dxy representing the shortest distance between vertices x and
y. In this case, the graph has no cycle of weight less than δ if and only if dxx ≥ δ for all
vertices x (assume dxx = ∞, if x is not in any cycle). Consider the region R2 in m + n2

dimensions:

R2 :
dxy ≤ l(xy) For all (x, y) ∈ A (9)
dxz ≤ dxy + l(yz) For all x, z ∈ V and y s.t. (y, z) ∈ A (10)
dxx ≥ δ For all x ∈ V (11)

Constraints (9) and (10) enforce triangle inequality, and (11) enforce the condition that all
cycles are large. We now prove that optimizing any function of l over R1 is equivalent to
optimizing the same over R2.

I Lemma 10. R1 is identical to the projection of R2 on the m dimensions corresponding to
the edge-lengths.

Proof.
R1 ⊆ Projection(R2): Let l : E → R denote a point in R1. Since the constraints (9) and
(10) are always valid for a true distance function, let d : V×V → R denote the actual distance
function in the graph induced by l. Such a d definitely satisfies constraints (9) and (10).
Additionally, for all vertices x belonging to some cycle, since all cycles under l have weight at
least δ, we have dxx ≥ δ. For a vertex x which does not belong to any cycle, one can simply
set dxx =∞.

FSTTCS 2015



46 On Correcting Inputs: Inverse Optimization for Online Structured Prediction

Projection(R2) ⊆ R1: Consider a point in R2. We now have the lengths of edges le as
well as some dxy values. Consider any cycle C = (x1, x2, . . . , xk, x1) in the graph. Applying
constraint (10) repeatedly we get

dx1x1 ≤ l(x1x2) + l(x2x3) + . . .+ l(xk−1xk) + l(xkx1) (12)

and also by constraint (11), we have

dx1x1 ≥ δ (13)

Hence we have, l(x1x2) + l(x2x3) + . . .+ l(xk−1xk) + l(xkx1) ≥ δ, i.e.
∑
e∈C le ≥ δ which means

that the le values are feasible in R1. J

Hence, optimizing any function of the le variables over R1 is equivalent to optimizing it
over R2. However, R2 has only m+mn+ n constraints and n2 +m variables.

4.2 Putting it together
Lemmas 7 and 10 suggest a way to solve the δ-margin inverse matroid intersection problem.
As per the requirements of Lemma 7, given the two matroids and the common basis B,
construct the exchange graph G = (V,A = A1 ∪ A2). Let w : X → R+ be the original
weight function and let w′ be the new weight function which we desire. If l is the arc
lengths of G, according to the construction of Lemma 7, lxy = w′(x) and lyx = −w′(y) where
x ∈ B, y ∈ S \B. Further, the objective that we minimize is the L2 norm of w−w′. We can
now add these additional constraints and the objective to the region R2 as per Lemma 10 to
obtain the minimum change on the weights of elements so that the exchange graph has no
small cycles and hence B is δ−optimal.

min
w′

∑
e∈X

(w′(e)− w(e))2 subj. to: (14)

lxy = w′(x), ∀(x, y) ∈ A1 (15)
lyx = −w′(y), ∀(y, x) ∈ A2 (16)
dxy ≤ lxy, ∀(x, y) ∈ A (17)
dxz ≤ dxy + lyz, ∀x, z ∈ V,∀(y, z) ∈ A (18)
dxx ≥ δ, ∀x ∈ V (19)

4.3 Maximum Weight Arborescence
Given a directed graph, a r-arborescence (also known as a branching) is the directed analogue
of a spanning tree and is defined as a set of edges T spanning all vertices such that every
vertex (except r) has exactly one incoming edge in T . It is well known that an arborescence
in a directed graph is a basis in the intersection of a graphical matroid and a partition
matroid. We analyze the complexity of the above technique for the special case of maximum
weight arborescence. Let G denote the graph in question having n vertices and m edges.

The exchange graph Gex has a vertex for every edge of G, i.e., nex = m. The bipartition
of Gex is such that we have components of size n and m− n respectively. Hence we have
mex = O(mn). As seen in Section 4.1, we use O(n2

ex) variables and O(mexnex) contraints.
Thus, putting it all together, we have a quadratic program with O(m2) variables and O(m2n)
constraints.
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The inverse maximum weight arborescence problem is important as it can used as a
subroutine in the online learning for dependency parsing [19]. The dependency parse tree
of a sentence can be represented as an arborescence over a graph consisting of every word
in the sentence as a node. In full version of the paper [7], we show experimental results for
dependency parsing using our framework.

4.3.1 Shortest s− t paths
Given a weighted graph G = (V,E,w), a path P between terminals s and t, and a margin δ,
the inverse shortest s-t path problem is to find a minimum perturbation to w (minimizing the
L2 norm) so that P is shorter than all other paths between s and t by at least δ under the
new weight function. As shown by [26], the inverse shortest s-t path problem can be reduced
to the inverse arborescence problem. Let G′ be G augmented by adding zero weight edges
from t to all other vertices. It can be easily observed that P is the shortest s-t path in G if
and only if P and a subset of the zero weight edges form the minimum weight s-arborescence
of G′. Thus we can use an algorithm for inverse minimum weight arborescence to solve the
inverse shortest path problem.1

5 Perfect Matchings in Bipartite Graphs

For the bipartite maximum weight perfect matching inverse problem, the previous technique
yields a quadratic program having O(m2) variables and O(m2) constraints as the exchange
graph is sparse. In this section we show that we can in fact obtain more concise formulations.
Recall that for a given edge weighted, bipartite graph G = (X ∪ Y,E,w), and a perfect
matching M , an alternating cycle is a cycle in G in which edges alternate between those
that belong to M and those that do not. An alternating cycle C is called δ-augmenting, if∑
e∈C∩M w(e) <

∑
e∈C\M w(e) + δ. The following characterization of a δ-optimal perfect

matching is well known.

I Lemma 11. A perfect matching M is δ-optimal if and only if the graph contains no
δ-augmenting cycles.

The central idea is to construct a directed graph H on just the nodes of X such that any
directed cycle in H will correspond to an alternating cycle in G (w.r.t to the matching M)
and vice versa. We construct H = (X,A) to be a directed graph such that (x, z) ∈ A if and
only if ∃y ∈ Y such that (x, y) ∈ M and (y, z) ∈ E; further let l(x, z) = w(x, y) − w(y, z).
Figure 3 shows an example of this construction.

I Proposition 12. The auxiliary graph H has a directed cycle of length less than δ if and
only if G has a δ-augmenting alternating cycle.

Proof.

If: Let C = (x0, y0, x1, y1, . . . , xk, yk, x0) be a δ-augmenting cycle inG where all (xi, yi) ∈M .
By construction, H has a cycle C ′ = (x0, x1, . . . , xk, x0) and l(C ′) =

∑k
i=0(w(xi, yi) −

w(yi, xi+1)) (modulo k + 1) =
∑
e∈C∩M w(e)−

∑
e∈C\M w(e) < δ.

1 Inverse minimum weight arborescence problem can be solved similar to the inverse maximum weight
arborescence problem.
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Figure 3 Example to show construction of H from a bipartite graph G and matching M .

Only If: Let C = (x0, x1, . . . , xk, x0) be a cycle in H with l(C) < δ. By construction, ∃
cycle C ′ = (x0, y0, x1, y1, . . . , xk, yk, x0) in G. Now, l(C) =

∑k
i=0(w(xi, yi) − w(yi, xi+1))

(modulo k+1) =
∑
e∈C′∩M w(e)−

∑
e∈C′\M w(e). Thus C ′ is a δ-augmenting cycle in G. J

Using Lemma 11 and Proposition 12 along with Lemma 10, we can formulate the
inverse perfect matching problem as a quadratic program having O(n2) variables and O(mn)
constraints.

6 Application: Online learning for structured prediction

In this section, we present a framework for online learning using inverse combinatorial
optimization. The structured prediction task is to predict a discrete combinatorial structure
(such as an arborescence) given a structured input (such as a graph). The learning task is to
learn model parameters so that solving a combinatorial optimization problem on the input
instance would return the desired output structure. Structured prediction is extensively used
in natural language processing tasks such as obtaining parse trees of a sentence, or automatic
language translation.

In the online learning setting, we are presented with a set of T training samples. These
consist of an input xt (for instance, a sentence) and an output yt (for instance, a syntactic
analysis of this sentence described as an arborescence on a graph over the words in the
sentence [25, 19]). Each edge in this graph is parameterized by a set of F features that, for
instance, indicate how likely one word is to be the subject of another. Thus, each training
sample is a pair (xt, yt) where xt is a graph parameterized by features on edges, and yt is
the desired output sub-structure (such as a spanning tree, or an arborescence, or a matching
depending on the application). The task is to learn a vector (of length F ) of parameters θ
such that when edge weights are computed as inner products between the θ and the edge’s
features, the output obtained by computing an optimal sub-structure (spanning tree, etc.) is
the desired output with some margin.

Algorithm 1 describes the generic online learning framework for structured prediction. It
is parameterized by an user-defined loss function `(yt, ŷ) that specifies the loss incurred by
the prediction ŷ with respect to the training solution yt. Algorithm 1 is an adaptation of the
Passive-Aggressive MIRA algorithm [4] for structured prediction.

Note that the minimization problem solved for each training sample is exactly δ-inverse
optimization where we minimize the perturbations to the feature parameters instead of the
edge weights. In this framework, the different inverse optimization problems we considered
have applications for different structured predictions. For example, maximum weight arbor-
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θ1 = 0
for t = 1 to T do

Obtain training example xt, yt
w ← weight function s.t. w(e) = θt · fe where fe is feature vector of edge e
ŷ ← optimal sub-structure for graph xt under weights w
Suffer loss δt = `(yt, ŷ)
Update θt+1 = argminθ′ ||θ

′ − θt||22 such that
w′ ← weight function s.t. w′(e) = θ′ · fe where fe is feature vector of edge e
yt is the δt-optimal sub-structure for graph xt under weights w′

end
Return θT+1

Algorithm 1: Generic online learning framework.

escences are used to predict the parse tree of a sentence [25, 19], while maximum weight
matchings are used for language translation and word alignments [23].

Since we have shown that we can efficiently solve the inverse optimization problems for a
variety of combinatorial structures, we can extend the error bounds of the MIRA algorithm [4]
to work for learning the corresponding structured prediction models. In this section, we
present both convergence results and loss bounds for our generic online learning framework.
The proofs for these bounds closely follow those in Crammer’s Ph.D. dissertation [4] and are
included in the full version. The statement of the convergence result depends on a set of
dual variables obtained from the optimization problem in the “Update” step of Algorithm 1.
This implicitly encodes constraints over all possible outputs; we denote the dual variable
for output y on the tth example by αty. We can show that the cumulative sum of these
dual variables is bounded by a constant independent of T , which implies convergence of the
learning algorithm.

I Theorem 1 (Convergence). Let {(xt, yt)}Tt=1 be a sequence of structured examples. Let
θ∗ be any vector that separates the data with a positive margin δ∗ > 0. Assume the loss
function is upper bounded: `(yt, ŷ) ≤ A. Then the cumulative sum of coefficients is upper
bounded by:

T∑
t=1

∑
y∈Yt

αty ≤ 2A
(
||θ∗||
δ∗

)2
. (20)

However, it is not enough to show that the algorithm converges: it could converge to a useless
solution! We wish to show that in the process of learning it does not make too many errors.
In particular, we show that Algorithm 1 incurs a total hinge loss bounded by a constant
also independent of T , which implies that at some point it has exactly solved the learning
problem.

I Theorem 2 (Total Loss). Under the same assumptions as above, assume further that the
norm of the examples are bounded by R. Then, the cumulative hinge loss (Hδt

) suffered by
the algorithm over T trials is bounded by:

T∑
t=1
Hδt

(θt, (xt, yt)) ≤ 8A
(
R ||θ∗||
δ∗

)2
. (21)
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