767 research outputs found

    All quantum states useful for teleportation are nonlocal resources

    Get PDF
    Understanding the relation between the different forms of inseparability in quantum mechanics is a longstanding problem in the foundations of quantum theory and has implications for quantum information processing. Here we make progress in this direction by establishing a direct link between quantum teleportation and Bell nonlocality. In particular, we show that all entangled states which are useful for teleportation are nonlocal resources, i.e. lead to deterministic violation of Bell's inequality. Our result exploits the phenomenon of super-activation of quantum nonlocality, recently proved by Palazuelos, and suggests that the latter might in fact be generic.Comment: 4 pages. v2: Title and abstract changed, presentation improved, references updated, same result

    Quantum incompatibility in collective measurements

    Get PDF
    We study the compatibility (or joint measurability) of quantum observables in a setting where the experimenter has access to multiple copies of a given quantum system, rather than performing the experiments on each individual copy separately. We introduce the index of incompatibility as a quantifier of incompatibility in this multi-copy setting, as well as the notion of compatibility stack representing the various compatibility relations present in a given set of observables. We then prove a general structure theorem for multi-copy joint observables, and use it to prove that all abstract compatibility stacks with three vertices have realizations in terms of quantum observables.Comment: 22 pages, 13 figure

    Efficient Quantum Tensor Product Expanders and k-designs

    Full text link
    Quantum expanders are a quantum analogue of expanders, and k-tensor product expanders are a generalisation to graphs that randomise k correlated walkers. Here we give an efficient construction of constant-degree, constant-gap quantum k-tensor product expanders. The key ingredients are an efficient classical tensor product expander and the quantum Fourier transform. Our construction works whenever k=O(n/log n), where n is the number of qubits. An immediate corollary of this result is an efficient construction of an approximate unitary k-design, which is a quantum analogue of an approximate k-wise independent function, on n qubits for any k=O(n/log n). Previously, no efficient constructions were known for k>2, while state designs, of which unitary designs are a generalisation, were constructed efficiently in [Ambainis, Emerson 2007].Comment: 16 pages, typo in references fixe

    Concurrence in arbitrary dimensions

    Get PDF
    We argue that a complete characterisation of quantum correlations in bipartite systems of many dimensions may require a quantity which, even for pure states, does not reduce to a single number. Subsequently, we introduce multi-dimensional generalizations of concurrence and find evidence that they may provide useful tools for the analysis of quantum correlations in mixed bipartite states. We also introudce {\it biconcurrence} that leads to a necessary and sufficient condition for separability.Comment: RevTeX 7 page

    A Tractable Extension of Linear Indexed Grammars

    Get PDF
    It has been shown that Linear Indexed Grammars can be processed in polynomial time by exploiting constraints which make possible the extensive use of structure-sharing. This paper describes a formalism that is more powerful than Linear Indexed Grammar, but which can also be processed in polynomial time using similar techniques. The formalism, which we refer to as Partially Linear PATR manipulates feature structures rather than stacks.Comment: 8 pages LaTeX, uses eaclap.sty, to appear in EACL-9
    corecore