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All quantum states useful for teleportation are nonlocal resources
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Understanding the relation between the different forms of inseparability in quantum mechanics is a longstanding
problem in the foundations of quantum theory and has implications for quantum information processing. Here we
make progress in this direction by establishing a direct link between quantum teleportation and Bell nonlocality.
In particular, we show that all entangled states which are useful for teleportation are nonlocal resources, i.e.,
lead to deterministic violation of Bell’s inequality. Our result also extends the phenomenon of superactivation of
quantum nonlocality, recently proven by C. Palazuelos [Phys. Rev. Lett. 109, 190401 (2012)], and suggests that
the latter might in fact be more general than initially thought.
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I. INTRODUCTION

The fact that quantum mechanics is at odds with the
principle of locality, although once viewed as evidence of the
failure of the model, is now recognized as a fundamental aspect
of quantum theory. The notion of inseparability in quantum
mechanics appears under several forms. At the algebraic level
is the concept of quantum entanglement. Entanglement is
the resource for numerous quantum information protocols,
in particular for quantum teleportation [1], which plays a
central role in quantum communications and computation. The
strongest notion of quantum inseparability is Bell nonlocality
[2]. Distant observers sharing an entangled state can, by
performing suitably chosen local measurements, generate
correlations that cannot be reproduced by any local hidden-
variable model [3], as witnessed by the violation of a Bell
inequality.

Understanding how these various forms of inseparability
relate to each other is a long-standing problem, important from
both fundamental and applied points of view. Although entan-
glement and nonlocality were first thought to be equivalent, it
was shown that there exist mixed entangled states which are
local, that is, admit a local hidden variable model [4], even
for the most general type of local measurements [5]. It was
then shown by Popescu [6] that some of these local entangled
states are nevertheless useful for teleportation, which led him
to argue that teleportation and Bell nonlocality are inequivalent
forms of inseparability. Later, it was shown [7] that all
two-qubit states violating the simplest Bell inequality, due
to Clauser, Horne, Shimony, and Holt (CHSH), are useful for
teleportation, reviving the hope for a link between teleportation
and nonlocality.

Our main result is to show that a strong link between
teleportation and nonlocality does indeed exist. In particular,
we prove that all entangled states useful for teleportation are
nonlocal resources, that is, can be used to violate a Bell
inequality deterministically. The key point in our work is
to allow the parties to use several copies of the state. More
precisely, for all states ρ useful for teleportation [8], there

exists a finite number k such that k copies of ρ, i.e., ρ⊗k ,
deterministically violate a Bell inequality.

As a by-product, our results also provide examples of
superactivation of quantum nonlocality. The fact that, by
combining several copies of a state that admits a local model,
it becomes possible to violate a Bell inequality is known
as superactivation of quantum nonlocality. This represents
an example of the phenomenon of activation in quantum
mechanics, through which the judicious combination of several
quantum entities becomes more powerful than the sum of the
parts. Celebrated examples of activation were demonstrated in
entanglement theory [9] and quantum channel theory [10]. In
the case of nonlocality, some forms of activation in specific
contexts were demonstrated, for instance, when postselection
is considered [11–14], when several copies of the quantum
state are distributed in a quantum network [15–18], when
the number of measurements considered are restricted [19],
when taking the amount of violation of a Bell inequality as
a figure of merit [20], or in the case of general nonsignaling
probability distributions [21]. However, the first example of
superactivation of quantum nonlocality in the most natural
scenario consisting of two parties who do not perform any
local preprocessing of their quantum state is due to Palazuelos
[22]. As shown below, our findings also allow us to extend
Palazuelos’s result and demonstrate additional examples of
superactivation of quantum nonlocality in the bipartite and
multipartite scenarios, suggesting that this phenomenon might
be more general than initially thought.

II. CONNECTING TELEPORTATION AND NONLOCALITY

In what follows we say that a state ρ is k-copy nonlocal if
ρ⊗k is nonlocal for some k. Given a state ρ, we focus on its
entanglement fraction, defined by the maximum overlap of ρ

with a maximally entangled state. The main result of this paper
is the following: Every quantum state acting on Cd ⊗ Cd with
entanglement fraction higher than 1/d is k-copy nonlocal.

It turns out that having an entanglement fraction higher
than 1/d is a necessary and sufficient condition for a state to
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provide a quantum advantage for teleportation [8]. Thus, our
result implies that every state that is useful for teleportation is
a nonlocal resource.

The proof of our result proceeds as follows: (i) we first
show that every entangled isotropic state is k-copy nonlocal
and then (ii) show that point (i) implies our main result.

In order to prove point (i) we essentially follow and
slightly improve the proof by Palazuelos for the existence
of superactivation of nonlocality [22]. This was based on the
Khot-Visnoi Bell inequality [23,24],

βKV =
N∑

x,y=1

n∑
a,b=1

cx,y,a,bP (ab|xy) � κloc, (1)

where κloc is the local bound and cx,y,a,b are positive coeffi-
cients. The following upper bound is known for κloc:

κloc � C/n, (2)

where N = 2n/n is the number of measurements per party,
n is the number of measurement outcomes [25], and C is
a universal constant. Moreover, it is known that there exist
local measurements on a maximally entangled state of local
dimension n which produce a probability distribution such that

βKV � C ′/(ln n)2, (3)

where C ′ is another universal constant. Since both the local
bound and quantum violation depend on the dimension, it is
useful to define the nonlocality fraction, given by

� = βKV /κloc. (4)

So we have a nonlocal probability distribution if � > 1. In what
follows we sometimes denote by �(ρ) the nonlocal fraction
of the probability distribution obtained by local measurements
applied to state ρ.

Consider now the isotropic states, given by

ρiso(F ) = F |�d〉〈�d | + (1 − F )
1 − |�d〉〈�d |

d2 − 1
, (5)

where F = 〈�d |ρiso(d)|�d〉 is the entanglement fraction [26]
of the state ρiso(F ).

We can write k copies of the isotropic state as

ρ⊗k
iso = Fk|�dk 〉〈�dk | + · · · + (1 − F )k

(1 − |�d〉〈�d |)⊗k

(d2 − 1)k
,

(6)

where we have used the fact that the tensor product of
k maximally entangled states of local dimension d is a
maximally entangled state of local dimension dk . One can
use bounds (1) and (3) to show that the nonlocal fraction of
ρ⊗k

iso satisfies

�
(
ρ⊗k

iso

) = Fk�(|�dk 〉〈�dk |) + · · ·

+ (1 − F )k�

(
(1 − |�d〉〈�d |)⊗k

(d2 − 1)k

)

� Fk�(|�dk 〉〈�dk |)
� C ′

C
Fk dk

(k ln d)2
. (7)

Thus, in the case F > 1/d the right-hand side of (7) increases
with k. This implies that there will be a given number of copies

k′ for which �(ρ⊗k′
iso ) > 1, which implies that ρ⊗k′

iso is nonlocal.
Since F = 1/d is the separability bound for the isotropic state,
we conclude point (i), i.e., that every entangled isotropic state
is k-copy nonlocal.

We now proceed to show our main result. In order to see
this, first notice that any quantum state ρ0 can be depolarized
into an isotropic state by the application of randomly chosen
unitaries as

ρiso(F0) =
∑

i

pi(Ui ⊗ U ∗
i )ρ0(Ui ⊗ U ∗

i )−1 (8)

while keeping the entanglement fraction F0, i.e., F0 =
max�〈�|ρ0|�〉, where the maximum is taken over all d × d

maximally entangled states � [26,27]. Since the initial state
has an entanglement fraction higher than 1/d, the resulting
isotropic state is entangled and, as we have just shown, k-copy
nonlocal. That is, the state

ρiso(F0)⊗k =
∑

i1,...,ik

pi1 · · ·pik Ui1,...,ik ρ⊗k
0 U−1

i1,...,ik
, (9)

where Ui1...ik = (Ui1 ⊗ · · · ⊗ Uik )Alice ⊗ (U ∗
i1

⊗ · · · ⊗ U ∗
ik

)Bob,
violates the Khot-Visnoi Bell inequality. This means that
there is a Bell operator B such that tr[B ρiso(F0)⊗k] > L (L
is the local bound of the corresponding Bell inequality). But
then there is (at least) one term in the sum of (9) such that
tr(B Ui1,...,ik ρ

⊗k
0 U−1

i1,...,ik
) > L. Since the local unitaries can be

absorbed into the choice of local measurements, it follows that
the original state ρ⊗k

0 is also k-copy nonlocal. This ends the
proof of our main result.

III. SUPERACTIVATION OF NONLOCALITY

In Ref. [22], Palazuelos studied the nonlocal properties
of many copies of the isotropic state (5). It is known that
there exist ranges of the entanglement fraction F , given by
F � Floc, such that this state is local; i.e., the probability
distributions of the results of local measurements applied to (5)
can be explained by a (classical) local model [28]. However,
Palazuelos showed that sufficiently many copies of a local
isotropic state, i.e., ρiso(FL)⊗k , can violate a Bell inequality
if d � 8 [22]. This shows that quantum nonlocality can be
superactivated.

Point (i) extends the result by Palazuelos in two senses.
First, it shows superactivation of nonlocality for the whole
range of the parameter F for which the isotropic state is
entangled and has a local model (see Fig. 1). Second, it is
valid for any dimension, while the minimum local dimension
used in the proof of Ref. [22] is d = 8.

Furthermore our main result allows us to construct addi-
tional examples of superactivation of nonlocality. For instance,
consider mixtures of an arbitrary pure state and the maximally
mixed noise,

σ = p|ψ〉〈ψ | + (1 − p)
1

d2
. (10)

An arbitrary bipartite pure state |ψ〉 reads, in its Schmidt
decomposition, |ψ〉 = ∑d

i=1 λi |ii〉. Its entanglement fraction
can be written as

Fψ = |〈�d |ψ〉|2 =
(∑d

i=1 λi

)2

d
. (11)
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FIG. 1. Nonlocal properties of the isotropic state (5). This state
is separable for F � Fs , has a local model for F � FL [28], and
is known to violate a Bell inequality for FL < FNL < F [29]. Here
we show that several copies of the isotropic state are nonlocal if it
is entangled, that is, if Fs < F . The state is useful for teleportation
down to the separability limit Fs .

By our main result, σ is k-copy nonlocal if Fσ = 〈�d |σ |�d〉 =
pFφ + (1 − p)/d2 > 1/d, which translates into

p >
d − 1

d
( ∑d

i=1 λi

)2 − 1
. (12)

It was shown in Ref. [28] that there exists a range of the noise
parameter p for which state (10) is known to be entangled
and local [28]. Comparing the bounds in [28] with (12), it is
possible to identify additional examples of superactivation of
quantum nonlocality. In particular, for d = 2 the value of (12)
gives exactly the separability bound for state σ .

Another class of states with a local model is given by [28]

ρ = p|ψ〉〈ψ | + (1 − p)ρA ⊗ 1

2
, (13)

where |ψ〉 = cos θ |00〉 + sin θ |11〉 (0 � θ � π/4) is an ar-
bitrary two-qubit state with reduced state ρA. This state
has a local model for p � 5/12 [28]. Imposing that the
entanglement fraction of (13) is bigger than 1/2 implies
p > 1/[1 + 2 sin(2θ )]. Using the partial transpose criterion,
the separability limit is found to be pS = 1/3. Hence state (13)
for all 0 < θ � π/4 when p > 1/[1 + 2 sin(2θ )] is k-copy
nonlocal, and there is superactivation (considering the local
limit pL = 5/12) above θ > (1/2) arcsin(7/10) ∼ 0.3877 rad.

Our result can also be used to show superactivation
of nonlocality in the multipartite scenario. In Ref. [30] a
genuinely entangled multipartite state of three qubits with a
local model was presented. It turns out that the reduced states
of this tripartite state are entangled two-qubit isotropic states.
Thus, bipartite nonlocality can be obtained by k copies of this
tripartite state.

IV. DISCUSSION

We have shown that all entangled states useful for tele-
portation are nonlocal resources, in the sense that a Bell
inequality is always violated deterministically when suitable
local measurements are performed on a sufficiently large
number of copies of the state. Thus, our result establishes a

direct and general link between teleportation and nonlocality,
two central forms of inseparability in quantum mechanics
previously thought to be unrelated [6]. Our results also suggest
that the superactivation of quantum nonlocality might be
more general than expected, as any entangled state useful for
teleportation that has a local model provides an instance of
this phenomenon. In fact, we use this connection to provide
explicit examples of superactivation.

Our paper raises several questions. First, it would be
interesting to see if the converse of our main result holds,
that is, if any state that violates a Bell inequality is useful
for teleportation. Indeed, such a link has been established for
the particular case of the CHSH Bell inequality [7]. If this is
the case, then teleportation and nonlocality would turn out to
be equivalent. Moreover, Bell inequality violation would rep-
resent a device-independent test for usefulness in teleportation.

Second, we have shown that a large class of entangled states
display nonlocal correlations, possibly after taking several
copies of it. Thus it is natural to ask whether this result applies
to any entangled state. A positive answer to this question would
demonstrate a direct link between entanglement and nonlocal-
ity, which would considerably improve our understanding of
these concepts.

We believe, however, that answering this question is highly
challenging. Nevertheless, partial answers would already
represent breakthroughs. For instance, is it the case that any
entangled state that is distillable is also k-copy nonlocal? Note
that our result applies to states which are distillable, as an
entanglement fraction higher than 1/d is a sufficient condition
for entanglement distillability. This condition is, however, not
necessary, and therefore there exist distillable states to which
our result does not apply. More ambitious is the case of bound
entangled states, i.e., entangled states that cannot be distilled.
If such states were shown to violate a Bell inequality, it would
disprove a long-standing conjecture made by Peres [31]. More
generally, this would show that bipartite nonlocality does not
imply entanglement distillability, a result known to hold true
in the multipartite setting [32].
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of Sciences and the TÁMOP-4.2.2.C-11/1/KONV-2012-0001
project, and the Swiss National Science Foundation (Grant No.
PP00P2_138917). D.C. and N.B. thank A.A. for the hospitality
at ICFO. D.C. thanks N.B. for the hospitality at the University
of Bristol.

[1] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and
W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[2] J. S. Bell, Physics 1, 195 (1964).

[3] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[4] R. F. Werner, Phys. Rev. A 40, 4277 (1989).

042104-3

http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRevA.40.4277
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[19] M. Navascués and T. Vértesi, Phys. Rev. Lett. 106, 060403
(2011).

[20] Y.-C. Liang and A. C. Doherty, Phys. Rev. A 73, 052116
(2006).

[21] N. Brunner, D. Cavalcanti, A. Salles, and P. Skrzypczyk, Phys.
Rev. Lett. 106, 020402 (2011).

[22] C. Palazuelos, Phys. Rev. Lett. 109, 190401 (2012).
[23] S. A. Khot and N. K. Vishnoi, in Proceedings 46th FOCS,

Pittsburgh, 2005 (IEEE, Piscataway, NJ, 2005), pp. 53–62.
[24] H. Buhrman, O. Regev, G. Scarpa, and R. de Wolf, in 26th

IEEE Conference on Computational Complexity (CCC 11),
San Diego, 2011 (IEEE, Piscataway, NJ, 2011), pp. 157–
166.

[25] The Khot-Visnoi game was initially defined for n being a power
of 2. However, it was generalized for general n in C. Palazuelos,
arXiv:1206.3695.

[26] M. Horodecki and P. Horodecki, Phys. Rev. A 59, 4206
(1999).

[27] D. Gross, K. Audenaert, and J. Eisert, J. Math. Phys. 48, 052104
(2007).

[28] M. L. Almeida, S. Pironio, J. Barrett, G. Tóth, and A. Acı́n,
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