1,465,506 research outputs found

    A Comparative Agglomerative Hierarchical Clustering Method to Cluster Implemented Course

    Get PDF
    There are many clustering methods, such as hierarchical clustering method. Most of the approaches to the clustering of variables encountered in the literature are of hierarchical type. The great majority of hierarchical approaches to the clustering of variables are of agglomerative nature. The agglomerative hierarchical approach to clustering starts with each observation as its own cluster and then continually groups the observations into increasingly larger groups. Higher Learning Institution (HLI) provides training to introduce final-year students to the real working environment. In this research will use Euclidean single linkage and complete linkage. MATLAB and HCE 3.5 software will used to train data and cluster course implemented during industrial training. This study indicates that different method will create a different number of clusters.Comment: 6 pages, 10 figures, published on Journal of Computing, Volume 2, Issue 12, December 201

    An Investigation on the Bearing Design and Friction Characteristics of a Hermetic Reciprocating Compressor

    Get PDF
    The most important design parameters for hermetically sealed compressors used in domestic refrigerators are the Coefficient of Performance (COP); low manufacturing and operating costs; long operating life, low noise and vibration levels and to achieve environmentally friendly constructions. Positive displacement piston type compressors are used in refrigerators today due to their high capacity/volume ratios. Hence, the bearings of the hermetic compressors must also satisfy these design conditions. Investigation and optimization of crank shaft bearings in hermetic compressor applications are the main objectives of this study . The effect of crank shaft geometry, bearing clearance, lubricant viscosity, surface roughness and bearing location along the shaft on the friction losses were investigated and the new journal bearing designs were developed. Detailed parametric numerical simulations were performed using commercial software. According to the results of the simulations number of compressors were assembled with the selected design parameters and performance measurements were carried out. The results of the numerical analysis have shown that the numerically calculated mechanical loss level is similar to the performance results measured in a calorimeter test system. Results of the simulations and experiments were evaluated with six sigma (6?) techniques. Measurement of the efficiency of the compressor with the improved bearing design showed 1.3 % increase in the coefficient of performance (COP) with respect to the compressor with previous bearing design. This study shows that the mechanical loss characteristics are significantly influenced by the length of the bearings, clearance between the crankshaft journal and its bearing, kinematic viscosity and operating conditions. Bearing analysis results help to characterize the optimum journal bearing parameters which lead to improved mechanical efficiency of the compressor

    Characterization of Structural Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches

    Full text link
    [EN] A classical hydraulic jump with Froude number (Fr1=6) and Reynolds number (Re1=210,000) was characterized using the computational fluid dynamics (CFD) codes OpenFOAM and FLOW-3D, whose performance was assessed. The results were compared with experimental data from a physical model designed for this purpose. The most relevant hydraulic jump characteristics were investigated, including hydraulic jump efficiency, roller length, free surface profile, distributions of velocity and pressure, and fluctuating variables. The model outcome was also compared with previous results from the literature. Both CFD codes were found to represent with high accuracy the hydraulic jump surface profile, roller length, efficiency, and sequent depths ratio, consistently with previous research. Some significant differences were found between both CFD codes regarding velocity distributions and pressure fluctuations, although in general the results agree well with experimental and bibliographical observations. This finding makes models with these characteristics suitable for engineering applications involving the design and optimization of energy dissipation devices.The research presented herein was possible thanks to the Generalitat Valenciana predoctoral grants [Ref. (2015/7521)], in collaboration with the European Social Funds and to the research project La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.Macián Pérez, JF.; Bayón, A.; García-Bartual, R.; López Jiménez, PA.; Vallés-Morán, FJ. (2020). Characterization of Structural Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches. Journal of Hydraulic Engineering. 146(12):1-13. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001820S11314612Abdul Khader, M. H., & Elango, K. (1974). TURBULENT PRESSURE FIELD BENEATH A HYDRAULIC JUMP. Journal of Hydraulic Research, 12(4), 469-489. doi:10.1080/00221687409499725Bakhmeteff B. A. and A. E. Matzke. 1936. “The hydraulic jump in terms of dynamic similarity.” In Vol. 101 of Proc. American Society of Civil Engineers 630–647. Reston VA: ASCE.Bayon A. 2017. “Numerical analysis of air-water flows in hydraulic structures using computational fluid dynamics (CFD).” Ph.D. thesis Research Institute of Water and Environmental Engineering Universitat Politècnica de València.Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041Bayon A. J. F. Macián-Pérez F. J. Vallés-Morán and P. A. López-Jiménez. 2019. “Effect of RANS turbulence model in hydraulic jump CFD simulations.” In E-proc. 38th IAHR World Congress. Panama City Panama: Spanish Ministry of Economy.Bayon, A., Toro, J. P., Bombardelli, F. A., Matos, J., & López-Jiménez, P. A. (2018). Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways. Journal of Hydro-environment Research, 19, 137-149. doi:10.1016/j.jher.2017.10.002Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., … Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011Biswas, R., & Strawn, R. C. (1998). Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics, 26(1-2), 135-151. doi:10.1016/s0168-9274(97)00092-5Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Bombardelli, F. A., Meireles, I., & Matos, J. (2010). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263-288. doi:10.1007/s10652-010-9188-6Bradshaw, P. (1997). Understanding and prediction of turbulent flow—1996. International Journal of Heat and Fluid Flow, 18(1), 45-54. doi:10.1016/s0142-727x(96)00134-8Caishui, H. (2012). Three-dimensional Numerical Analysis of Flow Pattern in Pressure Forebay of Hydropower Station. Procedia Engineering, 28, 128-135. doi:10.1016/j.proeng.2012.01.694Castillo L. G. J. M. Carrillo J. T. García and A. Vigueras-Rodríguez. 2014. “Numerical simulations and laboratory measurements in hydraulic jumps.” In Proc. 11th Int. Conf. of Hydroinformatics. New York: Spanish Ministry of Economy.Castro-Orgaz, O., & Hager, W. H. (2009). Classical hydraulic jump: basic flow features. Journal of Hydraulic Research, 47(6), 744-754. doi:10.3826/jhr.2009.3610Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Chanson, H. (2006). Bubble entrainment, spray and splashing at hydraulic jumps. Journal of Zhejiang University-SCIENCE A, 7(8), 1396-1405. doi:10.1631/jzus.2006.a1396Chanson, H. (2009). Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. European Journal of Mechanics - B/Fluids, 28(2), 191-210. doi:10.1016/j.euromechflu.2008.06.004Chanson, H. (2013). Hydraulics of aerated flows:qui pro quo? Journal of Hydraulic Research, 51(3), 223-243. doi:10.1080/00221686.2013.795917Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583-607. doi:10.1016/s0301-9322(99)00016-6Chanson, H., & Gualtieri, C. (2008). Similitude and scale effects of air entrainment in hydraulic jumps. Journal of Hydraulic Research, 46(1), 35-44. doi:10.1080/00221686.2008.9521841Chanson, H., & Montes, J. S. (1995). Characteristics of Undular Hydraulic Jumps: Experimental Apparatus and Flow Patterns. Journal of Hydraulic Engineering, 121(2), 129-144. doi:10.1061/(asce)0733-9429(1995)121:2(129)Cheng, C.-K., Tai, Y.-C., & Jin, Y.-C. (2017). Particle Image Velocity Measurement and Mesh-Free Method Modeling Study of Forced Hydraulic Jumps. Journal of Hydraulic Engineering, 143(9), 04017028. doi:10.1061/(asce)hy.1943-7900.0001325Dong, Wang, Vetsch, Boes, & Tan. (2019). Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water, 11(10), 1956. doi:10.3390/w11101956Fuentes-Pérez, J. F., Silva, A. T., Tuhtan, J. A., García-Vega, A., Carbonell-Baeza, R., Musall, M., & Kruusmaa, M. (2018). 3D modelling of non-uniform and turbulent flow in vertical slot fishways. Environmental Modelling & Software, 99, 156-169. doi:10.1016/j.envsoft.2017.09.011Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environmental Fluid Mechanics, 7(3), 217-238. doi:10.1007/s10652-006-9016-1Hager, W. H. (1992). Energy Dissipators and Hydraulic Jump. Water Science and Technology Library. doi:10.1007/978-94-015-8048-9Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5Ho, D. K. H., & Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6(1), 81-104. doi:10.1080/14488353.2010.11463946Jesudhas, V., Balachandar, R., Roussinova, V., & Barron, R. (2018). Turbulence Characteristics of Classical Hydraulic Jump Using DES. Journal of Hydraulic Engineering, 144(6), 04018022. doi:10.1061/(asce)hy.1943-7900.0001427Jesudhas, V., Roussinova, V., Balachandar, R., & Barron, R. (2017). Submerged Hydraulic Jump Study Using DES. Journal of Hydraulic Engineering, 143(3), 04016091. doi:10.1061/(asce)hy.1943-7900.0001231KIM, J. (2004). A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k?? turbulence model. Atmospheric Environment, 38(19), 3039-3048. doi:10.1016/j.atmosenv.2004.02.047Kim, S.-E., & Boysan, F. (1999). Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics, 81(1-3), 145-158. doi:10.1016/s0167-6105(99)00013-6Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099)Langhi, M., & Hosoda, T. (2018). Three-dimensional unsteady RANS model for hydraulic jumps. ISH Journal of Hydraulic Engineering, 1-8. doi:10.1080/09715010.2018.1555775Liu, M., Rajaratnam, N., & Zhu, D. Z. (2004). Turbulence Structure of Hydraulic Jumps of Low Froude Numbers. Journal of Hydraulic Engineering, 130(6), 511-520. doi:10.1061/(asce)0733-9429(2004)130:6(511)Liu, T., Song, L., Fu, W., Wang, G., Lin, Q., Zhao, D., & Yi, B. (2018). Experimental Study on Single-Hole Injection of Kerosene into Pressurized Quiescent Environments. Journal of Energy Engineering, 144(3), 04018014. doi:10.1061/(asce)ey.1943-7897.0000536Ma, J., Oberai, A. A., Lahey, R. T., & Drew, D. A. (2011). Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models. Heat and Mass Transfer, 47(8), 911-919. doi:10.1007/s00231-011-0867-8McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)McDonald P. W. 1971. “The computation of transonic flow through two-dimensional gas turbine cascades.” In Proc. ASME 1971 Int. Gas Turbine Conf. and Products Show. Houston: International Gas Turbine Institute.Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. doi:10.1080/00221686.1999.9628267Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Resch, F. J., & Leutheusser, H. J. (1972). Le ressaut hydraulique : mesures de turbulence dans la région diphasique. La Houille Blanche, 58(4), 279-293. doi:10.1051/lhb/1972021Sarfaraz M. and J. Attari. 2011. “Numerical simulation of uniform flow region over a steeply sloping stepped spillway.” In Proc. 6th National Congress on Civil Engineering. Semnan Iran: Iran Water and Power Development Company.Spalart, P. . (2000). Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 21(3), 252-263. doi:10.1016/s0142-727x(00)00007-2Speziale, C. G., & Thangam, S. (1992). Analysis of an RNG based turbulence model for separated flows. International Journal of Engineering Science, 30(10), 1379-IN4. doi:10.1016/0020-7225(92)90148-aSpoljaric A. 1984. “Dynamic characteristics of the load on the bottom plate under hydraulic jump.” In Proc. Int. Conf. Hydrosoft’84: Hydraulic Engineering Software. New York: Elsevier.Teuber, K., Broecker, T., Bayón, A., Nützmann, G., & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, An International Journal, 19(6), 368. doi:10.1504/pcfd.2019.103266Toso, J. W., & Bowers, C. E. (1988). Extreme Pressures in Hydraulic‐Jump Stilling Basins. Journal of Hydraulic Engineering, 114(8), 829-843. doi:10.1061/(asce)0733-9429(1988)114:8(829)Valero D. and D. B. Bung. 2015. “Hybrid investigations of air transport processes in moderately sloped stepped spillway flows.” In Vol. 28 of E-proc. 36th IAHR World Congress 1–10. The Hague Netherlands: IHE Delft.Valero, D., & Bung, D. B. (2016). Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow. Environmental Modelling & Software, 82, 218-228. doi:10.1016/j.envsoft.2016.04.030Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028von Kármán T. 1930. “Mechanische Ähnlichkeit und Turbulenz.” In Proc. 3rd Int. Congress on Applied Mechanics. New York: Springer.Wang H. 2014. “Turbulence and air entrainment in hydraulic jumps.” Ph.D. thesis Dept. of Civil Engineering Univ. of Queensland.Wang, H., & Chanson, H. (2013). Air entrainment and turbulent fluctuations in hydraulic jumps. Urban Water Journal, 12(6), 502-518. doi:10.1080/1573062x.2013.847464Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620. doi:10.1063/1.168744Witt, A., Gulliver, J., & Shen, L. (2015). Simulating air entrainment and vortex dynamics in a hydraulic jump. International Journal of Multiphase Flow, 72, 165-180. doi:10.1016/j.ijmultiphaseflow.2015.02.012Wu, J., Zhou, Y., & Ma, F. (2018). Air entrainment of hydraulic jump aeration basin. Journal of Hydrodynamics, 30(5), 962-965. doi:10.1007/s42241-018-0088-4Xiang, M., Cheung, S. C. P., Tu, J. Y., & Zhang, W. H. (2014). A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps. Ocean Engineering, 91, 51-63. doi:10.1016/j.oceaneng.2014.08.016Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-

    Dynamic Web Tools for Trigonometry

    Get PDF
    In the last 20 years, computer technology having mathematical capability has been developed, improved, and become widely available, but textbook presentations are still largely free of any discussion that might require technology. Technology could be used in mathematical instruction for student drill and practice, for instructor demonstrations that promote conceptual understanding, or for the exploration of mathematical ideas, but software is often designed to be pedagogically generic, leaving its use to the creativity of the instructor. Technological solutions for local machines can be quite extensive, but cost and time constraints then limit availability for student use. The internet has the capability to provide mathematical instruction at all hours and in all places, with little financial investment by the student. This article describes the issues encountered and addressed by the author as he attempted to include self-authored web-based instructional units into a traditional trigonometry class. This paper was published in issue 5/6, volume 18, of the International Journal of Continuing Engineering Education and Life-Long Learning, distributed by Inderscience. DOI: 10.1504/IJCEELL.2008.022175. Original article: http://www.inderscience.com/search/index.php?action=record&rec_id=22175&prevQuery=&ps=10&m=or\u3

    Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines

    Full text link
    [EN] Over the past few decades, the aerodynamic improvements of turbocharger turbines contributed significantly to the overall efficiency augmentation and the advancements in downsizing of internal combustion engines. Due to the compact size of automotive turbochargers, the experimental measurement of the complex internal aerodynamics has been insufficiently studied. Hence, turbine designs mostly rely on the results of numerical simulations and the validation of zero-dimensional parameters as efficiency and reduced mass flow. To push the aerodynamic development even further, a precise validation of three-dimensional flow patterns predicted by applied computational fluid dynamics (CFD) methods is in need. This paper presents the design of an up-scaled volute-stator model, which allows optical experimental measurement techniques. In a preliminary step, numerical results indicate that the enlarged geometry will be representative of the flow patterns and characteristic non-dimensional numbers at defined flow sections of the real size turbine. Limitations due to rotor-stator interactions are highlighted. Measurement sections of interest for available measurement techniques are predefined.The authors disclose receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partly sponsored by the program "Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Spain". The support given to Ms. N.H.G. by Universitat Politecnica de Valencia through the "FPI-Subprograma 2" (No.FPI-2018-S2-1368) grant within the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-18)" is gratefully acknowledgedTiseira, A.; Navarro, R.; Inhestern, LB.; Hervás-Gómez, N. (2020). Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines. Energies. 13(11):1-19. https://doi.org/10.3390/en13112930S1191311Praveena, V., & Martin, M. L. J. (2018). A review on various after treatment techniques to reduce NOx emissions in a CI engine. Journal of the Energy Institute, 91(5), 704-720. doi:10.1016/j.joei.2017.05.010Sindhu, R., Amba Prasad Rao, G., & Madhu Murthy, K. (2018). Effective reduction of NOx emissions from diesel engine using split injections. Alexandria Engineering Journal, 57(3), 1379-1392. doi:10.1016/j.aej.2017.06.009Gil, A., Tiseira, A. O., García-Cuevas, L. M., Usaquén, T. R., & Mijotte, G. (2018). Fast three-dimensional heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research, 21(8), 1286-1297. doi:10.1177/1468087418804949Suhrmann, J. F., Peitsch, D., Gugau, M., & Heuer, T. (2012). On the Effect of Volute Tongue Design on Radial Turbine Performance. Volume 8: Turbomachinery, Parts A, B, and C. doi:10.1115/gt2012-69525Roumeas, M., & Cros, S. (2012). Aerodynamic Investigation of a Nozzle Clearance Effect on Radial Turbine Performance. Volume 8: Turbomachinery, Parts A, B, and C. doi:10.1115/gt2012-68835Liu, Y., Yang, C., Qi, M., Zhang, H., & Zhao, B. (2014). Shock, Leakage Flow and Wake Interactions in a Radial Turbine With Variable Guide Vanes. Volume 2D: Turbomachinery. doi:10.1115/gt2014-25888Cornolti, L., Onorati, A., Cerri, T., Montenegro, G., & Piscaglia, F. (2013). 1D simulation of a turbocharged Diesel engine with comparison of short and long EGR route solutions. Applied Energy, 111, 1-15. doi:10.1016/j.apenergy.2013.04.016Bohbot, J., Chryssakis, C., & Miche, M. (2006). Simulation of a 4-Cylinder Turbocharged Gasoline Direct Injection Engine Using a Direct Temporal Coupling Between a 1D Simulation Software and a 3D Combustion Code. SAE Technical Paper Series. doi:10.4271/2006-01-3263Inhestern, L. B. (s. f.). Measurement, Simulation, and 1D-Modeling of Turbocharger Radial Turbines at Design and Extreme Off-Design Conditions. doi:10.4995/thesis/10251/119989Tamaki, H., & Unno, M. (2008). Study on Flow Fields in Variable Area Nozzles for Radial Turbines. International Journal of Fluid Machinery and Systems, 1(1), 47-56. doi:10.5293/ijfms.2008.1.1.047Eroglu, H., & Tabakoff, W. (1991). LDV Measurements and Investigation of Flow Field Through Radial Turbine Guide Vanes. Journal of Fluids Engineering, 113(4), 660-667. doi:10.1115/1.2926531Karamanis, N., Martinez-Botas, R. F., & Su, C. C. (2000). Mixed Flow Turbines: Inlet and Exit Flow Under Steady and Pulsating Conditions. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery. doi:10.1115/2000-gt-0470Galindo, J., Tiseira Izaguirre, A. O., García-Cuevas, L. M., & Hervás Gómez, N. (2020). Experimental approach for the analysis of the flow behaviour in the stator of a real centripetal turbine. International Journal of Engine Research, 22(6), 2010-2020. doi:10.1177/1468087420916281Dufour, G., Carbonneau, X., Cazalbou, J.-B., & Chassaing, P. (2006). Practical Use of Similarity and Scaling Laws for Centrifugal Compressor Design. Volume 6: Turbomachinery, Parts A and B. doi:10.1115/gt2006-91227Tancrez, M., Galindo, J., Guardiola, C., Fajardo, P., & Varnier, O. (2011). Turbine adapted maps for turbocharger engine matching. Experimental Thermal and Fluid Science, 35(1), 146-153. doi:10.1016/j.expthermflusci.2010.07.018Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. doi:10.2514/3.12149Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006Smirnov, P. E., Hansen, T., & Menter, F. R. (2007). Numerical Simulation of Turbulent Flows in Centrifugal Compressor Stages With Different Radial Gaps. Volume 6: Turbo Expo 2007, Parts A and B. doi:10.1115/gt2007-27376Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118Serrano, J. R., Gil, A., Navarro, R., & Inhestern, L. B. (2017). Extremely Low Mass Flow at High Blade to Jet Speed Ratio in Variable Geometry Radial Turbines and its Influence on the Flow Pattern: A CFD Analysis. Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines. doi:10.1115/gt2017-63368Serrano, J. R., Navarro, R., García-Cuevas, L. M., & Inhestern, L. B. (2019). Contribution to tip leakage loss modeling in radial turbines based on 3D flow analysis and 1D characterization. International Journal of Heat and Fluid Flow, 78, 108423. doi:10.1016/j.ijheatfluidflow.2019.108423Choi, M., Baek, J. H., Chung, H. T., Oh, S. H., & Ko, H. Y. (2008). Effects of the low Reynolds number on the loss characteristics in an axial compressor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(2), 209-218. doi:10.1243/09576509jpe520Klausner, E., & Gampe, U. (2014). Evaluation and Enhancement of a One-Dimensional Performance Analysis Method for Centrifugal Compressors. Volume 2D: Turbomachinery. doi:10.1115/gt2014-25141Tiainen, J., Jaatinen-Värri, A., Grönman, A., Turunen-Saaresti, T., & Backman, J. (2018). Effect of FreeStream Velocity Definition on Boundary Layer Thickness and Losses in Centrifugal Compressors. Journal of Turbomachinery, 140(5). doi:10.1115/1.4038872Vinuesa, R., Hosseini, S. M., Hanifi, A., Henningson, D. S., & Schlatter, P. (2017). Pressure-Gradient Turbulent Boundary Layers Developing Around a Wing Section. Flow, Turbulence and Combustion, 99(3-4), 613-641. doi:10.1007/s10494-017-9840-

    A Mathematical Framework of Human Thought Process: Rectifying Software Construction Inefficiency and Identifying Characteristic Efficiencies of Networked Systems Via Problem-solution Cycle

    Get PDF
    Problem The lack of a theory to explain human thought process latently affects the general perception of problem solving activities. This present study was to theorize human thought process (HTP) to ascertain in general the effect of problem solving inadequacy on efficiency. Method To theorize human thought process (HTP), basic human problem solving activities were investigated through the vein of problem-solution cycle (PSC). The scope of PSC investigation was focused on the inefficiency problem in software construction and latent characteristic efficiencies of a similar networked system. In order to analyze said PSC activities, three mathematical quotients and a messaging wavefunction model similar to Schrodinger’s electronic wavefunction model are respectively derived for four intrinsic brain traits namely intelligence, imagination, creativity and language. These were substantiated using appropriate empirical verifications. Firstly, statistical analysis of intelligence, imagination and creativity quotients was done using empirical data with global statistical views from: 1. 1994–2004 CHAOS report Standish Group International’s software development projects success and failure survey. 2. 2000–2009 Global Creativity Index (GCI) data based on 3Ts of economic development (technology, talent and tolerance indices) from 82 nations. 3. Other varied localized success and failure surveys from 1994–2009/1998–2010 respectively. These statistical analyses were done using spliced decision Sperner system (SDSS) to show that the averages of all empirical scientific data on successes and failures of software production within specified periods are in excellent agreement with theoretically derived values. Further, the catalytic effect of creativity (thought catalysis) in human thought process is outlined and shown to be in agreement with newly discovered branch-like nerve cells in brain of mice (similar to human brain). Secondly, the networked communication activities of the language trait during PSC was scrutinized statistical using journal-journal citation data from 13 randomly selected 1984 major chemistry journals. With the aid of aforementioned messaging wave formulation, computer simulation of message-phase “thermogram” and “chromatogram” were generated to provide messaging line spectra relative to the behavioral messaging activities of the messaging network under study. Results Theoretical computations stipulated 66.67% efficiency due to intelligence, imagination and creativity traits interactions (multi-computational skills) was 33.33% due to networked linkages of language trait (aggregated language skills). The worldwide software production and economic data used were normally distributed with significance level α of 0.005. Thus, there existed a permissible error of 1% attributed to the significance level of said normally distributed data. Of the brain traits quotient statistics, the imagination quotient (IMGQ) score was 52.53% from 1994-2004 CHAOS data analysis and that from 2010 GCI data was 54.55%. Their average reasonably approximated 50th percentile of the cumulative distribution of problem-solving skills. On the other hand, the creativity quotient score from 1994-2004 CHAOS data was 0.99% and that from 2010 GCI data was 1.17%. These averaged to a near 1%. The chances of creativity and intelligence working together as joint problem-solving skills was consistently found to average at 11.32%(1994-2004 CHAOS: 10.95%, 2010 GCI: 11.68%). Also, the empirical data analysis showed that the language inefficiency of thought flow ηʹ(τ) from 1994-2004 CHAOS data was 35.0977% and that for 2010 GCI data was 34.9482%. These averaged around 35%. On the success and failure of software production, statistical analysis of empirical data showed 63.2% average efficiency for successful software production (1994 - 2012) and 33.94% average inefficiency for failed software production (1998 - 2010). On the whole, software production projects had a bound efficiency approach level (BEAL) of 94.8%. In the messaging wave analysis of 13 journal-to-journal citations, the messaging phase space graph(s) indicated a fundamental frequency (probable minimum message state) of 11. Conclusions By comparison, using cutoff level of printed editions of Journal Citation Reports to substitute for missing data values is inappropriate. However, values from optimizing method(s) harmonized with the fundamental frequency inferred from message wave analysis using informatics wave equation analysis (IWEA). Due to its evenly spaced chronological data snapshot, the application of SDSS technique inherently does diminish the difficulty associated with handling large data volume (big data) for analysis. From CHAOS and GCI data analysis, the averaged CRTQ scores indicate that only 1 percent (on the average) of the entire human race can be considered exceptionally creative. However in the art of software production, the siphoning effect of existing latent language inefficiency suffocates its processes of solution creation to an efficiency bound level of 66.67%. With a BEAL value of 94.8% and basic human error of 5.2%, it can be reasonable said that software production projects have delivered efficiently within existing latent inefficiency. Consequently, by inference from the average language inefficiency of thought flow, an average language efficiency of 65% exists in the process of software production worldwide. Reasonably, this correlates very strongly with existing average software production efficiency of 63.2% around which software crisis has averagely stagnated since the inception of software creation. The persistent dismal performance of software production is attributable to existing central focus on the usage of multiplicity of programming languages. Acting as an “efficiency buffer”, the latter minimizes changes to efficiency in software production thereby limiting software production efficiency theoretically to 66.67%. From both theoretical and empirical perspective, this latently shrouds software production in a deficit maximum attainable efficiency (DMAE). Software crisis can only be improved drastically through policy-driven adaptation of a universal standard supporting very minimal number of programming languages. On the average, the proposed universal standardization could save the world an estimated 6 trillion US dollars per year which is lost through existing inefficient software industry

    CFD-modelling of free surface flows in closed conduits

    Full text link
    [EN] Computational fluid dynamics (CFD) is gaining an increasing importance in the field of hydraulic engineering. This publication presents different application examples of a two-phase approach as implemented in the open source software OpenFOAM. The chosen approach is based on the volume of fluid method focusing on the simulation of flow in closed conduits. Three examples are presented: single-phase flow over a ground sill and free surface flow over a hill as well as complex free surface flow in a sewer model. The first example compares the results of different RANS turbulence models with experimental results. The results of the second example are compared with an analytical solution. In the last example the behaviour of the free surface flow is compared with the results of a model test and existing simulations using a simplified, open channel geometry for the closed conduit. For the examples analysed, the two-phase approach provides stable and reliable resultsThe funding provided by the German Research Foundation (DFG) within the Research Training Group ‘Urban Water Interfaces’ (GRK 2032) is gratefully acknowledged.Teuber, K.; Broecker, T.; Bayón, A.; Nutzmann, G.; Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics An International Journal. 19(6):368-380. http://hdl.handle.net/10251/128737S36838019

    Identifying and classifying attributes of packaging for customer satisfaction-A Kano Model Approach

    Full text link
    [EN] The packaging industry in India is predicted to grow at 18% annually. In recent years Packaging becomes a potential marketing tool. The marketer should design the packaging of high quality from customer perspective.  As the research in the area of packaging is very few, study of quality attributes of Packaging is the need of the hour and inevitable. An empirical research was conducted by applying Kano Model. The researcher is interested to find out the perception of the customers on 22 quality attributes of packaging. 500 respondents which were selected randomly were asked about their experience of packing on everyday commodities through a well-structured questionnaire.  The classification of attribute as must-be quality, one-dimensional quality, attractive quality, indifferent quality and reverse quality was done by three methods. Marketer should make a note of it and prioritise the attributes for customer satisfaction.Dash, SK. (2021). Identifying and classifying attributes of packaging for customer satisfaction-A Kano Model Approach. International Journal of Production Management and Engineering. 9(1):57-64. https://doi.org/10.4995/ijpme.2021.13683OJS576491Bakhitar, A.,Hannan, A., Basit, A., Ahmad, J.(2015). Prioritization of value based services of software by using AHP and fuzzy KANO model. International Conference on Computational and Social Sciences, 8, 25- 27.Basfirinci, C., Mitra, A. (2015). A cross cultural investigation of airlines service quality through integration of Servqual and the Kano model. Journal of Air Transport Management, 42(1), 239-48. https://doi.org/10.1016/j.jairtraman.2014.11.005Berger, C., Blauth, R., Boger, D., Bolster, C., Burchill, G., DuMouchel, W., Pouliot, F., Richter, R., Rubinoff, A., Shen, D., Timko, M., Walden, D. (1993). Kano's methods for understanding customer-defined quality. The Center for Quality of Management Journal, 2(4), 2-36.Brown, G.H. (1950). Measuring consumer attitudes towards products. Journal of Marketing, 14(5), 691-98. https://doi.org/10.1177/002224295001400505Chaudha, A., Jain, R., Singh, A.R., Mishra, P.K. (2011). Integration of Kano's Model into Quality Function Deployment (QFD). Journal Advice Manufacture Technology, 53, 689-698. https://doi.org/10.1007/s00170-010-2867-0Cole, R.E. (2001). From continuous improvement to continuous innovation. Quality Management Journal, 8(4), 7-21. https://doi.org/10.1080/10686967.2001.11918977Dash, S.K. (2019). Application of Kano Model in Identifying Attributes. A Case Study on School Bus Services. International Journal of Management Studies, 6(1), 31-37. https://doi.org/10.18843/ijms/v6i1(3)/03Dziuba, S.T., Śron, B. (2014). FAM-FMC system as an alternative element of the software used in a grain and flour milling enterprise. Production Engineering Archives, 4(3),29-31. https://doi.org/10.30657/pea.2014.04.08Ernzer, M., Kopp, K.(2003). Application of KANO method to life cycle design. IEEE Proceedings of Eco Design: Third International Symposium on Environmentally Conscious De-sign and Inverse Manufacturing, Tokyo Japan, December 8-11, 383-389. https://doi.org/10.1109/ECODIM.2003.1322697Feigenbaum, A.V. (1991).Total Quality Control. McGraw-Hill. Fundin, A., Nilsson, L. (2003). Using Kano's theory of attractive quality to better understand customer satisfaction with e-services. Asian Journal on Quality, 4(2), 32-49. https://doi.org/10.1108/15982688200300018Friman, M., Edvardsson, B. (2003). A content analysis of complaints and compliments. Managing Service Quality, 13(1), 20-26. https://doi.org/10.1108/09604520310456681Garvin, D.A. (1987). Competing on the eight dimensions of quality. Harvard Business Review, 65(6), 101-109.Hanan, M., Karp, P. (1989). Customer satisfaction, how to maximise, measure and market your company's "ultimate product". AMACOM.Herzberg, F., Bernard, M., Snyderman, B.B. (1959). The Motivation to Work. John Wiley and Sons.Hoch, S.J., Ha, Y.W. (1986). Consumer learning: advertising and the ambiguity of product experience. Journal of Consumer Research, 13, 221-33.https://doi.org/10.1086/209062Johnson, M.D., Nilsson, L. (2003). The Importance of Reliability and Customization from Goods to Services. Quality Management Journal, 10(1), 8-19. https://doi.org/10.1080/10686967.2003.11919049Kano, N., Seraku, N., Takahashi, F., Tsuji, S. (1984). Attractive Quality and Must-Be Quality. Journal of the Japanese Society for Quality Control, 41, 39-48.Kapalle, P.K, Lehmann, D.R. (1995). The effects of advertised and observed quality on expectations about new product quality. Journal of Marketing Research, 32(8), 280-90. https://doi.org/10.1177/002224379503200304Lee, M.C., Newcomb, J.F. (1997). Applying the Kano methodology to meet customer requirements: NASA's microgravity science program. Quality Management Journal, 4(3), 95-110. https://doi.org/10.1080/10686967.1997.11918805Löfgren, M. (2005). Winning at the first and second moments of truth: An exploratory study. Journal of Service Theory and Practice, 15(1), 102-15. https://doi.org/10.1108/09604520510575290Löfgren, M., Witell, L. (2005). Kano's Theory of Attractive Quality and Packaging. Quality Management Journal, 12(3), 7-20. https://doi.org/10.1080/10686967.2005.11919257Matzler, K., Hinterhuber, H.H., Bailom, F., Sauerwein, E. (1996). How to delight your customers. Journal of Product & Brand Management, 5(2), 6-18. https://doi.org/10.1108/10610429610119469Miarka, D., Żukowska, J., Siwek, A., Nowacka,A., Nowak, D. (2015). Microbial hazards reduction during creamy cream cheese production. Production Engineering Archives, 6(1), 39-44. https://doi.org/10.30657/pea.2015.06.10Nelson, P. (1970), Information and consumer behaviour. Journal of Political Economy, 78, 311-29. https://doi.org/10.1086/259630Nilsson-Witell, L, Fundin, A. (2005). Dynamics of service attributes: a test of Kano's theory of attractive quality. International Journal of Service Industry Management, 16(2), 152-168. https://doi.org/10.1108/09564230510592289Parasuraman, A. (1997). Reflections on gaining competitive advantage through customer value. Academy of Marketing Science Journal, 25(2), 154-61. https://doi.org/10.1007/BF02894351Parasuraman, A., Colby, C.L. (2001). Techno-Ready Marketing. Free Press.Qiting, P., Uno, N., Kubota, Y. (2013). Kano Model Analysis of Customer Needs and Satisfaction at the Shanghai Disneyland. In Proceedings of the 5th Intl Congress of the Intl Association of Societies of Design Research, Tokyo, Japan. http://design-cu.jp/iasdr2013/papers/1835-1b.pdf Accessed on January 2021.Sauerwein, E., Bailom, F., Matzler, K., Hinterhuber, H.H. (1996). The Kano Model: How to delight your Customers. Volume I of the IX. International Working Seminar on Production Economics, Innsbruck/Igls/Austria, February 19-23 1996, pp. 313-327. https://is.muni. cz/el/econ/podzim2009/MPH_MAR2/um/9899067/THE_KANO_MODEL_-_HOW_TO_DELIGHT_YOUR_CUSTOMERS.pdfShewhart, W.A. (1931). Economic Control of Quality of Manufactured Product. D. Van Nostrand Company, Inc.Underwood, R.L., Klein, N.M. (2002). Packaging as Brand Communication: Effects of Product Pictures on Consumer Responses to the Package and Brand. Journal of Marketing Theory and Practice, 10(4), 58-68. https://doi.org/10.1080/10696679.2002.11501926Underwood, R.L. Klein, N.M., Burke, R.R. (2001). Packaging communication: attentional effects of product imagery. Journal of Product & Brand Management, 10(7), 403-22. https://doi.org/10.1108/10610420110410531Watson, G.H. (2003), "Customer focus and competitiveness", in Stephens, K.S. (Ed.), Six Sigma and Related Studies in the Quality Disciplines, ASQ Quality Press, Milwaukee, WI.Williams, D. (2020). The future of the packaging industry in India. Packaging Gateway. https://packaging-gateway.com/features/futurepackaging-industry-in-india Accessed on January 2021.Williams,H., Wikström,F., Löfgren.M. (2008). A life cycle perspective on environmental effects of customer focused packaging development." Journal of Cleaner Production, 16(7), 853-859. https://doi.org/10.1016/j.jclepro.2007.05.006Woodruff, R.B. (1997). Customer value: the next source for competitive advantage. Journal of Academy of Marketing Science, 25(2), 139- 53. https://doi.org/10.1007/BF02894350Zeithaml, V.A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. Journal of Marketing, 52, 2-22. https://doi.org/10.1177/00222429880520030

    Semi-automatic assessment of unrestrained Java code: a Library, a DSL, and a workbench to assess exams and exercises

    Full text link
    © ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in http://dx.doi.org/10.1145/2729094.2742615Automated marking of multiple-choice exams is of great interest in university courses with a large number of students. For this reason, it has been systematically implanted in almost all universities. Automatic assessment of source code is however less extended. There are several reasons for that. One reason is that almost all existing systems are based on output comparison with a gold standard. If the output is the expected, the code is correct. Otherwise, it is reported as wrong, even if there is only one typo in the code. Moreover, why it is wrong remains a mystery. In general, assessment tools treat the code as a black box, and they only assess the externally observable behavior. In this work we introduce a new code assessment method that also verifies properties of the code, thus allowing to mark the code even if it is only partially correct. We also report about the use of this system in a real university context, showing that the system automatically assesses around 50% of the work.This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economíay Competitividad (Secretaría de Estado de Investigación, Desarrollo e Innovación) under grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under grant PROMETEOII2015/013. David Insa was partially supported by the Spanish Ministerio de Educación under FPU grant AP2010-4415.Insa Cabrera, D.; Silva, J. (2015). Semi-automatic assessment of unrestrained Java code: a Library, a DSL, and a workbench to assess exams and exercises. ACM. https://doi.org/10.1145/2729094.2742615SK. A Rahman and M. Jan Nordin. A review on the static analysis approach in the automated programming assessment systems. In National Conference on Programming 07, 2007.K. Ala-Mutka. A survey of automated assessment approaches for programming assignments. In Computer Science Education, volume 15, pages 83--102, 2005.C. Beierle, M. Kula, and M. Widera. Automatic analysis of programming assignments. In Proc. der 1. E-Learning Fachtagung Informatik (DeLFI '03), volume P-37, pages 144--153, 2003.J. Biggs and C. Tang. Teaching for Quality Learning at University : What the Student Does (3rd Edition). In Open University Press, 2007.P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx. CodeWrite: Supporting student-driven practice of java. In Proceedings of the 42nd ACM technical symposium on Computer science education, pages 09--12, 2011.R. Hendriks. Automatic exam correction. 2012.P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppala. Review of recent systems for automatic assessment of programming assignments. In Proceedings of the 10th Koli Calling International Conference on Computing Education Research, pages 86--93, 2010.H. Kitaya and U. Inoue. An online automated scoring system for Java programming assignments. In International Journal of Information and Education Technology, volume 6, pages 275--279, 2014.M.-J. Laakso, T. Salakoski, A. Korhonen, and L. Malmi. Automatic assessment of exercises for algorithms and data structures - a case study with TRAKLA2. In Proceedings of Kolin Kolistelut/Koli Calling - Fourth Finnish/Baltic Sea Conference on Computer Science Education, pages 28--36, 2004.Y. Liang, Q. Liu, J. Xu, and D. Wang. The recent development of automated programming assessment. In Computational Intelligence and Software Engineering, pages 1--5, 2009.K. A. Naudé, J. H. Greyling, and D. Vogts. Marking student programs using graph similarity. In Computers & Education, volume 54, pages 545--561, 2010.A. Pears, S. Seidman, C. Eney, P. Kinnunen, and L. Malmi. Constructing a core literature for computing education research. In SIGCSE Bulletin, volume 37, pages 152--161, 2005.F. Prados, I. Boada, J. Soler, and J. Poch. Automatic generation and correction of technical exercices. In International Conference on Engineering and Computer Education (ICECE 2005), 2005.M. Supic, K. Brkic, T. Hrkac, Z. Mihajlovic, and Z. Kalafatic. Automatic recognition of handwritten corrections for multiple-choice exam answer sheets. In Information and Communication Technology, Electronics and Microelectronics (MIPRO), pages 1136--1141, 2014.S. Tung, T. Lin, and Y. Lin. An exercise management system for teaching programming. In Journal of Software, 2013.T. Wang, X. Su, Y. Wang, and P. Ma. Semantic similarity-based grading of student programs. In Information and Software Technology, volume 49, pages 99--107, 2007
    corecore