183,466 research outputs found

    Adjacency Matrix Based Energy Efficient Scheduling using S-MAC Protocol in Wireless Sensor Networks

    Full text link
    Communication is the main motive in any Networks whether it is Wireless Sensor Network, Ad-Hoc networks, Mobile Networks, Wired Networks, Local Area Network, Metropolitan Area Network, Wireless Area Network etc, hence it must be energy efficient. The main parameters for energy efficient communication are maximizing network lifetime, saving energy at the different nodes, sending the packets in minimum time delay, higher throughput etc. This paper focuses mainly on the energy efficient communication with the help of Adjacency Matrix in the Wireless Sensor Networks. The energy efficient scheduling can be done by putting the idle node in to sleep node so energy at the idle node can be saved. The proposed model in this paper first forms the adjacency matrix and broadcasts the information about the total number of existing nodes with depths to the other nodes in the same cluster from controller node. When every node receives the node information about the other nodes for same cluster they communicate based on the shortest depths and schedules the idle node in to sleep mode for a specific time threshold so energy at the idle nodes can be saved.Comment: 20 pages, 2 figures, 14 tables, 5 equations, International Journal of Computer Networks & Communications (IJCNC),March 2012, Volume 4, No. 2, March 201

    Un modelo integrado para el enrutamiento de aeronaves y la programación de la tripulación: Relajación lagrangiana y algoritmo metaheurístico

    Full text link
    [EN] Airline optimization is a significant problem in recent researches and airline industryl as it can determine the level of service, profit and competition status of the airline. Aircraft and crew are expensive resources that need efficient utilization. This paper focuses simultaneously on two major issues including aircraft maintenance routing and crew scheduling. Several key issues such as aircraft replacement, fairly night flights assignment and long-life aircrafts are considered in this model. We used the flight hours as a new framework to control aircraft maintenance. At first, an integrated mathematical model for aircraft routing and crew scheduling problems is developed with the aim of cost minimization. Then, Lagrangian relaxation and Particle Swarm Optimization algorithm (PSO) are used as the solution techniques. To evaluate the efficiency of solution approaches, model is solved with different numerical examples in small, medium and large sizes and compared with GAMS output. The results show that Lagrangian relaxation method provides better solutions comparing to PSO and also has a very small gap to optimum solution.[ES] La optimización de aerolíneas es un problema importante en investigaciones recientes e industria de aerolíneas, ya que puede determinar el nivel de servicio, el beneficio y el estado de competencia de la aerolínea. Las aeronaves y la tripulación son recursos costosos que necesitan una utilización eficiente. Este artículo se centra simultáneamente en dos cuestiones principales, incluyendo el enrutamiento de mantenimiento de aeronaves y la programación de la tripulación. En este modelo se consideran varios temas clave, como el reemplazo de aeronaves, la asignación de vuelos nocturnos y los aviones envejecidos. Usamos las horas de vuelo como un nuevo marco para controlar el mantenimiento de las aeronaves. Al principio, se desarrolla un modelo matemático integrado para el enrutamiento de aeronaves y los problemas de programación de la tripulación con el objetivo de la minimización de costos. A continuación, se utilizan como técnicas de solución la relajación lagran-giana y el algoritmo “Particle Swarm Optimization” (PSO). Para evaluar la eficiencia de los en-foques de la solución, el modelo se resuelve con diferentes ejemplos numéricos en tamaños pequeños, medianos y grandes y se compara con la salida GAMS. Los resultados muestran que el método de relajación lagrangiana proporciona mejores soluciones en comparación con PSO y también tiene una pequeña diferencia para una solución óptimaMirjafari, M.; Rashidi Komijan, A.; Shoja, A. (2020). An integrated model for aircraft routing and crew scheduling: Lagrangian Relaxation and metaheuristic algorithm. WPOM-Working Papers on Operations Management. 11(1):25-38. https://doi.org/10.4995/wpom.v11i1.12891OJS2538111Al-Thani, Nayla Ahmad, Ben Ahmed, Mohamed and Haouari, Mohamed (2016). A model and optimization-based heuristic for the operational aircraft maintenance routing problem, Transportation Research Part C: Emerging Technologies, Volume 72, Pages 29-44. https://doi.org/10.1016/j.trc.2016.09.004Azadeh, A., HosseinabadiFarahani, M., Eivazy, H., Nazari-Shirkouhi, S., &Asadipour, G. (2013). A hybrid meta-heuristic algorithm for optimization of crew scheduling, Applied Soft Computing, Volume 13, Pages 158-164. https://doi.org/10.1016/j.asoc.2012.08.012Barnhart C. and Cohn, A. (2004). Airline schedule planning: Accomplishments and opportunities, Manufacturing & Service Operations Management, 6(1):3-22, 47, 69, 141, 144. https://doi.org/10.1287/msom.1030.0018Basdere, Mehmet and Bilge, Umit (2014). Operational aircraft maintenance routing problem with remaining time consideration, European Journal of Operational Research, Volume 235, Pages 315-328. https://doi.org/10.1016/j.ejor.2013.10.066Bazargan, Massoud (2010). Airline Operations and scheduling second edition, Embry-Riddle Aeronautical University, USA, Ashgate publishing limite.Belien, Jeroen, Demeulemeester, Eric and Brecht (2010). Integrated staffing and scheduling for an aircraft line maintenance problem, HUB RESEARCH PAPER Economics & Management.Ben Ahmed, M., Zeghal Mansour, Farah and Haouari, Mohamed (2018). Robust integrated maintenance aircraft routing and crew pairing, Journal of Air Transport Management, Volume 73, Pages 15-31. https://doi.org/10.1016/j.jairtraman.2018.07.007Ben Ahmed, M., Zeghal Mansour, F., Haouari, M. (2017). A two-level optimization approach for robust aircraft routing and retiming, Computers and Industrial Engineering, Volume 112, Pages 586-594. https://doi.org/10.1016/j.cie.2016.09.021Borndorfer, R., Schelten, U., Schlechte, T., Weider, S. (2006). A column generation approach to airline crew scheduling, Springer Berlin Heidelberg, Pages 343-348. https://doi.org/10.1007/3-540-32539-5_54Clarke, L., E. Johnson, G. Nemhauser, Z. Zhu. (1997). The Aircraft Rotation Problem. Annals of Operations Research, 69, Pages 33-46. https://doi.org/10.1023/A:1018945415148Deveci, Muhammet and ÇetinDemirel, Nihan (2018). Evolutionary algorithms for solving the airline crew pairing problem, Computers & Industrial Engineering, Volume 115, Pages 389-406. https://doi.org/10.1016/j.cie.2017.11.022Dozic, S., Kalic, M. (2015). Three-stage airline fleet planning model, J. Air Transport. Manag, 43, Pages 30-39. https://doi.org/10.1016/j.jairtraman.2015.03.011Eltoukhy, A.E., Chan, F.T., Chung, S. (2017). Airline schedule planning: a review and future directions, Ind. Manag. Data Syst, 117(6), Pages 1201-1243. https://doi.org/10.1108/IMDS-09-2016-0358Feo, T. A., J. F. Bard. (1989). Flight Scheduling and Maintenance Base Planning. Management Science, 35(12), Pages 1415-1432. https://doi.org/10.1287/mnsc.35.12.1415Goffin, J. L. (1977). On the convergence rates of subgradient optimization methods. Math. Programming, 13, Pages 329-347. https://doi.org/10.1007/BF01584346Gopalakrishnan, B., Johnson, E. L (2005). Airline crew scheduling, State-of-the-art. Ann. Oper. Res, 140(1), Pages 305-337. https://doi.org/10.1007/s10479-005-3975-3Held, M. and Karp, R.M. (1970). The Traveling-Salesman Problem and Minimum SpanningTrees. Operations Research, 18, 1138-1162. https://doi.org/10.1287/opre.18.6.1138Held, M. Wolfe, P., Crowder, H. D. (1974). Validation of subgradient optimization, Math. Programming, 6, 62-88. https://doi.org/10.1007/BF01580223Jamili, Amin (2017). A robust mathematical model and heuristic algorithms for integrated aircraft routing and scheduling, with consideration of fleet assignment problem, Journal of Air Transport Management, Volume 58, Pages 21-30. https://doi.org/10.1016/j.jairtraman.2016.08.008Jiang, H., Barnhart, C. (2009) Dynamic airline scheduling, Transport. Sci, 43(3), Pages 336-354. https://doi.org/10.1287/trsc.1090.0269Kasirzadeh, A., Saddoune, M., Soumis, F. (2015). Airline crew scheduling: models, algorhitms and data sets, Euro Journal on Transportation and Logistics, 6(2), Pages 111-137. https://doi.org/10.1007/s13676-015-0080-xLacasse-Guay, E., Desaulniers, G., Soumis, F. (2010). Aircraft routing under different business processes, J. Air Transport. Manag, 16(5), Pages 258-263. https://doi.org/10.1016/j.jairtraman.2010.02.001Muter, İbrahim, Birbil, Ş. İlker, Bülbül, Kerem, Şahin, Güvenç,Yenigün, Hüsnü, Taş,Duygu andTüzün, Dilek (2013). Solving a robust airline crew pairing problem with column generation, Computers & Operations Research, Volume 40, Issue 3, Pages 815-830. https://doi.org/10.1016/j.cor.2010.11.005Saddoune, Mohammed, Desaulniers, Guy, Elhallaoui, Issmail and François Soumis (2011). Integrated airline crew scheduling: A bi-dynamic constraint aggregation method using neighborhoods, European Journal of Operational Research, Volume 212, Pages 445-454. https://doi.org/10.1016/j.ejor.2011.02.009Safaei, Nima and K.S.Jardine, Andrew (2018). Aircraft routing with generalized maintenance constraints, Omega, Volume 80, Pages 111-122. https://doi.org/10.1016/j.omega.2017.08.013Shao Shengzhi (2012). Integrated Aircraft Fleeting, Routing, and Crew Pairing Models and Algorithms for the Airline Industry, Faculty of the Virginia Polytechnic Institute and State University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Industrial and Systems Engineering.Shao, S., Sherali, H.D., Haouari, M. (2017). A novel model and decomposition approach for the integrated airline fleet assignment, aircraft routing, crew pairing problem, Transport. Sci, 51(1), Pages 233-249. https://doi.org/10.1287/trsc.2015.0623Sherali, H.D., Bish, E.K., Zhu, X. (2006). Airline fleet assignment concepts, models and algorithms, Eur. J. Oper. Res, 172(1), Pages 1-30. https://doi.org/10.1016/j.ejor.2005.01.056Warburg, V., Hansen, T.G., Larsen, A., Norman, H., Andersson, E. (2008). Dynamic airline scheduling: an analysis of potentials of refleeting and retiming, J. Air Transport. Manag. 14(4), Pages 163-167. https://doi.org/10.1016/j.jairtraman.2008.03.004Yan, C. and Kung, J. (2018). Robust aircraft routing, Transport. Sci, 52(1), Pages 118-133. https://doi.org/10.1287/trsc.2015.0657Yen, J.W., Birge, J.R., (2006). A stochastic programming approach to the airline crew scheduling problem. Transportation Science, Volume 40, Pages 3-14. https://doi.org/10.1287/trsc.1050.0138Yu, G. (1998). Operation Research in the Airline Industry. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-5501-8Zeren, Bahadir and Ozkol, Ibrahim (2016). A novel column generation strategy foe large scale airline crew pairing problems, Expert system with applications, Volume 55, Pages 133-144. https://doi.org/10.1016/j.eswa.2016.01.045Zhang, Dong, Lau, H.Y.K. Henry and Yu, Chuhang (2015). A two stage heuristic algorithm for the integrated aircraft and crew schedule recovery problems, Computers and Industrial Engineering, Volume 87, Pages 436-453. https://doi.org/10.1016/j.cie.2015.05.03

    An overview of recent research results and future research avenues using simulation studies in project management

    Get PDF
    This paper gives an overview of three simulation studies in dynamic project scheduling integrating baseline scheduling with risk analysis and project control. This integration is known in the literature as dynamic scheduling. An integrated project control method is presented using a project control simulation approach that combines the three topics into a single decision support system. The method makes use of Monte Carlo simulations and connects schedule risk analysis (SRA) with earned value management (EVM). A corrective action mechanism is added to the simulation model to measure the efficiency of two alternative project control methods. At the end of the paper, a summary of recent and state-of-the-art results is given, and directions for future research based on a new research study are presented

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Cross-layer scheduling and resource allocation for heterogeneous traffic in 3G LTE

    Get PDF
    3G long term evolution (LTE) introduces stringent needs in order to provide different kinds of traffic with Quality of Service (QoS) characteristics. The major problem with this nature of LTE is that it does not have any paradigm scheduling algorithm that will ideally control the assignment of resources which in turn will improve the user satisfaction. This has become an open subject and different scheduling algorithms have been proposed which are quite challenging and complex. To address this issue, in this paper, we investigate how our proposed algorithm improves the user satisfaction for heterogeneous traffic, that is, best-effort traffic such as file transfer protocol (FTP) and real-time traffic such as voice over internet protocol (VoIP). Our proposed algorithm is formulated using the cross-layer technique. The goal of our proposed algorithm is to maximize the expected total user satisfaction (total-utility) under different constraints. We compared our proposed algorithm with proportional fair (PF), exponential proportional fair (EXP-PF), and U-delay. Using simulations, our proposed algorithm improved the performance of real-time traffic based on throughput, VoIP delay, and VoIP packet loss ratio metrics while PF improved the performance of best-effort traffic based on FTP traffic received, FTP packet loss ratio, and FTP throughput metrics

    A survey on gain-scheduled control and filtering for parameter-varying systems

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper presents an overview of the recent developments in the gain-scheduled control and filtering problems for the parameter-varying systems. First of all, we recall several important algorithms suitable for gain-scheduling method including gain-scheduled proportional-integral derivative (PID) control, H 2, H ∞ and mixed H 2 / H ∞ gain-scheduling methods as well as fuzzy gain-scheduling techniques. Secondly, various important parameter-varying system models are reviewed, for which gain-scheduled control and filtering issues are usually dealt with. In particular, in view of the randomly occurring phenomena with time-varying probability distributions, some results of our recent work based on the probability-dependent gain-scheduling methods are reviewed. Furthermore, some latest progress in this area is discussed. Finally, conclusions are drawn and several potential future research directions are outlined.The National Natural Science Foundation of China under Grants 61074016, 61374039, 61304010, and 61329301; the Natural Science Foundation of Jiangsu Province of China under Grant BK20130766; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University under Grant NCET-11-1051, the Leverhulme Trust of the U.K., the Alexander von Humboldt Foundation of Germany

    Genetic algorithms for satellite scheduling problems

    Get PDF
    Recently there has been a growing interest in mission operations scheduling problem. The problem, in a variety of formulations, arises in management of satellite/space missions requiring efficient allocation of user requests to make possible the communication between operations teams and spacecraft systems. Not only large space agencies, such as ESA (European Space Agency) and NASA, but also smaller research institutions and universities can establish nowadays their satellite mission, and thus need intelligent systems to automate the allocation of ground station services to space missions. In this paper, we present some relevant formulations of the satellite scheduling viewed as a family of problems and identify various forms of optimization objectives. The main complexities, due highly constrained nature, windows accessibility and visibility, multi-objectives and conflicting objectives are examined. Then, we discuss the resolution of the problem through different heuristic methods. In particular, we focus on the version of ground station scheduling, for which we present computational results obtained with Genetic Algorithms using the STK simulation toolkit.Peer ReviewedPostprint (published version
    corecore