1,026,842 research outputs found

    Discovering the Impact of Knowledge in Recommender Systems: A Comparative Study

    Get PDF
    Recommender systems engage user profiles and appropriate filtering techniques to assist users in finding more relevant information over the large volume of information. User profiles play an important role in the success of recommendation process since they model and represent the actual user needs. However, a comprehensive literature review of recommender systems has demonstrated no concrete study on the role and impact of knowledge in user profiling and filtering approache. In this paper, we review the most prominent recommender systems in the literature and examine the impression of knowledge extracted from different sources. We then come up with this finding that semantic information from the user context has substantial impact on the performance of knowledge based recommender systems. Finally, some new clues for improvement the knowledge-based profiles have been proposed.Comment: 14 pages, 3 tables; International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 201

    Considerations about quality in model-driven engineering

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11219-016-9350-6The virtue of quality is not itself a subject; it depends on a subject. In the software engineering field, quality means good software products that meet customer expectations, constraints, and requirements. Despite the numerous approaches, methods, descriptive models, and tools, that have been developed, a level of consensus has been reached by software practitioners. However, in the model-driven engineering (MDE) field, which has emerged from software engineering paradigms, quality continues to be a great challenge since the subject is not fully defined. The use of models alone is not enough to manage all of the quality issues at the modeling language level. In this work, we present the current state and some relevant considerations regarding quality in MDE, by identifying current categories in quality conception and by highlighting quality issues in real applications of the model-driven initiatives. We identified 16 categories in the definition of quality in MDE. From this identification, by applying an adaptive sampling approach, we discovered the five most influential authors for the works that propose definitions of quality. These include (in order): the OMG standards (e.g., MDA, UML, MOF, OCL, SysML), the ISO standards for software quality models (e.g., 9126 and 25,000), Krogstie, Lindland, and Moody. We also discovered families of works about quality, i.e., works that belong to the same author or topic. Seventy-three works were found with evidence of the mismatch between the academic/research field of quality evaluation of modeling languages and actual MDE practice in industry. We demonstrate that this field does not currently solve quality issues reported in industrial scenarios. The evidence of the mismatch was grouped in eight categories, four for academic/research evidence and four for industrial reports. These categories were detected based on the scope proposed in each one of the academic/research works and from the questions and issues raised by real practitioners. We then proposed a scenario to illustrate quality issues in a real information system project in which multiple modeling languages were used. For the evaluation of the quality of this MDE scenario, we chose one of the most cited and influential quality frameworks; it was detected from the information obtained in the identification of the categories about quality definition for MDE. We demonstrated that the selected framework falls short in addressing the quality issues. Finally, based on the findings, we derive eight challenges for quality evaluation in MDE projects that current quality initiatives do not address sufficiently.F.G, would like to thank COLCIENCIAS (Colombia) for funding this work through the Colciencias Grant call 512-2010. This work has been supported by the Gene-ralitat Valenciana Project IDEO (PROMETEOII/2014/039), the European Commission FP7 Project CaaS (611351), and ERDF structural funds.Giraldo-Velásquez, FD.; España Cubillo, S.; Pastor López, O.; Giraldo, WJ. (2016). Considerations about quality in model-driven engineering. Software Quality Journal. 1-66. https://doi.org/10.1007/s11219-016-9350-6S166(1985). Iso information processing—documentation symbols and conventions for data, program and system flowcharts, program network charts and system resources charts. ISO 5807:1985(E) (pp. 1–25).(2011). Iso/iec/ieee systems and software engineering – architecture description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000) (pp. 1–46).Abran, A., Moore, J.W., Bourque, P., Dupuis, R., & Tripp, L.L. (2013). Guide to the Software Engineering Body of Knowledge (SWEBOK) version 3 public review. IEEE. ISO Technical Report ISO/IEC TR 19759.Agner, L.T.W., Soares, I.W., Stadzisz, P.C., & Simão, J.M. (2013). A brazilian survey on {UML} and model-driven practices for embedded software development. Journal of Systems and Software, 86(4), 997–1005. {SI} : Software Engineering in Brazil: Retrospective and Prospective Views.Amstel, M.F.V. (2010). The right tool for the right job: assessing model transformation quality. pages 69–74. Affiliation: Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, Netherlands. Cited By (since 1996):1.Aranda, J., Damian, D., & Borici, A. (2012). Transition to model-driven engineering: what is revolutionary, what remains the same?. In Proceedings of the 15th international conference on model driven engineering languages and systems, MODELS’12 (pp. 692–708). Berlin, Heidelberg: Springer.Arendt, T., & Taentzer, G. (2013). A tool environment for quality assurance based on the eclipse modeling framework. Automated Software Engineering, 20(2), 141–184.Atkinson, C., Bunse, C., & Wüst, J. (2003). Driving component-based software development through quality modelling, volume 2693. Cited By (since 1996):3.Baker, P., Loh, S., & Weil, F. (2005). Model-driven engineering in a large industrial context—motorola case study. In Briand, L., & Williams, C. (Eds.) Model Driven Engineering Languages and Systems, volume 3713 of Lecture Notes in Computer Science (pp. 476–491). Berlin, Heidelberg: Springer.Barišić, A., Amaral, V., Goulão, M., & Barroca, B. (2011). Quality in use of domain-specific languages: a case study. In Proceedings of the 3rd ACM SIGPLAN workshop on evaluation and usability of programming languages and tools, PLATEAU ’11 (pp. 65–72). New York: ACM.Becker, J., Bergener, P., Breuker, D., & Rackers, M. (2010). Evaluating the expressiveness of domain specific modeling languages using the bunge-wand-weber ontology. In 2010 43rd Hawaii international conference on system sciences (HICSS) (pp. 1–10).Bertrand Portier, L.A. (2009). Model driven development misperceptions and challenges.Bézivin, J., & Kurtev, I. (2005). Model-based technology integration with the technical space concept. In Proceedings of the Metainformatics Symposium: Springer.Brambilla, M. (2016). How mature is of model-driven engineering as an engineering discipline @ONLINE.Brambilla, M., & Fraternali, P. (2014). Large-scale model-driven engineering of web user interaction: The webml and webratio experience. Science of Computer Programming, 89 Part B(0), 71 – 87. Special issue on Success Stories in Model Driven Engineering.Brown, A. (2009). Simple and practical model driven architecture (mda) @ONLINE.Bruel, J.-M., Combemale, B., Ober, I., & Raynal, H. (2015). Mde in practice for computational science. Procedia Computer Science, 51, 660–669.Budgen, D., Burn, A.J., Brereton, O.P., Kitchenham, B.A., & Pretorius, R. (2011). Empirical evidence about the uml: a systematic literature review. Software: Practice and Experience, 41(4), 363–392.Burden, H., Heldal, R., & Whittle, J. (2014). Comparing and contrasting model-driven engineering at three large companies. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM ’14 (pp. 14:1–14:10). New York: ACM.Cabot, J. Has mda been abandoned (by the omg)?Cabot, J. (2009). Modeling will be commonplace in three years time @ONLINE.Cachero, C., Poels, G., Calero, C., & Marhuenda, Y. (2007). Towards a Quality-Aware Engineering Process for the Development of Web Applications. Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/462, Ghent University, Faculty of Economics and Business Administration.Challenger, M., Kardas, G., & Tekinerdogan, B. (2015). A systematic approach to evaluating domain-specific modeling language environments for multi-agent systems. Software Quality Journal, 1–41.Chaudron, M.V., Heijstek, W., & Nugroho, A. (2012). How effective is uml modeling? Software & Systems Modeling, 11(4), 571–580. J2: Softw Syst Model.Chenouard, R., Granvilliers, L., & Soto, R. (2008). Model-driven constraint programming. pages 236–246. Affiliation: CNRS, LINA, Universit de Nantes, France; Affiliation: Pontificia Universidad Catlica de, Valparaiso, Chile. Cited By (since 1996):8.Clark, T., & Muller, P.-A. (2012). Exploiting model driven technology: a tale of two startups. Software and Systems Modeling, 11(4), 481–493.Corneliussen, L. (2008). What do you think of model-driven software development?Costal, D., Gómez, C., & Guizzardi, G. (2011). Formal semantics and ontological analysis for understanding subsetting, specialization and redefinition of associations in uml. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6998 LNCS:189–203. cited By (since 1996)3.Cruz-Lemus, J.A., Maes, A., Género, M., Poels, G., & Piattini, M. (2010). The impact of structural complexity on the understandability of uml statechart diagrams. Information Sciences, 180(11), 2209–2220. Cited By (since 1996):14.Cuadrado, J.S., Izquierdo, J.L.C., & Molina, J.G. (2014). Applying model-driven engineering in small software enterprises. Science of Computer Programming, 89 Part B(0), 176 – 198. Special issue on Success Stories in Model Driven Engineering.Da Silva, A.R. (2015). Model-driven engineering: a survey supported by the unified conceptual model. Computer Languages Systems and Structures, 43, 139–155.Da Silva Teixeira, D.G.M., Quirino, G.K., Gailly, F., De Almeida Falbo, R., Guizzardi, G., & Perini Barcellos, M. (2016). PoN-S: a Systematic Approach for Applying the Physics of Notation (PoN), (pp. 432–447). Cham: Springer International Publishing.Davies, I., Green, P., Rosemann, M., Indulska, M., & Gallo, S. (2006). How do practitioners use conceptual modeling in practice? Data and Knowledge Engineering, 58(3), 358 – 380. Including the special issue : {ER} 2004ER 2004.Davies, J., Milward, D., Wang, C.-W., & Welch, J. (2015). Formal model-driven engineering of critical information systems. Science of Computer Programming, 103(0), 88 – 113. Selected papers from the First International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2012).De Oca, I.M.-M., Snoeck, M., Reijers, H.A., & Rodríguez-Morffi, A. (2015). A systematic literature review of studies on business process modeling quality. Information and Software Technology, 58, 187–205.DenHaan, J. (2009). 8 reasons why model driven development is dangerous @ONLINE.DenHaan, J. (2010). Model driven engineering vs the commando pattern @ONLINE.DenHaan, J. (2011a). Why aren’t we all doing model driven development yet @ONLINE.DenHaan, J. (2011b). Why there is no future model driven development @ONLINE.Di Ruscio, D., Iovino, L., & Pierantonio, A. (2013). Managing the coupled evolution of metamodels and textual concrete syntax specifications. cited By (since 1996)0.Dijkman, R.M., Dumas, M., & Ouyang, C. (2008). Semantics and analysis of business process models in {BPMN}. Information and Software Technology, 50(12), 1281–1294.Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ramos, I., & Fernández, L. (2011). A framework for the quality evaluation of mdwe methodologies and information technology infrastructures. International Journal of Human Capital and Information Technology Professionals, 2(4), 11–22.Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., & Torres, A.H. (2010). A quality model in a quality evaluation framework for mdwe methodologies. pages 495–506. Affiliation: Departamento de Lenguajes y Sistemas Informíticos, University of Seville, Seville, Spain., Cited By (since 1996):1.Dubray, J.-J. (2011). Why did mde miss the boat?.Escalona, M.J., Gutiérrez, J.J., Pérez-Pérez, M., Molina, A., Domínguez-Mayo, E., & Domínguez-Mayo, F.J. (2011). Measuring the Quality of Model-Driven Projects with NDT-Quality, (pp. 307–317). New York: Springer.Espinilla, M., Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ross, M., & Staples, G. (2011). A Method Based on AHP to Define the Quality Model of QuEF (Vol. 123, pp. 685–694). Berlin, Heidelberg: Springer.Fabra, J., Castro, V.D., Álvarez, P., & Marcos, E. (2012). Automatic execution of business process models: exploiting the benefits of model-driven engineering approaches. Journal of Systems and Software, 85(3), 607–625. Novel approaches in the design and implementation of systems/software architecture.Falkenberg, E.D., Hesse, W., Lindgreen, P., Nilsson, B.E., Oei, J.L.H., Rolland, C., Stamper, R.K., Assche, F.J.M.V., Verrijn-Stuart, A.A., & Voss, K. (1996). Frisco: a framework of information system concepts. Technical report, The IFIP WG 8. 1 Task Group FRISCO.Fettke, P., Houy, C., Vella, A.-L., & Loos, P. (2012). Towards the Reconstruction and Evaluation of Conceptual Model Quality Discourses – Methodical Framework and Application in the Context of Model Understandability, volume 113 of Lecture Notes in Business Information Processing, chapter 28, pages 406–421, Springer, Berlin, Heidelberg.Finnie, S. (2015). Modeling community: Are we missing something?Fournier, C. (2008). Is uml [email protected], R., & Rumpe, B. (2007). Model-driven development of complex software: a research roadmap. In Future of Software Engineering, 2007, FOSE ’07 (pp. 37–54).Gallego, M., Giraldo, F.D., & Hitpass, B. (2015). Adapting the pbec-otss software selection approach for bpm suites: an application case. In 2015 34th International Conference of the Chilean Computer Science Society (SCCC) (pp. 1–10).Galvão, I., & Goknil, A. (2007). Survey of traceability approaches in model-driven engineering. cited By (since 1996)22.Giraldo, F., España, S., Giraldo, W., & Pastor, O. (2015). Modelling language quality evaluation in model-driven information systems engineering: a roadmap. In 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS) (pp. 64–69).Giraldo, F., España, S., & Pastor, O. (2014). Analysing the concept of quality in model-driven engineering literature: a systematic review. In 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS) (pp. 1–12).Giraldo, F.D., España, S., & Pastor, O. (2016). Evidences of the mismatch between industry and academy on modelling language quality evaluation. arXiv: 1606.02025 .González, C., & Cabot, J. (2014). Formal verification of static software models in mde: a systematic review. Information and Software Technology, 56(8), 821–838. cited By (since 1996)0.González, C.A., Büttner, F., Clarisó, R., & Cabot, J. (2012). Emftocsp: a tool for the lightweight verification of emf models. pages 44–50. Affiliation: cole des Mines de Nantes, INRIA, LINA, Nantes, France; Affiliation: Universitat Oberta de Catalunya, Barcelona, Spain. Cited By (since 1996):1.Gorschek, T., Tempero, E., & Angelis, L. (2014). On the use of software design models in software development practice: an empirical investigation. Journal of Systems and Software, 95(0), 176– 193.Goulão, M., Amaral, V., & Mernik, M. (2016). Quality in model-driven engineering: a tertiary study. Software Quality Journal, 1–33.Grobshtein, Y., & Dori, D. (2011). Generating sysml views from an opm model: design and evaluation. Systems Engineering, 14(3), 327–340.Haan, J.d. (2008). 8 reasons why model-driven approaches (will) fail.Harel, D., & Rumpe, B. (2000). Modeling languages: Syntax, semantics and all that stuff, part i: The basic stuff, Israel. Technical report Jerusalem Israel.Harel, D., & Rumpe, B. (2004). Meaningful modeling: what’s the semantics of semantics? Computer, 37(10), 64–72.Hebig, R., & Bendraou, R. (2014). On the need to study the impact of model driven engineering on software processes. In Proceedings of the 2014 International Conference on Software and System Process, ICSSP 2014 (pp. 164–168). New York: ACM.Heidari, F., & Loucopoulos, P. (2014). Quality evaluation framework (qef): modeling and evaluating quality of business processes. International Journal of Accounting Information Systems, 15(3), 193–223. Business Process Modeling.Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R., & Classen, A. (2008). Evaluating formal properties of feature diagram languages. Software, IET, 2(3), 281–302. ID 2.Hindawi, M., Morel, L., Aubry, R., & Sourrouille, J.-L. (2009). Description and Implementation of a UML Style Guide (Vol. 5421, pp. 291–302). Berlin: Springer.Hoang, D. (2012). Current limitations of mdd and its implications @ONLINE.Hodges, W. (2013). Model theory Zalta, E.N. (Ed.) The Stanford Encyclopedia of Philosophy. Fall 2013 edition.Hutchinson, J., Rouncefield, M., & Whittle, J. (2011a). Model-driven engineering practices in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 633–642). New York: ACM.Hutchinson, J., Whittle, J., & Rouncefield, M. (2014). Model-driven engineering practices in industry: social, organizational and managerial factors that lead to success or failure. Science of Computer Programming, 89 Part B(0), 144–161. Special issue on Success Stories in Model Driven Engineering.Hutchinson, J., Whittle, J., Rouncefield, M., & Kristoffersen, S. (2011b). Empirical assessment of mde in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 471–480). New York: ACM.Igarza, I.M.H., Boada, D.H.G., & Valdés, A.P. (2012). Una introducción al desarrollo de software dirigido por modelos. Serie Científica, 5(3).ISO/IEC (2001). ISO/IEC 9126. Software engineering—Product quality. ISO/IEC.Izurieta, C., Rojas, G., & Griffith, I. (2015). Preemptive management of model driven technical debt for improving software quality. In Proceedings of the 11th International ACM SIGSOFT Conference on Quality of Software Architectures, QoSA’15 (pp. 31–36). New York: ACM.Jalali, S., & Wohlin, C. (2012). Systematic literature studies: Database searches vs. backward snowballing. In Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM’12 (pp. 29–38). New York: ACM.Kahraman, G., & Bilgen, S. (2013). A framework for qualitative assessment of domain-specific languages. Software & Systems Modeling, 1–22.Kessentini, M., Langer, P., & Wimmer, M. (2013). Searching models, modeling search: On the synergies of sbse and mde (pp. 51–54).Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical Report EBSE 2007-001, Keele University and Durham University Joint Report.Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., & Rosenberg, J. (2002). Preliminary guidelines for empirical research in software engineering. IEEE Transactions on Software Engineering, 28(8), 721–734.Klinke, M. (2008). Do you use mda/mdd/mdsd, any kind of model-driven approach? Will it be the future?Köhnlein, J. (2013). Eclipse diagram editors from a user’s perspective.Kolovos, D.S., Paige, R.F., & Polack, F.A. (2008). The grand challenge of scalability for model driven engineering. In Models in Software Engineering (pp. 48–53): Springer.Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S., De Lara, J., Ráth, I., Varró, D., Tisi, M., & Cabot, J. (2013). A research roadmap towards achieving scalability in model driven engineering. In Proceedings of the Workshop on Scalability in Model Driven Engineering, BigMDE’13 (pp. 2:1–2:10). New York: ACM.Krill, P. (2016). Uml to be ejected from microsoft visual studio (infoworld).Krogstie, J. (2012a). Model-based development and evolution of information systems: a quality approach, Springer Publishing Company, Incorporated.Krogstie, J. (2012b). Quality of modelling languages, (pp. 249–280). London: Springer.Krogstie, J. (2012c). Quality of models, (pp. 205–247). London: Springer.Krogstie, J. (2012d). Specialisations of SEQUAL, (pp. 281–326). London: Springer.Krogstie, J., Lindland, O.I., & Sindre, G. (1995). Defining quality aspects for conceptual models. In Proceedings of the IFIP International Working Conference on Information System Concepts: Towards a Consolidation of Views (pp. 216–231). London: Chapman & Hall, Ltd.Kruchten, P. (2000). The rational unified process: an introduction, 2nd edn. Boston: Addison-Wesley Longman Publishing Co., Inc.Kruchten, P., Nord, R., & Ozkaya, I. (2012). Technical debt: from metaphor to theory and practice. Software, IEEE, 29(6), 18–21.Kulkarni, V., Reddy, S., & Rajbhoj, A. (2010). Scaling up model driven engineering – experience and lessons learnt. In Petriu, D., Rouquette, N., & Haugen, y. (Eds.) Model Driven Engineering Languages and Systems, volume 6395 of Lecture Notes in Computer Science (pp. 331–345). Berlin, Heidelberg: Springer.Laguna, M.A., & Marqués, J.M. (2010). Uml support for designing software product lines: the package merge mechanism, 16(17), 2313–2332.Lange, C. (2007a). Model size matters. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4364 LNCS:211–216. cited By (since 1996)1.Lange, C., & Chaudron, M. (2005). Managing Model Quality in UML-Based Software Development. In 13th IEEE International Workshop on Technology and Engineering Practice, 2005 (pp. 7–16).Lange, C., Chaudron, M.R.V., Muskens, J., Somers, L.J., & Dortmans, H.M. (2003). An empirical investigation in quantifying inconsistency and incompleteness of uml designs. In Incompleteness of UML Designs, Proceedings Workshop on Consistency Problems in UML-based Software Development, 6th International Conference on Unified Modeling Language, UML, 2003.Lange, C., DuBois, B., Chaudron, M., & Demeyer, S. (2006). An experimental investigation of uml modeling conventions. In Nierstrasz, O., Whittle, J., Harel, D., & Reggio, G. (Eds.) Model Driven Engineering Languages and Systems, volume 4199 of Lecture Notes in Computer Science (pp. 27–41). Berlin, Heidelberg: Springer.Lange, C.F.J., & Chaudron, M.R.V. (2006). Effe

    Development of Pisa 2015 Based Chemical Literacy Assessment Instrument For High School Students

    Get PDF
    This study aims to develop valid and reliable chemical literacy assessment instruments based on PISA 2015. The development procedures carried out were 1) research and information collecting, 2) planning, 3) development preliminary form of product, 4) preliminary field testing, and 5) main product revision. Instrument of development result was validated(content validity and empirical validity). Content validity assessment data was obtained from the validity test results from two chemistry lecturers. Empirical validity test data were acquired from68 grade XI students as test subjects who came from five high schools in Malang. An empirical validity test was used to obtain the level of validity, reliability, discrimination index, difficulty level, and effectiveness of distractors of the items developed in the instrument. The instrument of development results consisted of 20 multiple choice items and 4 attitude questionnaires. The results of the content validity test indicated a valid instrument (the average score for the aspects of substance, construction, and language was 83.9). The results of the empirical validity test showed that multiple-choice items had a correlation value of 0.37-0.77, categorized as valid, and the reliability value was 0.86, classified as highly reliable. The discrimination index obtained was five items ranked as sufficiently good and 15 items categorized as good, while five items classified as easy item, 14 moderate items, and one difficult item, all distractors were functioning. The empirical validity test results in the form of an attitude questionnaire showed a correlation value of 0.65-0.69, so they were valid, and the reliability value was 0.59, classified as quite high criteria. Instrument development results proved to be valid and reliable, so it is feasible to be used to measure students' chemical literacy skills.ReferencesAmerican Association for the Advancement of Science (AAAS). (1993). Benchmarks for science literacy: a project 2061 report. New York: Oxford University Press.Arikunto, S. (1993). Dasar-Dasar Evaluasi Pendidikan. Jakarta: Bumi Aksara.Bond, D. (1989). In Pursuit of Chemical Literacy: A Place for Chemical Reactions. Journal of Chemical Education, 66(2), 157.Celik, S. (2014).Chemical Literacy Levels of Science And Mathematics Teacher Candidates. Australian Journal of Teacher Education, 39(1), 1 – 15Cigdemoglu, C., & Geban, O. (2015). Improving Students' Chemical Literacy Level on Thermochemical And Thermodynamics Concepts through Context-Based Approach. Chemistry Education Research And Practice, 16, 302 – 317.Cigdemoglu, C., Arslan, H. O., & Cam, A. (2017).Argumentation to Foster Pre-Service Science Teachers' Knowledge, Competency, And Attitude on The Domains of Chemical Literacy of Acids And Bases. Chemistry Education Research And Practice, 18(2), 288 – 303.Direktorat Pembinaan SMA. (2017). Panduan Penilaian oleh Pendidik dan Satuan Pendidikan Sekolah Menengah Atas. Jakarta: Kementerian Pendidikan dan Kebudayaan RI.Kohen, Z., Herscovitz, O., & Dori, Y. J. (2020). How to Promote Chemical Literacy? Online Question Posing And Communicating With Scientists. Chemistry Education Research And Practice, 21(1), 250 – 266Mudiono, A. (2016). Keprofesionalan Guru dalam Menghadapi Pendidikan di Era Global. Makalah disajikan dalam Seminar Nasional, Jurusan KSDP FIP UM, Malang 25 September.Mumba, F., & Hunter, W. J. F. (2009). Representative Nature of Scientific Literacy Themes in A High School Chemistry Course: The Case of Zambia. Chemistry Education Research And Practice, 10(3), 219 – 226.Naganuma, S. (2017). An Assessment of Civic Scientific Literacy in Japan: Development of A More Authentic Assessment Task And Scoring Rubric. International Journal of Science Education, Part B, 7(4), 301 – 322Norris, S. P., & Philip, L. M. (2003). How literacy in its fundamental sense in central to scientific literacy. Science Education, 87(2), 224 – 240.Organisation for Economic Co-operation and Development (OECD). (2016). PISA 2015 Assessment And Analytical Framework: Science, Reading, Mathematic And Financial Literacy. Paris: OECD PublishingOrganisation for Economic Co-operation and Development (OECD). (2018). PISA 2018 Result Combined Executive Summaries Volume I, II, & III. Paris: Organisation for Economic Co-operation and Development.Osborne, J. F. (2010). Arguing to Learn in Science: The Role of Collaborative, Critical Discourse. Science, 328(5977), 463 – 466Rahayu, S. (2014). Menuju Masyarakat Berliterasi Sains: Harapan dan Tantangan Kurikulum 2013. Makalah disajikan dalam Seminar Nasional Kimia dan Pembelajarannya, Jurusan Kimia FMIPA UM, Malang 6 September.Rahayu, S. (2017). Mengoptimalkan Aspek Literasi dalam Pembelajaran Kimia Abad 21. Makalah disajikan dalam Seminar Nasional Kimia, Jurusan Pendidikan Kimia FMIPA UNY, Yogyakarta, 14 Oktober.Riduwan. (2011). Belajar Mudah Penelitian: untuk Guru-Karyawan, dan Peneliti Pemula. Bandung: AlfabetaRiduwan. (2013). Dasar-Dasar Statistika. Bandung: AlfabetaShe, H. C., Stacey, K., & Schmidt, W. H. (2018).Science And Mathematics Literacy: PISA for Better School Education. International Journal of Science And Mathematics Education, 16(1), 1 – 5Shwartz, Y., Ben-Zvi, R., & Hofstein, A. (2005). The Importance of Involving High-School Chemistry Teachers in The Process of Defining the Operational Meaning of Chemical Literacy. International Journal of ScienceEducation, 27(3), 323 – 344.Thummathong, R., & Thathong, K. (2016). Construction of A Chemical Literacy Test for Engineering Students. Journal of Turkish Science Education, 13(3), 185 – 198.United Nations Environment Programme (UNEP). (2012). 21 Issues for the 21st Century: Result of the UNEP Foresight Process on Emerging Environmental Issues. Nairobi, Kenya: United Nations Environment Programme.Vogelzang, J., Admiraal, W. F., & van Driel, J. H. (2020). Effects of Scrum Methodology on Students' Critical Scientific Literacy: The Case of Green Chemistry. Chemistry Education Research And Practice, 21(3), 940 – 952.World Economic Forum (WEF). (2016). New Vision for Education: Fostering Social And Emotional Learning through Technology

    On the detection of SOurce COde re-use

    Full text link
    © {Owner/Author | ACM} {2014}. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in FIRE '14 Proceedings of the Forum for Information Retrieval Evaluation, http://dx.doi.org/10.1145/2824864.2824878"This paper summarizes the goals, organization and results of the first SOCO competitive evaluation campaign for systems that automatically detect the source code re-use phenomenon. The detection of source code re-use is an important research field for both software industry and academia fields. Accordingly, PAN@FIRE track, named SOurce COde Re-use (SOCO) focused on the detection of re-used source codes in C/C++ and Java programming languages. Participant systems were asked to annotate several source codes whether or not they represent cases of source code re-use. In total five teams submitted 17 runs. The training set consisted of annotations made by several experts, a feature which turns the SOCO 2014 collection in a useful data set for future evaluations and, at the same time, it establishes a standard evaluation framework for future research works on the posed shared task.PAN@FIRE (SOCO) has been organised in the framework of WIQ-EI (EC IRSES grantn. 269180) and DIANA-APPLICATIONS (TIN2012-38603-C02- 01) research projects. The work of the last author was supported by CONACyT Mexico Project Grant CB-2010/153315, and SEP-PROMEP UAM-PTC-380/48510349.Flores Sáez, E.; Rosso, P.; Moreno Boronat, LA.; Villatoro-Tello, E. (2014). On the detection of SOurce COde re-use. En FIRE '14 Proceedings of the Forum for Information Retrieval Evaluation. ACM. 21-30. https://doi.org/10.1145/2824864.2824878S2130C. Arwin and S. Tahaghoghi. Plagiarism detection across programming languages. Proceedings of the 29th Australian Computer Science Conference, Australian Computer Society, 48:277--286, 2006.N. Baer and R. Zeidman. Measuring whitespace pattern sequence as an indication of plagiarism. Journal of Software Engineering and Applications, 5(4):249--254, 2012.M. Chilowicz, E. Duris, and G. Roussel. Syntax tree fingerprinting for source code similarity detection. In Program Comprehension, 2009. ICPC '09. IEEE 17th International Conference on, pages 243--247, 2009.D. Chuda, P. Navrat, B. Kovacova, and P. Humay. The issue of (software) plagiarism: A student view. Education, IEEE Transactions on, 55(1):22--28, 2012.G. Cosma and M. Joy. Evaluating the performance of lsa for source-code plagiarism detection. Informatica, 36(4):409--424, 2013.B. Cui, J. Li, T. Guo, J. Wang, and D. Ma. Code comparison system based on abstract syntax tree. In Broadband Network and Multimedia Technology (IC-BNMT), 3rd IEEE International Conference on, pages 668--673, Oct 2010.J. A. W. Faidhi and S. K. Robinson. An empirical approach for detecting program similarity and plagiarism within a university programming environment. Comput. Educ., 11(1):11--19, Jan. 1987.Fire, editor. FIRE 2014 Working Notes. Sixth International Workshop of the Forum for Information Retrieval Evaluation, Bangalore, India, 5--7 December, 2014.J. L. Fleiss. Measuring nominal scale agreement among many raters. Psychological bulletin, 76(5):378, 1971.E. Flores, A. Barrón-Cedeño, L. Moreno, and P. Rosso. Uncovering source code reuse in large-scale academic environments. Computer Applications in Engineering Education, pages n/a--n/a, 2014.E. Flores, A. Barrón-Cedeño, P. Rosso, and L. Moreno. DeSoCoRe: Detecting source code re-use across programming languages. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstration Session, NAACL-HLT, pages 1--4. Association for Computational Linguistics, 2012.E. Flores, A. Barrón-Cedeño, P. Rosso, and L. Moreno. Towards the Detection of Cross-Language Source Code Reuse. Proceedings of 16th International Conference on Applications of Natural Language to Information Systems, NLDB-2011, Springer-Verlag, LNCS(6716), pages 250--253, 2011.E. Flores, M. Ibarra-Romero, L. Moreno, G. Sidorov, and P. Rosso. Modelos de recuperación de información basados en n-gramas aplicados a la reutilización de código fuente. In Proc. 3rd Spanish Conf. on Information Retrieval, pages 185--188, 2014.D. Ganguly and G. J. Jones. Dcu@ fire-2014: an information retrieval approach for source code plagiarism detection. In Fire [8].R. García-Hernández and Y. Lendeneva. Identification of similar source codes based on longest common substrings. In Fire [8].M. Joy and M. Luck. Plagiarism in programming assignments. Education, IEEE Transactions on, 42(2):129--133, May 1999.A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic. An information retrieval approach to concept location in source code. In Reverse Engineering, 2004. Proceedings. 11th Working Conference on, pages 214--223, Nov 2004.S. Narayanan and S. Simi. Source code plagiarism detection and performance analysis using fingerprint based distance measure method. In Proc. of 7th International Conference on Computer Science Education, ICCSE '12, pages 1065--1068, July 2012.M. Potthast, M. Hagen, A. Beyer, M. Busse, M. Tippmann, P. Rosso, and B. Stein. Overview of the 6th international competition on plagiarism detection. In L. Cappellato, N. Ferro, M. Halvey, and W. Kraaij, editors, Working Notes for CLEF 2014 Conference, Sheffield, UK, September 15-18, 2014., volume 1180 of CEUR Workshop Proceedings, pages 845--876. CEUR-WS.org, 2014.L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms among a set of programs with JPlag. Journal of Universal Computer Science, 8(11):1016--1038, 2002.I. Rahal and C. Wielga. Source code plagiarism detection using biological string similarity algorithms. Journal of Information & Knowledge Management, 13(3), 2014.A. Ramírez-de-la Cruz, G. Ramírez-de-la Rosa, C. Sánchez-Sánchez, W. A. Luna-Ramírez, H. Jiménez-Salazar, and C. Rodríguez-Lucatero. Uam@soco 2014: Detection of source code reuse by means of combining different types of representations. In Fire [8].F. Rosales, A. García, S. Rodríguez, J. L. Pedraza, R. Méndez, and M. M. Nieto. Detection of plagiarism in programming assignments. IEEE Transactions on Education, 51(2):174--183, 2008.K. Sparck and C. van Rijsbergen. Report on the need for and provision of an "ideal" information retrieval test collection. British Library Research and Development Report, 5266, University of Cambridge, 1975.G. Whale. Software metrics and plagiarism detection. Journal of Systems and Software, 13(2):131--138, 1990

    Identifying and classifying attributes of packaging for customer satisfaction-A Kano Model Approach

    Full text link
    [EN] The packaging industry in India is predicted to grow at 18% annually. In recent years Packaging becomes a potential marketing tool. The marketer should design the packaging of high quality from customer perspective.  As the research in the area of packaging is very few, study of quality attributes of Packaging is the need of the hour and inevitable. An empirical research was conducted by applying Kano Model. The researcher is interested to find out the perception of the customers on 22 quality attributes of packaging. 500 respondents which were selected randomly were asked about their experience of packing on everyday commodities through a well-structured questionnaire.  The classification of attribute as must-be quality, one-dimensional quality, attractive quality, indifferent quality and reverse quality was done by three methods. Marketer should make a note of it and prioritise the attributes for customer satisfaction.Dash, SK. (2021). Identifying and classifying attributes of packaging for customer satisfaction-A Kano Model Approach. International Journal of Production Management and Engineering. 9(1):57-64. https://doi.org/10.4995/ijpme.2021.13683OJS576491Bakhitar, A.,Hannan, A., Basit, A., Ahmad, J.(2015). Prioritization of value based services of software by using AHP and fuzzy KANO model. International Conference on Computational and Social Sciences, 8, 25- 27.Basfirinci, C., Mitra, A. (2015). A cross cultural investigation of airlines service quality through integration of Servqual and the Kano model. Journal of Air Transport Management, 42(1), 239-48. https://doi.org/10.1016/j.jairtraman.2014.11.005Berger, C., Blauth, R., Boger, D., Bolster, C., Burchill, G., DuMouchel, W., Pouliot, F., Richter, R., Rubinoff, A., Shen, D., Timko, M., Walden, D. (1993). Kano's methods for understanding customer-defined quality. The Center for Quality of Management Journal, 2(4), 2-36.Brown, G.H. (1950). Measuring consumer attitudes towards products. Journal of Marketing, 14(5), 691-98. https://doi.org/10.1177/002224295001400505Chaudha, A., Jain, R., Singh, A.R., Mishra, P.K. (2011). Integration of Kano's Model into Quality Function Deployment (QFD). Journal Advice Manufacture Technology, 53, 689-698. https://doi.org/10.1007/s00170-010-2867-0Cole, R.E. (2001). From continuous improvement to continuous innovation. Quality Management Journal, 8(4), 7-21. https://doi.org/10.1080/10686967.2001.11918977Dash, S.K. (2019). Application of Kano Model in Identifying Attributes. A Case Study on School Bus Services. International Journal of Management Studies, 6(1), 31-37. https://doi.org/10.18843/ijms/v6i1(3)/03Dziuba, S.T., Śron, B. (2014). FAM-FMC system as an alternative element of the software used in a grain and flour milling enterprise. Production Engineering Archives, 4(3),29-31. https://doi.org/10.30657/pea.2014.04.08Ernzer, M., Kopp, K.(2003). Application of KANO method to life cycle design. IEEE Proceedings of Eco Design: Third International Symposium on Environmentally Conscious De-sign and Inverse Manufacturing, Tokyo Japan, December 8-11, 383-389. https://doi.org/10.1109/ECODIM.2003.1322697Feigenbaum, A.V. (1991).Total Quality Control. McGraw-Hill. Fundin, A., Nilsson, L. (2003). Using Kano's theory of attractive quality to better understand customer satisfaction with e-services. Asian Journal on Quality, 4(2), 32-49. https://doi.org/10.1108/15982688200300018Friman, M., Edvardsson, B. (2003). A content analysis of complaints and compliments. Managing Service Quality, 13(1), 20-26. https://doi.org/10.1108/09604520310456681Garvin, D.A. (1987). Competing on the eight dimensions of quality. Harvard Business Review, 65(6), 101-109.Hanan, M., Karp, P. (1989). Customer satisfaction, how to maximise, measure and market your company's "ultimate product". AMACOM.Herzberg, F., Bernard, M., Snyderman, B.B. (1959). The Motivation to Work. John Wiley and Sons.Hoch, S.J., Ha, Y.W. (1986). Consumer learning: advertising and the ambiguity of product experience. Journal of Consumer Research, 13, 221-33.https://doi.org/10.1086/209062Johnson, M.D., Nilsson, L. (2003). The Importance of Reliability and Customization from Goods to Services. Quality Management Journal, 10(1), 8-19. https://doi.org/10.1080/10686967.2003.11919049Kano, N., Seraku, N., Takahashi, F., Tsuji, S. (1984). Attractive Quality and Must-Be Quality. Journal of the Japanese Society for Quality Control, 41, 39-48.Kapalle, P.K, Lehmann, D.R. (1995). The effects of advertised and observed quality on expectations about new product quality. Journal of Marketing Research, 32(8), 280-90. https://doi.org/10.1177/002224379503200304Lee, M.C., Newcomb, J.F. (1997). Applying the Kano methodology to meet customer requirements: NASA's microgravity science program. Quality Management Journal, 4(3), 95-110. https://doi.org/10.1080/10686967.1997.11918805Löfgren, M. (2005). Winning at the first and second moments of truth: An exploratory study. Journal of Service Theory and Practice, 15(1), 102-15. https://doi.org/10.1108/09604520510575290Löfgren, M., Witell, L. (2005). Kano's Theory of Attractive Quality and Packaging. Quality Management Journal, 12(3), 7-20. https://doi.org/10.1080/10686967.2005.11919257Matzler, K., Hinterhuber, H.H., Bailom, F., Sauerwein, E. (1996). How to delight your customers. Journal of Product & Brand Management, 5(2), 6-18. https://doi.org/10.1108/10610429610119469Miarka, D., Żukowska, J., Siwek, A., Nowacka,A., Nowak, D. (2015). Microbial hazards reduction during creamy cream cheese production. Production Engineering Archives, 6(1), 39-44. https://doi.org/10.30657/pea.2015.06.10Nelson, P. (1970), Information and consumer behaviour. Journal of Political Economy, 78, 311-29. https://doi.org/10.1086/259630Nilsson-Witell, L, Fundin, A. (2005). Dynamics of service attributes: a test of Kano's theory of attractive quality. International Journal of Service Industry Management, 16(2), 152-168. https://doi.org/10.1108/09564230510592289Parasuraman, A. (1997). Reflections on gaining competitive advantage through customer value. Academy of Marketing Science Journal, 25(2), 154-61. https://doi.org/10.1007/BF02894351Parasuraman, A., Colby, C.L. (2001). Techno-Ready Marketing. Free Press.Qiting, P., Uno, N., Kubota, Y. (2013). Kano Model Analysis of Customer Needs and Satisfaction at the Shanghai Disneyland. In Proceedings of the 5th Intl Congress of the Intl Association of Societies of Design Research, Tokyo, Japan. http://design-cu.jp/iasdr2013/papers/1835-1b.pdf Accessed on January 2021.Sauerwein, E., Bailom, F., Matzler, K., Hinterhuber, H.H. (1996). The Kano Model: How to delight your Customers. Volume I of the IX. International Working Seminar on Production Economics, Innsbruck/Igls/Austria, February 19-23 1996, pp. 313-327. https://is.muni. cz/el/econ/podzim2009/MPH_MAR2/um/9899067/THE_KANO_MODEL_-_HOW_TO_DELIGHT_YOUR_CUSTOMERS.pdfShewhart, W.A. (1931). Economic Control of Quality of Manufactured Product. D. Van Nostrand Company, Inc.Underwood, R.L., Klein, N.M. (2002). Packaging as Brand Communication: Effects of Product Pictures on Consumer Responses to the Package and Brand. Journal of Marketing Theory and Practice, 10(4), 58-68. https://doi.org/10.1080/10696679.2002.11501926Underwood, R.L. Klein, N.M., Burke, R.R. (2001). Packaging communication: attentional effects of product imagery. Journal of Product & Brand Management, 10(7), 403-22. https://doi.org/10.1108/10610420110410531Watson, G.H. (2003), "Customer focus and competitiveness", in Stephens, K.S. (Ed.), Six Sigma and Related Studies in the Quality Disciplines, ASQ Quality Press, Milwaukee, WI.Williams, D. (2020). The future of the packaging industry in India. Packaging Gateway. https://packaging-gateway.com/features/futurepackaging-industry-in-india Accessed on January 2021.Williams,H., Wikström,F., Löfgren.M. (2008). A life cycle perspective on environmental effects of customer focused packaging development." Journal of Cleaner Production, 16(7), 853-859. https://doi.org/10.1016/j.jclepro.2007.05.006Woodruff, R.B. (1997). Customer value: the next source for competitive advantage. Journal of Academy of Marketing Science, 25(2), 139- 53. https://doi.org/10.1007/BF02894350Zeithaml, V.A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. Journal of Marketing, 52, 2-22. https://doi.org/10.1177/00222429880520030

    Evaluating how agent methodologies support the specification of the normative environment through the development process

    Full text link
    [EN] Due to the increase in collaborative work and the decentralization of processes in many domains, there is an expanding demand for large-scale, flexible and adaptive software systems to support the interactions of people and institutions distributed in heterogeneous environments. Commonly, these software applications should follow specific regulations meaning the actors using them are bound by rights, duties and restrictions. Since this normative environment determines the final design of the software system, it should be considered as an important issue during the design of the system. Some agent-oriented software engineering methodologies deal with the development of normative systems (systems that have a normative environment) by integrating the analysis of the normative environment of a system in the development process. This paper analyses to what extent these methodologies support the analysis and formalisation of the normative environment and highlights some open issues of the topic.This work is partially supported by the PROMETEOII/2013/019, TIN2012-36586-C03-01, FP7-29493, TIN2011-27652-C03-00, CSD2007-00022 projects, and the CASES project within the 7th European Community Framework Program under the grant agreement No 294931.Garcia Marques, ME.; Miles, S.; Luck, M.; Giret Boggino, AS. (2014). Evaluating how agent methodologies support the specification of the normative environment through the development process. Autonomous Agents and Multi-Agent Systems. 1-20. https://doi.org/10.1007/s10458-014-9275-zS120Cossentino, M., Hilaire, V., Molesini, A., & Seidita, V. (Eds.). (2014). Handbook on agent-oriented design processes (Vol. VIII, 569 p. 508 illus.). Berlin: Springer.Akbari, O. (2010). A survey of agent-oriented software engineering paradigm: Towards its industrial acceptance. Journal of Computer Engineering Research, 1, 14–28.Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., & Rebollo, M. (2011). An abstract architecture for virtual organizations: The THOMAS approach. Knowledge and Information Systems, 29(2), 379–403.Argente, E., Botti, V., & Julian, V. (2009). GORMAS: An organizational-oriented methodological guideline for open MAS. In Proceedings of AOSE’09 (pp. 440–449).Argente, E., Botti, V., & Julian, V. (2009). Organizational-oriented methodological guidelines for designing virtual organizations. In Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. Lecture Notes in Computer Science (Vol. 5518, pp. 154–162).Boella, G., Pigozzi, G., & van der Torre, L. (2009). Normative systems in computer science—Ten guidelines for normative multiagent systems. In G. Boella, P. Noriega, G. Pigozzi, & H. Verhagen (Eds.), Normative multi-agent systems, number 09121 in Dagstuhl seminar proceedings.Boella, G., Torre, L., & Verhagen, H. (2006). Introduction to normative multiagent systems. Computational and Mathematical Organization Theory, 12(2–3), 71–79.Bogdanovych, A., Esteva, M., Simoff, S., Sierra, C., & Berger, H. (2008). A methodology for developing multiagent systems as 3d electronic institutions. In M. Luck & L. Padgham (Eds.), Agent-Oriented Software Engineering VIII (Vol. 4951, pp. 103–117). Lecture Notes in Computer Science. Berlin: Springer.Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J., & Vazquez-Salceda, J. (2006). Coordination, organizations, institutions and norms in multi-agent systems. LNCS (LNAI) (Vol. 3913).Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2006). Verifying multi-agent programs by model checking. In Autonomous agents and multi-agent systems (Vol. 12, pp. 239–256). Hingham, MA: Kluwer Academic Publishers.Botti, V., Garrido, A., Giret, A., & Noriega, P. (2011). The role of MAS as a decision support tool in a water-rights market. In Post-proceedings workshops AAMAS2011 (Vol. 7068, pp. 35–49). Berlin: Springer.Breaux, T. (2009). Exercising due diligence in legal requirements acquisition: A tool-supported, frame-based approach. In Proceedings of the IEEE international requirements engineering conference (pp. 225–230).Breaux, T. D., & Baumer, D. L. (2011). Legally reasonable security requirements: A 10-year ftc retrospective. Computers and Security, 30(4), 178–193.Breaux, T. D., Vail, M. W., & Anton, A. I. (2006). Towards regulatory compliance: Extracting rights and obligations to align requirements with regulations. In Proceedings of the 14th IEEE international requirements engineering conference, RE ’06 (pp. 46–55). Washington, DC: IEEE Computer Society.Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An agent-oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.Cardoso, H. L., & Oliveira, E. (2008). A contract model for electronic institutions. In COIN’07: Proceedings of the 2007 international conference on Coordination, organizations, institutions, and norms in agent systems III (pp. 27–40).Castor, A., Pinto, R. C., Silva, C. T. L. L., & Castro, J. (2004). Towards requirement traceability in tropos. In WER (pp. 189–200).Chopra, A., Dalpiaz, F., Giorgini, P., & Mylopoulos, J. (2009). Modeling and reasoning about service-oriented applications via goals and commitments. ICST conference on digital business.Cliffe, O., Vos, M., & Padget, J. (2006). Specifying and analysing agent-based social institutions using answer set programming. In O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. Ossowski, J. Sichman, & J. Vázquez-Salceda (Eds.), Coordination, organizations, institutions, and norms in multi-agent systems. Lecture Notes in Computer Science (Vol. 3913, pp. 99–113). Springer. Berlin.Criado, N., Argente, E., Garrido, A., Gimeno, J. A., Igual, F., Botti, V., Noriega, P., & Giret, A. (2011). Norm enforceability in Electronic Institutions? In Coordination, organizations, institutions, and norms in agent systems VI (Vol. 6541, pp. 250–267). Springer.Dellarocas, C., & Klein, M. (2001). Contractual agent societies. In R. Conte & C. Dellarocas (Eds.), Social order in multiagent systems (Vol. 2, pp. 113–133)., Multiagent Systems, Artificial Societies, and Simulated Organizations New York: Springer.DeLoach, S. A. (2008). Developing a multiagent conference management system using the o-mase process framework. In Proceedings of the international conference on agent-oriented software engineering VIII (pp. 168–181).DeLoach, S. A., & Garcia-Ojeda, J. C. (2010). O-mase; a customisable approach to designing and building complex, adaptive multi-agent systems. International Journal of Agent-Oriented Software Engineering, 4(3), 244–280.DeLoach, S. A., Padgham, L., Perini, A., Susi, A., & Thangarajah, J. (2009). Using three aose toolkits to develop a sample design. International Journal Agent-Oriented Software Engineering, 3, 416–476.Dignum, F., Dignum, V., Thangarajah, J., Padgham, L., & Winikoff, M. (2007). Open agent systems? Eighth international workshop on agent oriented software engineering (AOSE) in AAMAS07.Dignum, V. (2003). A model for organizational interaction:based on agents, founded in logic. PhD thesis, Utrecht University.Dignum, V., Meyer, J., Dignum, F., & Weigand, H. (2003). Formal specification of interaction in agent societies. Formal approaches to agent-based systems (Vol. 2699).Dignum, V., Vazquez-Salceda, J., & Dignum, F. (2005). Omni: Introducing social structure, norms and ontologies into agent organizations. In R. Bordini, M. Dastani, J. Dix, & A. Seghrouchni (Eds.)Programming multi-agent systems. Lecture Notes in Computer Science (Vol. 3346, pp. 181–198). Berlin: Springer.d’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J., & Sierra, C. (2012). Communicating open systems, 186, 38–94.Elsenbroich, C., & Gilbert, N. (2014). Agent-based modelling. In Modelling norms (pp. 65–84). Dordrecht: Springer.Esteva, M., Rosell, B., Rodriguez, J. A., & Arcos, J. L. (2004). AMELI: An agent-based middleware for electronic institutions. In AAMAS04 (pp. 236–243).Fenech, S., Pace, G. J., & Schneider, G. (2009). Automatic conflict detection on contracts. In Proceedings of the 6th international colloquium on theoretical aspects of computing, ICTAC ’09 (pp. 200–214).Garbay, C., Badeig, F., & Caelen, J. (2012). Normative multi-agent approach to support collaborative work in distributed tangible environments. In Proceedings of the ACM 2012 conference on computer supported cooperative work companion, CSCW ’12 (pp. 83–86). New York, NY: ACM.Garcia, E., Giret, A., & Botti, V. (2011). Regulated open multi-agent systems based on contracts. In Information Systems Development (pp. 243–255).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., & Delaney, B. (2012). An analysis of agent-oriented engineering of e-health systems. In 13th international eorkshop on sgent-oriented software engineering (AOSE-AAMAS).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., and Delaney, B. (2013). Analysing the Suitability of Multiagent Methodologies for e-Health Systems. In Agent-Oriented Software Engineering XIII, volume 7852, pages 134–150. Springer-Verlag.Garrido, A., Giret, A., Botti, V., & Noriega, P. (2013). mWater, a case study for modeling virtual markets. In New perspectives on agreement technologies (Vol. Law, Gover, pp. 563–579). Springer.Gteau, B., Boissier, O., & Khadraoui, D. (2006). Multi-agent-based support for electronic contracting in virtual enterprises. IFAC Symposium on Information Control Problems in Manufacturing (INCOM), 150(3), 73–91.Hollander, C. D., & Wu, A. S. (2011). The current state of normative agent-based systems. Journal of Artificial Societies and Social Simulation, 14(2), 6.Hsieh, F.-S. (2005). Automated negotiation based on contract net and petri net. In E-commerce and web technologies. Lecture Notes in Computer Science (Vol. 3590, pp. 148–157).Kollingbaum, M., Jureta, I. J., Vasconcelos, W., & Sycara, K. (2008). Automated requirements-driven definition of norms for the regulation of behavior in multi-agent systems. In Proceedings of the AISB 2008 workshop on behaviour regulation in multi-agent systems, Aberdeen, Scotland, U.K., April 2008.Li, T., Balke, T., Vos, M., Satoh, K., & Padget, J. (2013). Detecting conflicts in legal systems. In Y. Motomura, A. Butler, & D. Bekki (Eds.), New Frontiers in Artificial Intelligence (Vol. 7856, pp. 174–189)., Lecture Notes in Computer Science Berlin Heidelberg: Springer.Lomuscio, A., Qu, H., & Solanki, M. (2010) Towards verifying contract regulated service composition. Journal of Autonomous Agents and Multi-Agent Systems (pp. 1–29).Lopez, F., Luck, M., & d’Inverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12, 227–250.Lpez, F. y, Luck, M., & dInverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12(2–3), 227–250.Mader, P., & Egyed, A. (2012). Assessing the effect of requirements traceability for software maintenance. In 28th IEEE International Conference on Software Maintenance (ICSM) (pp. 171–180), Sept 2012.Mao, X., & Yu, E. (2005). Organizational and social concepts in agent oriented software engineering. In AOSE IV. Lecture Notes in Artificial Intelligence (Vol. 3382, pp. 184–202).Meyer, J.-J. C., & Wieringa, R. J. (Eds.). (1993). Deontic logic in computer science: Normative system specification. Chichester, UK: Wiley.Okouya, D., & Dignum, V. (2008). Operetta: A prototype tool for the design, analysis and development of multi-agent organizations (demo paper). In AAMAS (pp. 1667–1678).Malone, T. W., Smith J. B., & Olson, G. M. (2001). Coordination theory and collaboration technology. Mahwah, NJ: Lawrence Erlbaum Associates.Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., & Miles, S. (2009). Towards a formalisation of electronic contracting environments. COIN (pp. 156–171).Osman, N., Robertson, D., & Walton, C. (2006). Run-time model checking of interaction and deontic models for multi-agent systems. In AAMAS ’06: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems (pp. 238–240). New York, NY: ACM.Pace, G., Prisacariu, C., & Schneider, G. (2007). Model checking contracts a case study. In Automated technology for verification and analysis. Lecture Notes in Computer Science (Vol. 4762, pp. 82–97).Rotolo, A., & van der Torre, L. (2011). Rules, agents and norms: Guidelines for rule-based normative multi-agent systems. RuleML Europe, 6826, 52–66.Saeki, M., & Kaiya, H. (2008). Supporting the elicitation of requirements compliant with regulations. In CAiSE ’08 (pp. 228–242).Siena, A., Mylopoulos, J., Perini, A., & Susi, A. (2009). Designing law-compliant software requirements. In Proceedings of the 28th international conference on conceptual modeling, ER ’09 (pp. 472–486).Singh, M. P. Commitments in multiagent systems: Some history, some confusions, some controversies, some prospects.Solaiman, E., Molina-Jimenez, C., & Shrivastav, S. (2003). Model checking correctness properties of electronic contracts. In Service-oriented computing—ICSOC 2003. Lecture Notes in Computer Science (Vol. 2910, pp. 303–318). Berlin: Springer.Telang, P. R., & Singh, M. P. (2009). Conceptual modeling: Foundations and applications. Enhancing tropos with commitments (pp. 417–435).Vázquez-Salceda, J., Confalonieri, R., Gomez, I., Storms, P., Nick Kuijpers, S. P., & Alvarez, S. (2009). Modelling contractually-bounded interactions in the car insurance domain. DIGIBIZ 2009.Viganò, F., & Colombetti, M. (2007). Symbolic model checking of institutions. In ICEC (pp. 35–44).Walton, C. D. (2007). Verifiable agent dialogues. Journal of Applied Logic, 5(2):197–213, Logic-Based Agent Verification.Winkler, S., & Pilgrim, J. (2010). A survey of traceability in requirements engineering and model-driven development. Software and Systems Modeling (SoSyM), 9(4), 529–565.Wooldridge, M., Fisher, M., Huget, M., & Parsons, S. (2002). Model checking multi-agent systems with mable. In AAMAS02 (pp. 952–959). ACM

    Improving Distributed Decision Making in Inventory Management: A Combined ABC-AHP Approach Supported by Teamwork

    Get PDF
    [EN] The need of organizations to ensure service levels that impact on customer satisfaction has required the design of collaborative processes among stakeholders involved in inventory decision making. The increase of quantity and variety of items, on the one hand, and demand and customer expectations, on the other hand, are transformed into a greater complexity in inventory management, requiring effective communication and agreements between the leaders of the logistics processes. Traditionally, decision making in inventory management was based on approaches conditioned only by cost or sales volume. These approaches must be overcome by others that consider multiple criteria, involving several areas of the companies and taking into account the opinions of the stakeholders involved in these decisions. Inventory management becomes part of a complex system that involves stakeholders from different areas of the company, where each agent has limited information and where the cooperation between such agents is key for the system's performance. In this paper, a distributed inventory control approach was used with the decisions allowing communication between the stakeholders and with a multicriteria group decision-making perspective. This work proposes a methodology that combines the analysis of the value chain and the AHP technique, in order to improve communication and the performance of the areas related to inventory management decision making. This methodology uses the areas of the value chain as a theoretical framework to identify the criteria necessary for the application of the AHP multicriteria group decision-making technique. These criteria were defined as indicators that measure the performance of the areas of the value chain related to inventory management and were used to classify ABC inventory of the products according to these selected criteria. Therefore, the methodology allows us to solve inventory management DDM based on multicriteria ABC classification and was validated in a Colombian company belonging to the graphic arts sector.Pérez Vergara, IG.; Arias Sánchez, JA.; Poveda Bautista, R.; Diego-Mas, JA. (2020). Improving Distributed Decision Making in Inventory Management: A Combined ABC-AHP Approach Supported by Teamwork. Complexity. 2020:1-13. https://doi.org/10.1155/2020/6758108S1132020Poveda-Bautista, R., Baptista, D. C., & García-Melón, M. (2012). Setting competitiveness indicators using BSC and ANP. International Journal of Production Research, 50(17), 4738-4752. doi:10.1080/00207543.2012.657964Castro Zuluaga, C. A., Velez Gallego, M. C., & Catro Urrego, J. A. (2011). Clasificación ABC Multicriterio: Tipos de Criterios y efectos en la asignación de pesos. ITECKNE, 8(2). doi:10.15332/iteckne.v8i2.35Morash, E. A., & Clinton, S. R. (1998). Supply Chain Integration: Customer Value through Collaborative Closeness versus Operational Excellence. Journal of Marketing Theory and Practice, 6(4), 104-120. doi:10.1080/10696679.1998.11501814Fabbe-Costes, N. (2015). Évaluer la création de valeurdu Supply Chain Management. Logistique & Management, 23(4), 41-50. doi:10.1080/12507970.2015.11758621Flores, B. E., & Clay Whybark, D. (1986). Multiple Criteria ABC Analysis. International Journal of Operations & Production Management, 6(3), 38-46. doi:10.1108/eb054765Partovi, F. Y., & Burton, J. (1993). Using the Analytic Hierarchy Process for ABC Analysis. International Journal of Operations & Production Management, 13(9), 29-44. doi:10.1108/01443579310043619Balaji, K., & Kumar, V. S. S. (2014). Multicriteria Inventory ABC Classification in an Automobile Rubber Components Manufacturing Industry. Procedia CIRP, 17, 463-468. doi:10.1016/j.procir.2014.02.044Ramanathan, R. (2006). ABC inventory classification with multiple-criteria using weighted linear optimization. Computers & Operations Research, 33(3), 695-700. doi:10.1016/j.cor.2004.07.014Van Kampen, T. J., Akkerman, R., & Pieter van Donk, D. (2012). SKU classification: a literature review and conceptual framework. International Journal of Operations & Production Management, 32(7), 850-876. doi:10.1108/01443571211250112Flores, B. E., Olson, D. L., & Dorai, V. K. (1992). Management of multicriteria inventory classification. Mathematical and Computer Modelling, 16(12), 71-82. doi:10.1016/0895-7177(92)90021-cGajpal, P. P., Ganesh, L. S., & Rajendran, C. (1994). Criticality analysis of spare parts using the analytic hierarchy process. International Journal of Production Economics, 35(1-3), 293-297. doi:10.1016/0925-5273(94)90095-7Scala, N. M., Rajgopal, J., & Needy, K. L. (2014). Managing Nuclear Spare Parts Inventories: A Data Driven Methodology. IEEE Transactions on Engineering Management, 61(1), 28-37. doi:10.1109/tem.2013.2283170Hadad, Y., & Keren, B. (2013). ABC inventory classification via linear discriminant analysis and ranking methods. International Journal of Logistics Systems and Management, 14(4), 387. doi:10.1504/ijlsm.2013.052744Altay Guvenir, H., & Erel, E. (1998). Multicriteria inventory classification using a genetic algorithm. European Journal of Operational Research, 105(1), 29-37. doi:10.1016/s0377-2217(97)00039-8Rezaei, J., & Dowlatshahi, S. (2010). A rule-based multi-criteria approach to inventory classification. International Journal of Production Research, 48(23), 7107-7126. doi:10.1080/00207540903348361Hatefi, S. M., Torabi, S. A., & Bagheri, P. (2013). Multi-criteria ABC inventory classification with mixed quantitative and qualitative criteria. International Journal of Production Research, 52(3), 776-786. doi:10.1080/00207543.2013.838328Ishizaka, A., Pearman, C., & Nemery, P. (2012). AHPSort: an AHP-based method for sorting problems. International Journal of Production Research, 50(17), 4767-4784. doi:10.1080/00207543.2012.657966Yu, M.-C. (2011). Multi-criteria ABC analysis using artificial-intelligence-based classification techniques. Expert Systems with Applications, 38(4), 3416-3421. doi:10.1016/j.eswa.2010.08.127Tsai, C.-Y., & Yeh, S.-W. (2008). A multiple objective particle swarm optimization approach for inventory classification. International Journal of Production Economics, 114(2), 656-666. doi:10.1016/j.ijpe.2008.02.017Aydin Keskin, G., & Ozkan, C. (2013). Multiple Criteria ABC Analysis with FCM Clustering. Journal of Industrial Engineering, 2013, 1-7. doi:10.1155/2013/827274Lolli, F., Ishizaka, A., & Gamberini, R. (2014). New AHP-based approaches for multi-criteria inventory classification. International Journal of Production Economics, 156, 62-74. doi:10.1016/j.ijpe.2014.05.015Raja, A. M. L., Ai, T. J., & Astanti, R. D. (2016). A Clustering Classification of Spare Parts for Improving Inventory Policies. IOP Conference Series: Materials Science and Engineering, 114, 012075. doi:10.1088/1757-899x/114/1/012075Zowid, F. M., Babai, M. Z., Douissa, M. R., & Ducq, Y. (2019). Multi-criteria inventory ABC classification using Gaussian Mixture Model. IFAC-PapersOnLine, 52(13), 1925-1930. doi:10.1016/j.ifacol.2019.11.484Babai, M. Z., Ladhari, T., & Lajili, I. (2014). On the inventory performance of multi-criteria classification methods: empirical investigation. International Journal of Production Research, 53(1), 279-290. doi:10.1080/00207543.2014.952791Schneeweiss, C. (2003). Distributed decision making––a unified approach. European Journal of Operational Research, 150(2), 237-252. doi:10.1016/s0377-2217(02)00501-5Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. doi:10.1504/ijssci.2008.017590Cakir, O., & Canbolat, M. S. (2008). A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35(3), 1367-1378. doi:10.1016/j.eswa.2007.08.041Liu, J., Liao, X., Zhao, W., & Yang, N. (2016). A classification approach based on the outranking model for multiple criteria ABC analysis. Omega, 61, 19-34. doi:10.1016/j.omega.2015.07.004Douissa, M. R., & Jabeur, K. (2016). A New Model for Multi-criteria ABC Inventory Classification: PROAFTN Method. Procedia Computer Science, 96, 550-559. doi:10.1016/j.procs.2016.08.233Lolli, F., Balugani, E., Ishizaka, A., Gamberini, R., Rimini, B., & Regattieri, A. (2018). Machine learning for multi-criteria inventory classification applied to intermittent demand. Production Planning & Control, 30(1), 76-89. doi:10.1080/09537287.2018.1525506Kartal, H., Oztekin, A., Gunasekaran, A., & Cebi, F. (2016). An integrated decision analytic framework of machine learning with multi-criteria decision making for multi-attribute inventory classification. Computers & Industrial Engineering, 101, 599-613. doi:10.1016/j.cie.2016.06.004López-Soto, D., Angel-Bello, F., Yacout, S., & Alvarez, A. (2017). A multi-start algorithm to design a multi-class classifier for a multi-criteria ABC inventory classification problem. Expert Systems with Applications, 81, 12-21. doi:10.1016/j.eswa.2017.02.048Dweiri, F., Kumar, S., Khan, S. A., & Jain, V. (2016). Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Systems with Applications, 62, 273-283. doi:10.1016/j.eswa.2016.06.030Bruno, G., Esposito, E., Genovese, A., & Simpson, M. (2016). Applying supplier selection methodologies in a multi-stakeholder environment: A case study and a critical assessment. Expert Systems with Applications, 43, 271-285. doi:10.1016/j.eswa.2015.07.016Poza, C. (2020). A Conceptual Model to Measure Football Player’s Market Value. A Proposal by means of an Analytic Hierarchy Process. [Un modelo conceptual para medir el valor de mercado de los futbolistas. Una propuesta a través de un proceso analítico jerárquico]. RICYDE. Revista internacional de ciencias del deporte, 16(59), 24-42. doi:10.5232/ricyde2020.05903Guarnieri, P., Sobreiro, V. A., Nagano, M. S., & Marques Serrano, A. L. (2015). The challenge of selecting and evaluating third-party reverse logistics providers in a multicriteria perspective: a Brazilian case. Journal of Cleaner Production, 96, 209-219. doi:10.1016/j.jclepro.2014.05.040Ishizaka, A., & Labib, A. (2011). Selection of new production facilities with the Group Analytic Hierarchy Process Ordering method. Expert Systems with Applications, 38(6), 7317-7325. doi:10.1016/j.eswa.2010.12.004Partovi, F. Y., & Anandarajan, M. (2002). Classifying inventory using an artificial neural network approach. Computers & Industrial Engineering, 41(4), 389-404. doi:10.1016/s0360-8352(01)00064-xAlonso-Manzanedo, M., De-la -Fuente-Aragon, M. V., & Ros-McDonnell, L. (2013). A Proposed Collaborative Network Enterprise Model in the Fruit-and-Vegetable Sector Using Maturity Models. Annals of Industrial Engineering 2012, 359-366. doi:10.1007/978-1-4471-5349-8_42Augusto, M., Lisboa, J., Yasin, M., & Figueira, J. R. (2008). Benchmarking in a multiple criteria performance context: An application and a conceptual framework. European Journal of Operational Research, 184(1), 244-254. doi:10.1016/j.ejor.2006.10.05

    A systematic literature review of Total Quality Management (TQM) implementation in the organization

    Full text link
    [EN] In today’s market situation and complex business environment, organization must be able to deliver the customer’s requirement and the expectations which are critical to the satisfaction such as high product quality, faster delivery and competitive cost. Organization need to apply a comprehensive concept and method on managing those requirements. The concept of Total Quality Management (TQM) is considered as one of a popular concept used to manage the quality of product and services comprehensively. This research is to observe is this concept and method still relevant to be use and effectively improved the business performance as well as customer satisfaction. It is a systematic literature review to the literatures from many industry sectors that were collected and reviewed in detail. The result show that this concept is still being used by many organizations around the world and its successfully help the organization to improve their competitiveness, business growth and the sustainability as well as increase employee’s morale.This article was completed thanks to the financial support from the university of Mercu Buana, Jakarta-Indonesia. It also completed with the purpose and motivation of the authors to have an innovate research thinking as well as the contribution to the future researcher.Permana, A.; Purba, H.; Rizkiyah, N. (2021). A systematic literature review of Total Quality Management (TQM) implementation in the organization. International Journal of Production Management and Engineering. 9(1):25-36. https://doi.org/10.4995/ijpme.2021.13765OJS253691Alanazi, M.H. (2020). The mediating role of primary TQM factors and strategy in the relationship between supportive TQM factors and organisational results: An empirical assessment using the MBNQA model. Cogent Business and Management, 7(1). https://doi.org/10.1080/23311975.2020.1771074Antunes, M.G., Mucharreira, P.R., Justino, M. do R.T., & Quirós, J.T. (2018). Total Quality Management Implementation in Portuguese Higher Education Institutions. Proceedings MDPI, 2(21), 1342. https://doi.org/10.3390/proceedings2211342Arifin, J. (2016). Penguatan Manajemen Syariah Melalui Total Quality Managementbagi Pelaku Lembaga Keuangan Syariah Di Kota Semarang. Jurnal At-Taqaddum, Volume 8, Nomor 2, November 2016, 8(2), 180. https://doi.org/10.21580/at.v8i2.1170Balasubramanian, M. (2016). Total Quality Management [TQM] in the Healthcare Industry - Challenges, Barriers and Implementation Developing a Framework for TQM Implementation in a Healthcare Setup. Science Journal of Public Health, 4(4), 271. https://doi.org/10.11648/j.sjph.20160404.11Benzaquen, J., Carlos, M., Norero, G., Armas, H., & Pacheco, H. (2019). Quality in private health companies in Peru: The relation of QMS & ISO 9000 principles on TQM factor. International Journal of Healthcare Management, 0(0), 1-9. https://doi.org/10.1080/20479700.2019.1644472Bigliardi, B., & Galati, F. (2014). The implementation of TQM in R&D environments. Journal of Technology Management and Innovation, 9(2), 157-171. https://doi.org/10.4067/S0718-27242014000200012Bunglowala, A., & Asthana, N. (2016). A Total Quality Management Approach in Teaching and Learning Process. International Journal of Management (IJM), 7(5), 223-227. http://www.iaeme.com/MasterAdmin/uploadfolder/IJM_07_05_021/IJM_07_05_021.pdfBusu, M. (2019). Applications of TQM Processes to Increase the Management Performance of Enterprises in the Romanian Renewable Energy Sector. Processes MDPI. https://doi.org/10.3390/pr7100685Dahlgaard, J.J., Kristensen, K., & Kanji, G.K. (2002). Fundamentals of Total Quality Management: Process analysis and improvement Jens. Original illustrations © Taylor & Francis 2002. https://doi.org/10.4324/9780203930021Dewi, H.P., Lumbanraja, P., & Matondang, R. (2015). Implementation of Total Quality Management and Interpersonal Communication in Achieving Student Satisfaction through Service Quality at Yayasan Pendidikan Islam, Miftahussalam, Medan. International Journal of Research and Review, 2(6), 343-347. http://www.gkpublication.in/IJRR_Vol.2_Issue6_June2015/IJRR0066.pdfEltawy, N., & Gallear, D. (2017). Leanness and agility: A comparative theoretical view. Industrial Management and Data Systems, 117(1), 149-165. https://doi.org/10.1108/IMDS-01-2016-0032Fitriani, F. (2019). Persiapan Total Quality Management (Tqm). Adaara: Jurnal Manajemen Pendidikan Islam, 9(2), 908-919. https://doi.org/10.35673/ajmpi.v9i2.426Garcia-Alcaraz, J.L., Flor-Montalvo, F.J., Avelar-Sosa, L., Sánchez-Ramírez, C., & Jiménez-Macías, E. (2019). Human resource abilities and skills in TQM for sustainable enterprises. Sustainability MDPI, 11(22), 6488. https://doi.org/10.3390/su11226488George, S., & Weimerskirch, A. (1998). Total quality management: Strategies and techniques proven at todays' most successful companies (Second ed.). John Wiley & Sons, Inc.Green, F.B. (2006). Six-sigma and the revival of TQM. Total Quality Management and Business Excellence, 17(10), 1281-1286. https://doi.org/10.1080/14783360600753711Gómez-López, R., Serrano-Bedia, A.M., & López-Fernández, M.C. (2016). Motivations for implementing TQM through the EFQM model in Spain: an empirical investigation. Total Quality Management and Business Excellence, 27(11-12), 1224-1245. https://doi.org/10.1080/14783363.2015.1068688Haffar, M., Al-Karaghouli, W., & Ghoneim, A. (2013). An analysis of the influence of organisational culture on TQM implementation in an era of global marketing: The case of Syrian manufacturing organisations. International Journal of Productivity and Quality Management, 11(1), 96-115. https://doi.org/10.1504/IJPQM.2013.050570Hasan, K., Islam, M.S., Shams, A.T., & Gupta, H. (2018). Total Quality Management (TQM): Implementation in Primary Education System of Bangladesh. International Journal of Research in Industrial Engineering, 7(3), 370-380. https://doi.org/10.22105/riej.2018.128170.1041Houston, D. (2007). TQM and higher education: A critical systems perspective on fitness for purpose. Quality in Higher Education, 13(1), 3-17. https://doi.org/10.1080/13538320701272672Kaname, O. (2003). Handbook for TQM and QCC Vol 1. In Handbook (Vol. 1). Kantardjieva, M. (2015). The Relationship between Total Quality Management (TQM) and Strategic Management. Journal of Economics, Business and Management, 3(5), 537-541. https://doi.org/10.7763/JOEBM.2015.V3.242Kim, G.-S. (2016). Effect of Total Quality Management on Customer Satisfaction. International Journal of Engineering Sciences & Research Technology, 5(6), 507-514. https://doi.org/10.5281/zenodo.55618Kiruthiga, K. (2016). Major factors affecting the execution of total quality management in the construction industry in India. Journal of Chemical and Pharmaceutical Sciences, 9(2), E135-E140.Kumar, S., & Shanmuganathan, J. (2019). A structural relationship between TQM practices and organizational performance with reference to selected auto component manufacturing companies. International Journal of Management, 10(5). https://doi.org/10.34218/IJM.10.5.2019/009Kumar, U., Kumar, V., de Grosbois, D., & Choisne, F. (2009). Continuous improvement of performance measurement by TQM adopters. Total Quality Management & Business Excellence, 20(6), 603-616. https://doi.org/10.1080/14783360902924242Kuo, C. (2016). Effects of Total Quality Management Implementation and Supply Chain Management Capability on Customer Capital. The Journal of Global Business Management, 12(2), 47-60.Lawrence, J.J., & McCollough, M.A. (2004). Implementing Total Quality Management in the Classroom by Means of Student Satisfaction Guarantees. Total Quality Management and Business Excellence, 15(2), 235-254. https://doi.org/10.1080/1478336032000149063Mensah, J.O., Copuroglu, G., & Fening, F.A. (2012). Total Quality Management in Ghana: Critical Success Factors and Model for Implementation of a Quality Revolution. Journal of African Business, 13(2), 123-133. https://doi.org/10.1080/15228916.2012.693444Mercy, O., & Taiye, T.B. (2015). Strategic Imperatives of Total Quality Management and Customer Satisfaction in Organizational Sustainability. International Journal of Academic Research in Business and Social Sciences, 5(4), 1-22. https://doi.org/10.6007/IJARBSS/v5-i4/1538Mitreva, E., Cvetkovik, D., Filiposki, O., Taskov, N., & Gjorshevski, H. (2016). The Effects of Total Quality Management Practices on Performance within a Company for Frozen Food in the Republic of Macedonia. TEM Journal, 5(3), 339-346. https://doi.org/10.18421/TEM53-14Morath, C., & Doluschitz, R. (2009). Total Quality Management in the food industry - Current situation and potential in Germany. Applied Studies In Agribusiness And Commerce, 3(3-4), 83-87. https://doi.org/10.19041/APSTRACT/2009/3-4/18Musenze, I.A., & Thomas, M.S. (2020). Development and validation of a total quality management model for Uganda's local governments. Cogent Business and Management, 7(1), 1-22. https://doi.org/10.1080/23311975.2020.1767996Neyestani, B., & Juanzon, J.B.P. (2016). Developing an Appropriate Performance Measurement Framework for Total Quality Management (TQM) in Construction and Other Industries. IRA-International Journal of Technology & Engineering (ISSN 2455-4480), 5(2), 32. https://doi.org/10.21013/jte.v5.n2.p2Ngambi, M.T., & Nkemkiafu, A.G. (2015). The Impact of Total Quality Management on Firm's Organizational Performance Marcel. American Journal of Management, 15(4), 57-76.Nicolaou, N., & Kentas, G. (2017). Total Quality Management Implementation Failure Reasons in Healthcare Sector. Journal of Health Science 5 (2017) 110-113, 5(2), 110-113. https://doi.org/10.17265/2328-7136/2017.02.007Nugroho, T.W., & Nurcahyo, R. (2018). Analysis of Total Quality Management (TQM) implementation in small medium industries. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2018(Jul), 607-618.Oakland, J.S. (2003). Total quality management - Text with cases. In Butterworth-Heinemann (Third Edit). Butterworth-Heinemann.Phan, A.C., Nguyen, H.T., Nguyen, H.A., & Matsui, Y. (2019). Effect of total quality management practices and jit production practices on flexibility performance: Empirical evidence from international manufacturing plants. MDPI Sustainability (Switzerland), 11(11). https://doi.org/10.3390/su11113093Prajogo, D.I., & Brown, A. (2004). The Relationship between TQM Practices and Quality Performance and the Role of Formal TQM Programs: An Australian Empirical Study. Quality Management Journal, 11(4), 31-42. https://doi.org/10.1080/10686967.2004.11919131Ramlawati, & Putra, A.H.P.K. (2018). Total Quality Management as the Key of the Company to Gain the Competitiveness, Performance Achievement and Consumer Satisfaction. International Review of Management and Marketing, 8(5), 60-69.Rogers, R.E. (2013). Implementation of Total Quality Management A Comprehensive Training Program. 1996 by The Haworth Press, Inc. All rights reserved.Sabet, E., Adams, E., & Yazdani, B. (2014). Quality management in heavy duty manufacturing industry: TQM vs. Six Sigma. Total Quality Management and Business Excellence, 27(1-2), 215-225. https://doi.org/10.1080/14783363.2014.972626Sader, S., Husti, I., & Daróczi, M. (2017). Suggested Indicators To Measure the Impact of Industry 4.0 on Total Quality Management. International Scientific Journal: Industry 4.0, 2(6), 298-301. https://stumejournals.com/journals/i4/2017/6/298/pdfSadikoglu, E., & Olcay, H. (2014). The Effects of Total Quality Management Practices on Performance and the Reasons of and the Barriers to TQM Practices in Turkey. Laboratory Management Information Systems: Current Requirements and Future Perspectives, 2014, 996-1027. https://doi.org/10.1155/2014/537605Sainis, G., Haritos, G., Kriemadis, T., & Fowler, M. (2017). The quality journey for Greek SMEs and their financial performance. Production and Manufacturing Research, 5(1), 306-327. https://doi.org/10.1080/21693277.2017.1374891Santos, A.C. de S.G. dos, Carvalho, L.M., Souza, C.F. de, Reis, A. da C., & Freitag, A.E.B. (2019). Total Quality Management: the case of an electricity distribution company. Brazilian Journal of Operations & Production Management, 16(1), 53-65. https://doi.org/10.14488/BJOPM.2019.v16.n1.a5Sari, & Firdaus, A. (2018). The Impact of Total Quality Management Implementation on Small and Medium Manufacturing Companies. Esensi: Jurnal Bisnis Dan Manajemen, 8(1), 67-78. https://doi.org/10.15408/ess.v8i1.5852Sila, I., & Walczak, S. (2017). Universal versus contextual effects on TQM: a triangulation study using neural networks. Production Planning and Control, 28(5), 367-386. https://doi.org/10.1080/09537287.2017.1296598Sivalai, T., & Rojniruttikul, N. (2018). Determinants of the state railway of Thailand's (SRT) total quality management process: SEM analysis. Journal of International Studies, 11(2). https://doi.org/10.14254/2071-8330.2018/11-2/9Small, E.P., Ayyash, L., & Hamouri, K. Al. (2017). Benchmarking Performance of TQM Principals in Electrical Subcontracting in Dubai: A Case Study. Procedia Engineering, 196(June), 622-629. https://doi.org/10.1016/j.proeng.2017.08.050Sousa-Mendes, G.H. de, Gomes-Salgado, E., & Moro-Ferrari, B.E. (2016). Prioritization of TQM practices in Brazilian medical device SMEs using Analytical Hierarchy Process (AHP) Glauco. DYNA (Colombia), 83(197), 195-203. https://doi.org/10.15446/dyna.v83n197.52205Steiber, A., & Alänge, S. (2013). Do TQM principles need to change? Learning from a comparison to Google Inc. Total Quality Management and Business Excellence, 24(1-2), 48-61. https://doi.org/10.1080/14783363.2012.733256Suarez-Barraza, M.F., & Ablanedo-Rosas, J.H. (2014). Total quality management principles: Implementation experience from Mexican organisations. Total Quality Management and Business Excellence, 25(5-6), 546-560. https://doi.org/10.1080/14783363.2013.867606Sukardi, R.A. (2016). Pengaruh Total Quality Management (TQM) Terhadap Kepuasan Pelanggan Pada Matahari Department Store di Plaza Mulia Samarinda. EJournal Administrasi Bisnis, 4(3), 758-772.Sukdeo, N., Pretorius, J.H., & Vermeulen, A. (2017). The role of Total Quality Management (TQM) practices on improving organisational performance in manufacturing and service organisations. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2017(OCT), 1133-1152.Sutrisno, T.F.C.W. (2019). Relationship between Total Quality Management element, operational performance and organizational performance in food production SMEs. Jurnal Aplikasi Manajemen, 17(2), 285-294. https://doi.org/10.21776/ub.jam.2019.017.02.11Sweis, R., Ismaeil, A., Obeidat, B., & Kanaan, R.K. (2019). Reviewing the Literature on Total Quality Management and Organizational Performance. Journal of Business & Management (COES&RJ-JBM), 7(3), 192-215. https://doi.org/10.25255/jbm.2019.7.3.192.215Talib, F., & Rahman, Z. (2015). Identification and prioritization of barriers to total quality management implementation in service industry: An analytic hierarchy process approach. TQM Journal, 27(5), 591-615. https://doi.org/10.1108/TQM-11-2013-0122Tervonen, P., Pahkala, N., & Haapasalo, H. (2009). Development of TQM in steel manufacturers' production. Ibima Business Review, 1-3, 52-59.Tesfaye, G., & Kitaw, D. (2017). A TQM and JIT Integrated Continuous Improvement Model for Organizational Success: An Innovative Framework. Journal of Optimization in Industrial Engineering, 22, 15-23. https://doi.org/10.22094/joie.2017.265Vukomanovic, M., Radujkovic, M., & Nahod, M.M. (2014). EFQM excellence model as the TQM model of the construction industry of southeastern Europe. Journal of Civil Engineering and Management, 20(1), 70-81. https://doi.org/10.3846/13923730.2013.843582Yang, C.O., & Tsai, M.C. (2014). Improving operations performance through TQM in the post-financial crisis era: An exploratory case study of a multinational IM firm in the Greater China region. Total Quality Management and Business Excellence, 25(5-6), 561-581. https://doi.org/10.1080/14783363.2013.839167Yeng, S.K., Jusoh, M.S., & Ishak, N.A. (2018). The impact of Total Quality Management (TQM) On competitive advantage: A conceptual mixed method study in the Malaysia Luxury hotel industries. Academy of Strategic Management Journal, 17(2), 1-9.Zairi, M. (1991). Total Quality Management for Engineers. In Ccc (Vol. 1). Woodhead Publishing Limited. https://doi.org/10.1533/9781845698911.1Žitkienė, R., & Deksnys, M. (2018). Organizational agility conceptual model. Montenegrin Journal of Economics, 14(2), 115-129. https://doi.org/10.14254/1800-5845/2018.14-2.

    Interoperability, Trust Based Information Sharing Protocol and Security: Digital Government Key Issues

    Full text link
    Improved interoperability between public and private organizations is of key significance to make digital government newest triumphant. Digital Government interoperability, information sharing protocol and security are measured the key issue for achieving a refined stage of digital government. Flawless interoperability is essential to share the information between diverse and merely dispersed organisations in several network environments by using computer based tools. Digital government must ensure security for its information systems, including computers and networks for providing better service to the citizens. Governments around the world are increasingly revolving to information sharing and integration for solving problems in programs and policy areas. Evils of global worry such as syndrome discovery and manage, terror campaign, immigration and border control, prohibited drug trafficking, and more demand information sharing, harmonization and cooperation amid government agencies within a country and across national borders. A number of daunting challenges survive to the progress of an efficient information sharing protocol. A secure and trusted information-sharing protocol is required to enable users to interact and share information easily and perfectly across many diverse networks and databases globally.Comment: 20 page
    corecore