505,709 research outputs found

    Editorial Challenge: From a Quarterly to a Bimonthly Journal

    Get PDF
    Starting with issue 4 of volume 7(2012) International Journal of Computers Communications & Control (INT J COMPUT COMMUN, IJCCC) [4] is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE) [2].Beginning with issue 1 of volume 8(2013) IJCCC will be published as a bimonthly journal (6 issues/year) [5]

    Cell Formation Heuristic Procedure Considering Production Data

    Full text link
    [EN] Manufacturing cell formation is one of foremost, and critical aspect of any manufacturing cell design problem. A large number of cell formation methods are developed and still counting. Consideration of production data in cell formation makes these methods more complex and tedious. In this paper an attempt has been made to develop a simple, easy to understand and implement cell formation procedure, having the capability to handle production data viz. operation sequence, production volume, and inter-cell movement cost simultaneously. The results obtained from proposed procedures are in tune with some highly complex methods, which validates the performance of proposed procedure. To demonstrate its ability to handle other production parameters with little modifications, a modification for consideration to part processing cost in addition to above mentioned production data is developed and explained. Towards the end the procedure to handle alternate process plans in conjugation with production data by the proposed cell formation procedure is also discussed.Kumar, S.; Sharma, RK. (2014). Cell Formation Heuristic Procedure Considering Production Data. International Journal of Production Management and Engineering. 2(2):75-84. doi:10.4995/ijpme.2014.2078SWORD758422Ahi, A., Aryanezhad, M. B., Ashtiani, B., & Makui, A. (2009). A novel approach to determine cell formation, intracellular machine layout and cell layout in the CMS problem based on TOPSIS method. Computers & Operations Research, 36(5), 1478-1496. doi:10.1016/j.cor.2008.02.012Arkat, J., Hosseinabadi Farahani, M., & Hosseini, L. (2011). Integrating cell formation with cellular layout and operations scheduling. The International Journal of Advanced Manufacturing Technology, 61(5-8), 637-647. doi:10.1007/s00170-011-3733-4Beaulieu, A., Ait-Kadi, D., & Gharbi, A. (1993). Heuristic for Flexible Machine Selection Problems. Journal of Decision Systems, 2(3-4), 241-253. doi:10.1080/12460125.1993.10511583Beaulieu, A., Gharbi, A., & Ait-Kadi. (1997). An algorithm for the cell formation and the machine selection problems in the design of a cellular manufacturing system. International Journal of Production Research, 35(7), 1857-1874. doi:10.1080/002075497194958Boutsinas, B. (2013). Machine-part cell formation using biclustering. European Journal of Operational Research, 230(3), 563-572. doi:10.1016/j.ejor.2013.05.007Chow, W. S., and Hawaleshka, O., (1992), An efficient algorithm for solving the machine chaining problem in cellular manufacturing, Computers ind. Engng., Vol. 22, No. 1, 95-100.CHU, C.-H., & TSAI, M. (1990). A comparison of three array-based clustering techniques for manufacturing cell formation. International Journal of Production Research, 28(8), 1417-1433. doi:10.1080/00207549008942802Nair, G. J., & Narendran, T. T. (1998). CASE: A clustering algorithm for cell formation with sequence data. International Journal of Production Research, 36(1), 157-180. doi:10.1080/002075498193985Jie Lian, Chen Guang Liu, Wen Juan Li, Steve Evans, Yong Yin, (2013), Formation of independent manufacturing cells with the consideration of multiple identical machines, International journal of production research, Kim, C. O.,Baek, J. G., Baek, J. K., (2004), A two-phase heuristic algorithm for cell formation problems considering alternative part routes and machine sequences, International Journal of Production Research, 42:18, 3911-3927,Krushinsky, D., & Goldengorin, B. (2012). An exact model for cell formation in group technology. Computational Management Science, 9(3), 323-338. doi:10.1007/s10287-012-0146-2Kumar, L. (2008). Part-machine group formation with operation sequence, time and production volume. International Journal of Simulation Modelling, 7(4), 198-209. doi:10.2507/ijsimm07(4)4.113Lokesh, K., & Jain, P. K. (2010). Concurrently part-machine groups formation with important production data. International Journal of Simulation Modelling, 9(1), 5-16. doi:10.2507/ijsimm09(1)1.133Miltenburg, J., & Zhang, W. (1991). A comparative evaluation of nine well-known algorithms for solving the cell formation problem in group technology. Journal of Operations Management, 10(1), 44-72. doi:10.1016/0272-6963(91)90035-vMukattash, A. M., Adil, M. B., & Tahboub, K. K. (2002). Heuristic approaches for part assignment in cell formation. Computers & Industrial Engineering, 42(2-4), 329-341. doi:10.1016/s0360-8352(02)00020-7Mahesh, O., & Srinivasan, G. (2002). Incremental cell formation considering alternative machines. International Journal of Production Research, 40(14), 3291-3310. doi:10.1080/00207540210146189Sudhakara Pandian, R., & Mahapatra, S. S. (2009). Manufacturing cell formation with production data using neural networks. Computers & Industrial Engineering, 56(4), 1340-1347. doi:10.1016/j.cie.2008.08.003Papaioannou, G., & Wilson, J. M. (2010). The evolution of cell formation problem methodologies based on recent studies (1997–2008): Review and directions for future research. European Journal of Operational Research, 206(3), 509-521. doi:10.1016/j.ejor.2009.10.020Sarker, B. R., (1996), The resemblance coefficients in group technology: a survey and comparative study of relational metrics, Computers ind. Engng., Vol. 30, No. 1, 103-116.Seifoddini, H., (1998), Comparison between single linkage and average linkage clustering techniques in forming machine cells", Computers & industrial engineering 15(14), 210-216.SHAFER, S. M., & MEREDITH, J. R. (1990). A comparison of selected manufacturing cell formation techniques. International Journal of Production Research, 28(4), 661-673. doi:10.1080/00207549008942747VENUGOPAL, V., & NARENDRAN, T. T. (1994). Machine-cell formation through neural network models. International Journal of Production Research, 32(9), 2105-2116. doi:10.1080/00207549408957061Won, Y., & Lee, K. C. (2001). Group technology cell formation considering operation sequences and production volumes. International Journal of Production Research, 39(13), 2755-2768. doi:10.1080/00207540010005060Yasuda *, K., Hu, L., & Yin, Y. (2005). A grouping genetic algorithm for the multi-objective cell formation problem. International Journal of Production Research, 43(4), 829-853. doi:10.1080/00207540512331311859Yin, Y., & Yasuda, K. (2005). Similarity coefficient methods applied to the cell formation problem: a comparative investigation. Computers & Industrial Engineering, 48(3), 471-489. doi:10.1016/j.cie.2003.01.001Yin, Y., & Yasuda, K. (2006). Similarity coefficient methods applied to the cell formation problem: A taxonomy and review. International Journal of Production Economics, 101(2), 329-352. doi:10.1016/j.ijpe.2005.01.01

    Sustainable Higher Education Development through Technology Enhanced Learning

    Full text link
    [EN] Higher education is incorporating Information and Communication Technology (ICT) at a fast rate for different purposes. Scientific papers include within the concept of Technology Enhanced Learning (TEL) the myriad applications of information and communication technology, e-resources, and pedagogical approaches to the development of education. TEL¿s specific application to higher education is especially relevant for countries under rapid development for providing quick and sustainable access to quality education (UN sustainable development goal 4). This paper presents the research results of an online pedagogical experience in collaborative academic research for analyzing good practice in TEL-supported higher education development. The results are obtained through a pilot implementation providing curated data on TEL competency¿s development of faculty skills and analysis of developing sustainable higher education degrees through TEL cooperation, for capacity building. Given the increased volume and complexity of the knowledge to be delivered, and the exponential growth of the need for skilled workers in emerging economies, online training is the most effective way of delivering a sustainable higher education. The results of the PETRA Erasmus+ capacity-building project provides evidence of a successful implementation of a TEL-supported methodology for collaborative faculty development focused on future online degrees built collaboratively and applied locally.This research was co-funded by the European Commission through the Erasmus+ KA2 project "Promoting Excellence in Teaching and Learning in Azerbaijani Universities (PETRA)" project number 573630-EPP-1-2016-1-ES-EPPKA2-CBHE-JP.Orozco-Messana, J.; Martínez-Rubio, J.; Gonzálvez-Pons, AM. (2020). Sustainable Higher Education Development through Technology Enhanced Learning. Sustainability. 12(9):1-13. https://doi.org/10.3390/su12093600S113129Abdullah, F., & Ward, R. (2016). Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56, 238-256. doi:10.1016/j.chb.2015.11.036Becker, H. J., & Ravitz, J. (1999). The Influence of Computer and Internet Use on Teachers’ Pedagogical Practices and Perceptions. Journal of Research on Computing in Education, 31(4), 356-384. doi:10.1080/08886504.1999.10782260Mumford, S., & Dikilitaş, K. (2020). Pre-service language teachers reflection development through online interaction in a hybrid learning course. Computers & Education, 144, 103706. doi:10.1016/j.compedu.2019.103706Lee, D., Watson, S. L., & Watson, W. R. (2020). The Relationships Between Self-Efficacy, Task Value, and Self-Regulated Learning Strategies in Massive Open Online Courses. The International Review of Research in Open and Distributed Learning, 21(1), 23-39. doi:10.19173/irrodl.v20i5.4389Passey, D. (2019). Technology‐enhanced learning: Rethinking the term, the concept and its theoretical background. British Journal of Educational Technology, 50(3), 972-986. doi:10.1111/bjet.12783Lai, Y.-C., & Peng, L.-H. (2019). Effective Teaching and Activities of Excellent Teachers for the Sustainable Development of Higher Design Education. Sustainability, 12(1), 28. doi:10.3390/su12010028Lee, S., Lee, H., & Kim, T. (2018). A Study on the Instructor Role in Dealing with Mixed Contents: How It Affects Learner Satisfaction and Retention in e-Learning. Sustainability, 10(3), 850. doi:10.3390/su10030850“Continuous Improvement in Teaching Strategies through Lean Principles”. Teaching & Learning Symposium, University of Southern Indiana http://hdl.handle.net/20.500.12419/455The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. (2003). Journal of Management Information Systems, 19(4), 9-30. doi:10.1080/07421222.2003.11045748Goodman, J., Melkers, J., & Pallais, A. (2019). Can Online Delivery Increase Access to Education? Journal of Labor Economics, 37(1), 1-34. doi:10.1086/698895Alexander, J., Barcellona, M., McLachlan, S., & Sackley, C. (2019). Technology-enhanced learning in physiotherapy education: Student satisfaction and knowledge acquisition of entry-level students in the United Kingdom. Research in Learning Technology, 27(0). doi:10.25304/rlt.v27.2073How Can Adaptive Platforms Improve Student Learning Outcomes? A Case Study of Open Educational Resources and Adaptive Learning Platforms https://ssrn.com/abstract=3478134Sun, A., & Chen, X. (2016). Online Education and Its Effective Practice: A Research Review. Journal of Information Technology Education: Research, 15, 157-190. doi:10.28945/3502EU Commission https://ec.europa.eu/education/education-in-the-eu/digital-education-action-plan_enEssence Project https://husite.nl/essence/Orozco-Messana, J., de la Poza-Plaza, E., & Calabuig-Moreno, R. (2020). Experiences in Transdisciplinary Education for the Sustainable Development of the Built Environment, the ISAlab Workshop. Sustainability, 12(3), 1143. doi:10.3390/su12031143Kurilovas, E., & Kubilinskiene, S. (2020). Lithuanian case study on evaluating suitability, acceptance and use of IT tools by students – An example of applying Technology Enhanced Learning Research methods in Higher Education. Computers in Human Behavior, 107, 106274. doi:10.1016/j.chb.2020.10627

    Factors Affecting Teacher Readiness for Online Learning (TROL) in Early Childhood Education: TISE and TPACK

    Get PDF
    This study aims to find empirical information about the effect of Technological Pedagogical Content Knowledge (TPACK), and Technology Integration Self Efficacy (TISE) on Teacher Readiness for Online Learning (TROL). This study uses a quantitative survey method with path analysis techniques. This study measures the readiness of kindergarten teachers in distance learning in Tanah Datar Regency, West Sumatra Province, Indonesia with a sampling technique using simple random sampling involving 105 teachers. Empirical findings reveal that; 1) there is a direct positive effect of Technology Integration Self Efficacy on Teacher Readiness for Online Learning; 2) there is a direct positive effect of PACK on Teacher Readiness for Online Learning; 3) there is a direct positive effect of Technology Integration Self Efficacy on TPACK. If want to improve teacher readiness for online learning, Technological Pedagogical Content Knowledge (TPACK) must be improved by paying attention to Technology Integration Self Efficacy (TISE). Keywords: TROL, TPACK, TISE, Early Childhood Education References: Abbitt, J. T. (2011). An Investigation of the Relationship between Self-Efficacy Beliefs about Technology Integration and Technological Pedagogical Content Knowledge (TPACK) among Preservice Teachers. Journal of Digital Learning in Teacher Education, 27(4), 134–143. Adedoyin, O. B., & Soykan, E. (2020). Covid-19 pandemic and online learning: The challenges and opportunities. Interactive Learning Environments, 1–13. https://doi.org/10.1080/10494820.2020.1813180 Adnan, M. (2020). Online learning amid the COVID-19 pandemic: Students perspectives. Journal of Pedagogical Sociology and Psychology, 1(2), 45–51. https://doi.org/10.33902/JPSP.2020261309 Alqurashi, E. (2016). Self-Efficacy in Online Learning Environments: A Literature Review. Contemporary Issues in Education Research (CIER), 9(1), 45–52. https://doi.org/10.19030/cier.v9i1.9549 Amir, H. (2016). Korelasi Pengaruh Faktor Efikasi Diri Dan Manajemen Diri Terhadap Motivasi Berprestasi Pada Mahasiswa Pendidikan Kimia Unversitas Bengkulu. Manajer Pendidikan, 10(4). Anderson, T. (2008). The theory and practice of online learning. Athabasca University Press. Anggraeni, N., Ridlo, S., & Setiati, N. (2018). The Relationship Between TISE and TPACK among Prospective Biology Teachers of UNNES. Journal of Biology Education, 7(3), 305–311. https://doi.org/10.15294/jbe.v7i3.26021 Ariani, D. N. (2015). Hubungan antara Technological Pedagogical Content Knowledge dengan Technology Integration Self Efficacy Guru Matematika di Sekolah Dasar. Muallimuna: Jurnal Madrasah Ibtidaiyah, 1(1), 79–91. Birisci, S., & Kul, E. (2019). Predictors of Technology Integration Self-Efficacy Beliefs of Preservice Teachers. Contemporary Educational Technology, 10(1). https://doi.org/10.30935/cet.512537 Bozkurt, A., Jung, I., Xiao, J., Vladimirschi, V., Schuwer, R., Egorov, G., Lambert, S. R., Al-freih, M., Pete, J., Olcott, D., Rodes, V., Aranciaga, I., Bali, M., Alvarez, A. V, Roberts, J., Pazurek, A., Raffaghelli, J. E., Panagiotou, N., Coëtlogon, P. De, … Paskevicius, M. (2020). UVicSPACE: Research & Learning Repository Navigating in a time of uncertainty and crisis. Asian Journal of Distance Education, 15(1), 1–126. Brinkley-Etzkorn, K. E. (2018). Learning to teach online: Measuring the influence of faculty development training on teaching effectiveness through a TPACK lens. The Internet and Higher Education, 38, 28–35. https://doi.org/10.1016/j.iheduc.2018.04.004 Butnaru, G. I., Niță, V., Anichiti, A., & Brînză, G. (2021). The effectiveness of online education during covid 19 pandemic—A comparative analysis between the perceptions of academic students and high school students from romania. Sustainability (Switzerland), 13(9). https://doi.org/10.3390/su13095311 Carliner, S. (2003). Modeling information for three-dimensional space: Lessons learned from museum exhibit design. Technical Communication, 50(4), 554–570. Cengiz, C. (2015). The development of TPACK, Technology Integrated Self-Efficacy and Instructional Technology Outcome Expectations of pre-service physical education teachers. Asia-Pacific Journal of Teacher Education, 43(5), 411–422. https://doi.org/10.1080/1359866X.2014.932332 Chou, P., & Ph, D. (2012). Effect of Students ’ Self -Directed Learning Abilities on Online Learning Outcomes: Two Exploratory Experiments in Electronic Engineering Department of Education. 2(6), 172–179. Crawford, J., Butler-Henderson, K., Rudolph, J., Malkawi, B., Burton, R., Glowatz, M., Magni, P. A., & Lam, S. (2020). COVID-19: 20 countries’ higher education intra-period digital pedagogy responses. Journal of Applied Learning & Teaching, 3(1). https://doi.org/10.37074/jalt.2020.3.1.7 Dolighan, T., & Owen, M. (2021). Teacher efficacy for online teaching during the COVID-19 pandemic. Brock Education Journal, 30(1), 95. https://doi.org/10.26522/brocked.v30i1.851 Dong, Y., Chai, C. S., Sang, G.-Y., Koh, J. H. L., & Tsai, C.-C. (2015). Exploring the Profiles and Interplays of Pre-service and In-service Teachers’ Technological Pedagogical Content Knowledge (TPACK) in China. International Forum of Educational Technology & Society, 18(1), 158–169. Donitsa-Schmidt, S., & Ramot, R. (2020). Opportunities and challenges: Teacher education in Israel in the Covid-19 pandemic. Journal of Education for Teaching, 46(4), 586–595. https://doi.org/10.1080/02607476.2020.1799708 Elas, N. I. B., Majid, F. B. A., & Narasuman, S. A. (2019). Development of Technological Pedagogical Content Knowledge (TPACK) For English Teachers: The Validity and Reliability. International Journal of Emerging Technologies in Learning (IJET), 14(20), 18. https://doi.org/10.3991/ijet.v14i20.11456 Ghozali, I. (2011). Aplikasi multivariate dengan program IBM SPSS 19. Badan Penerbit Universitas Diponegoro. Giles, R. M., & Kent, A. M. (2016). An Investigation of Preservice Teachers ’ Self-Efficacy for Teaching with Technology. 1(1), 32–40. https://doi.org/10.20849/aes.v1i1.19 Gil-flores, J., & Rodríguez-santero, J. (2017). Computers in Human Behavior Factors that explain the use of ICT in secondary-education classrooms: The role of teacher characteristics and school infrastructure. Computers in Human Behavior, 68, 441–449. https://doi.org/10.1016/j.chb.2016.11.057 Habibi, A., Yusop, F. D., & Razak, R. A. (2019). The role of TPACK in affecting pre-service language teachers’ ICT integration during teaching practices: Indonesian context. Education and Information Technologies. https://doi.org/10.1007/s10639-019-10040-2 Harris, J. B., & Hofer, M. J. (2011). Technological Pedagogical Content Knowledge (TPACK) in Action. Journal of Research on Technology in Education, 43(3), 211–229. https://doi.org/10.1080/15391523.2011.10782570 Hatlevik, I. K. R., & Hatlevik, O. E. (2018). Examining the relationship between teachers’ ICT self-efficacy for educational purposes, collegial collaboration, lack of facilitation and the use of ICT in teaching practice. Frontiers in Psychology, 9(JUN), 1–8. https://doi.org/10.3389/fpsyg.2018.00935 Hung, M. L. (2016). Teacher readiness for online learning: Scale development and teacher perceptions. Computers and Education, 94, 120–133. https://doi.org/10.1016/j.compedu.2015.11.012 Hung, M. L., Chou, C., Chen, C. H., & Own, Z. Y. (2010). Learner readiness for online learning: Scale development and student perceptions. Computers and Education, 55(3), 1080–1090. https://doi.org/10.1016/j.compedu.2010.05.004 Juanda, A., Shidiq, A. S., & Nasrudin, D. (2021). Teacher Learning Management: Investigating Biology Teachers’ TPACK to Conduct Learning During the Covid-19 Outbreak. Jurnal Pendidikan IPA Indonesia, 10(1), 48–59. https://doi.org/10.15294/jpii.v10i1.26499 Karatas, M. A.-K. (2020). COVID - 19 Pandemisinin Toplum Psikolojisine Etkileri ve Eğitime Yansımaları. Journal of Turkish Studies, Volume 15(Volume 15 Issue 4), 1–13. https://doi.org/10.7827/TurkishStudies.44336 Kaymak, Z. D., & Horzum, M. B. (2013). Relationship between online learning readiness and structure and interaction of online learning students. Kuram ve Uygulamada Egitim Bilimleri, 13(3), 1792–1797. https://doi.org/10.12738/estp.2013.3.1580 Keser, H., Karaoğlan Yılmaz, F. G., & Yılmaz, R. (2015). TPACK Competencies and Technology Integration Self-Efficacy Perceptions of Pre-Service Teachers. Elementary Education Online, 14(4), 1193–1207. https://doi.org/10.17051/io.2015.65067 Kim, J. (2020). Learning and Teaching Online During Covid-19: Experiences of Student Teachers in an Early Childhood Education Practicum. International Journal of Early Childhood, 52(2), 145–158. https://doi.org/10.1007/s13158-020-00272-6 Koehler, M. J., Mishra, P., & Cain, W. (2013). What is Technological Pedagogical Content Knowledge (TPACK)? Journal of Education, 193(3), 13–19. https://doi.org/10.1177/002205741319300303 Lee, Y., & Lee, J. (2014). Enhancing pre-service teachers’ self-efficacy beliefs for technology integration through lesson planning practice. Computers and Education, 73, 121–128. https://doi.org/10.1016/j.compedu.2014.01.001 Mallillin, L. L. D., Mendoza, L. C., Mallillin, J. B., Felix, R. C., & Lipayon, I. C. (2020). Implementation and Readiness of Online Learning Pedagogy: A Transition To Covid 19 Pandemic. European Journal of Open Education and E-Learning Studies, 5(2), 71–90. https://doi.org/10.46827/ejoe.v5i2.3321 Mishra, P. (2019). Considering Contextual Knowledge: The TPACK Diagram Gets an Upgrade. Journal of Digital Learning in Teacher Education, 35(2), 76–78. https://doi.org/10.1080/21532974.2019.1588611 Moorhouse, B. L. (2020). Adaptations to a face-to-face initial teacher education course ‘forced’ online due to the COVID-19 pandemic. Journal of Education for Teaching, 46(4), 609–611. https://doi.org/10.1080/02607476.2020.1755205 Mulyadi, D., Wijayatingsih, T. D., Budiastuti, R. E., Ifadah, M., & Aimah, S. (2020). Technological Pedagogical and Content Knowledge of ESP Teachers in Blended Learning Format. International Journal of Emerging Technologies in Learning (IJET), 15(06), 124. https://doi.org/10.3991/ijet.v15i06.11490 Murtaza, G., Mahmood, K., & Fatima, N. (2021). Readiness for Online Learning during COVID-19 pandemic: A survey of Pakistani LIS students The Journal of Academic Librarianship Readiness for Online Learning during COVID-19 pandemic: A survey of Pakistani LIS students. The Journal of Academic Librarianship, 47(3), 102346. https://doi.org/10.1016/j.acalib.2021.102346 Mustika, M., & Sapriya. (2019). Kesiapan Guru IPS dalam E-learning Berdasarkan: Survei melalui Pendekatan TPACK. 32–35. https://doi.org/10.1145/3306500.3306566 Niess, M. L. (2011). Investigating TPACK: Knowledge Growth in Teaching with Technology. Journal of Educational Computing Research, 44(3), 299–317. https://doi.org/10.2190/EC.44.3.c Oketch, & Otchieng, H. (2013). University of Nairobi, H. A. (2013). E-Learning Readiness Assessment Model in Kenyas’ Higher Education Institutions: A Case Study of University of Nairobi by: Oketch, Hada Achieng a Research Project Submitted in Partial Fulfillment of the Requirement of M. October. Pamuk, S., Ergun, M., Cakir, R., Yilmaz, H. B., & Ayas, C. (2015). Exploring relationships among TPACK components and development of the TPACK instrument. Education and Information Technologies, 20(2), 241–263. https://doi.org/10.1007/s10639-013-9278-4 Paraskeva, F., Bouta, H., & Papagianni, A. (2008). Individual characteristics and computer self-efficacy in secondary education teachers to integrate technology in educational practice. Computers and Education, 50(3), 1084–1091. https://doi.org/10.1016/j.compedu.2006.10.006 Putro, S. T., Widyastuti, M., & Hastuti, H. (2020). Problematika Pembelajaran di Era Pandemi COVID-19 Stud Kasus: Indonesia, Filipina, Nigeria, Ethiopia, Finlandia, dan Jerman. Geomedia Majalah Ilmiah Dan Informasi Kegeografian, 18(2), 50–64. Qudsiya, R., Widiyaningrum, P., & Setiati, N. (2018). The Relationship Between TISE and TPACK among Prospective Biology Teachers of UNNES. Journal of Biology Education, 7(3), 305–311. https://doi.org/10.15294/jbe.v7i3.26021 Reflianto, & Syamsuar. (2018). Pendidikan dan Tantangan Pembelajaran Berbasis Teknologi Informasi di Era Revolusi Industri 4.0. Jurnal Ilmiah Teknologi Pendidikan, 6(2), 1–13. Reski, A., & Sari, K. (2020). Analisis Kemampuan TPACK Guru Fisika Se-Distrik Merauke. Jurnla Kreatif Online, 8(1), 1–8. Ruggiero, D., & Mong, C. J. (2015). The teacher technology integration experience: Practice and reflection in the classroom. Journal of Information Technology Education, 14. Santika, V., Indriayu, M., & Sangka, K. B. (2021). Profil TPACK Guru Ekonomi di Indonesia sebagai Pendekatan Integrasi TIK selama Pembelajaran Jarak Jauh pada Masa Pandemi Covid-19. Duconomics Sci-Meet (Education & Economics Science Meet), 1, 356–369. https://doi.org/10.37010/duconomics.v1.5470 Semiz, K., & Ince, M. L. (2012). Pre-service physical education teachers’ technological pedagogical content knowledge, technology integration self-efficacy and instructional technology outcome expectations. Australasian Journal of Educational Technology, 28(7). https://doi.org/10.14742/ajet.800 Senthilkumar, Sivapragasam, & Senthamaraikannan. (2014). Role of ICT in Teaching Biology. International Journal of Research, 1(9), 780–788. Setiaji, B., & Dinata, P. A. C. (2020). Analisis kesiapan mahasiswa jurusan pendidikan fisika menggunakan e-learning dalam situasi pandemi Covid-19 Analysis of e-learning readiness on physics education students during Covid-19 pandemic. 6(1), 59–70. Siagian, H. S., Ritonga, T., & Lubis, R. (2021). Analisis Kesiapan Belajar Daring Siswa Kelas Vii Pada Masa Pandemi Covid-19 Di Desa Simpang. JURNAL MathEdu (Mathematic Education Journal), 4(2), 194–201. Sintawati, M., & Indriani, F. (2019). Pentingnya Technological Pedagogical Content Knowledge (TPACK) Guru di Era Revolusi Industri 4.0. Seminar Nasional Pagelaran Pendidikan Dasar Nasional (PPDN), 1(1), 417–422. Sojanah, J., Suwatno, Kodri, & Machmud, A. (2021). Factors affecting teachers’ technological pedagogical and content knowledge (A survey on economics teacher knowledge). Cakrawala Pendidikan, 40(1), 1–16. https://doi.org/10.21831/cp.v40i1.31035 Subhan, M. (2020). Analisis Penerapan Technological Pedagogical Content Knowledge Pada Proses Pembelajaran Kurikulum 2013 di Kelas V. International Journal of Technology Vocational Education and Training, 1(2), 174–179. Sum, T. A., & Taran, E. G. M. (2020). Kompetensi Pedagogik Guru PAUD dalam Perencanaan dan Pelaksanaan Pembelajaran. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 4(2), 543. https://doi.org/10.31004/obsesi.v4i2.287 Suryawati, E., Firdaus, L. N., & Yosua, H. (2014). Analisis keterampilan technological pedagogical content knowledge (TPCK) guru biologi SMA negeri kota Pekanbaru. Jurnal Biogenesis, 11(1), 67-72. Suyamto, J., Masykuri, M., & Sarwanto, S. (2020). Analisis Kemampuan Tpack (Technolgical, Pedagogical, and Content, Knowledge) Guru Biologi Sma Dalam Menyusun Perangkat Pembelajaran Materi Sistem Peredaran Darah. INKUIRI: Jurnal Pendidikan IPA, 9(1), 46. https://doi.org/10.20961/inkuiri.v9i1.41381 Tiara, D. R., & Pratiwi, E. (2020). Pentingnya Mengukur Kesiapan Guru Sebagai Dasar Pembelajaran Daring. Jurnal Golden Age, 04(2), 362–368. Trionanda, S. (2021). Analisis kesiapan dan pelaksanaan pembelajaran matematika jarak jauh berdasarkan profil TPACK di SD Katolik Tanjungpinang tahun ajaran 2020 / 2021. In Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika, 6, 69–76. Tsai, C.-C., & Chai, C. S. (2012). The ‘third’-order barrier for technology-integration instruction: Implications for teacher education. Australasian Journal of Educational Technology, 28(6). https://doi.org/10.14742/ajet.810 Wahyuni, F. T. (2019). Hubungan Antara Technological Pedagogical Content Knowledge (Tpack) Dengan Technology Integration Self Efficacy (Tise) Guru Matematika Di Madrasah Ibtidaiyah. Jurnal Pendidikan Matematika (Kudus), 2(2), 109–122. https://doi.org/10.21043/jpm.v2i2.6358 Wang, L., Ertmer, P. A., & Newby, T. J. (2014). Journal of Research on Technology in Education Increasing Preservice Teachers’ Self-Efficacy Beliefs for Technology Integration. Journal of Research on Technology in Education, 36(3), 37–41. https://doi.org/10.1080/15391523.2004.10782414 Warden, C. A., Yi-Shun, W., Stanworth, J. O., & Chen, J. F. (2020). Millennials’ technology readiness and self-efficacy in online classes. Innovations in Education and Teaching International, 00(00), 1–11. https://doi.org/10.1080/14703297.2020.1798269 Widarjono, A. (2015). Analisis Multivariat Terapan edisi kedua. UPP STIM YKPN. Wiresti, R. D. (2021). Analisis Dampak Work from Home pada Anak Usia Dini di Masa Pandemi Covid-19. Jurnal Obsesi: Jurnal Pendidikan Anak Usia Dini, 5(1), 641653. https://doi.org/10.31004/obsesi.v5i1.563 Yildiz Durak, H. (2019). Modeling of relations between K-12 teachers’ TPACK levels and their technology integration self-efficacy, technology literacy levels, attitudes toward technology and usage objectives of social networks. Interactive Learning Environments, 1–27. https://doi.org/10.1080/10494820.2019.1619591 Yudha, F., Aziz, A., & Tohir, M. (2021). Pendampingan Siswa Terdampak Covid-19 Melalui Media Animasi Sebagai Inovasi Pembelajaran Online. JMM (Jurnal Masyarakat Mandiri), 5(3), 964–978. Yurdugül, H., & Demir, Ö. (2017). An investigation of Pre-service Teachers’ Readiness for E-learning at Undergraduate Level Teacher Training Programs: The Case of Hacettepe University. The Case of Hacettepe University. &nbsp

    Un modelo integrado para el enrutamiento de aeronaves y la programación de la tripulación: Relajación lagrangiana y algoritmo metaheurístico

    Full text link
    [EN] Airline optimization is a significant problem in recent researches and airline industryl as it can determine the level of service, profit and competition status of the airline. Aircraft and crew are expensive resources that need efficient utilization. This paper focuses simultaneously on two major issues including aircraft maintenance routing and crew scheduling. Several key issues such as aircraft replacement, fairly night flights assignment and long-life aircrafts are considered in this model. We used the flight hours as a new framework to control aircraft maintenance. At first, an integrated mathematical model for aircraft routing and crew scheduling problems is developed with the aim of cost minimization. Then, Lagrangian relaxation and Particle Swarm Optimization algorithm (PSO) are used as the solution techniques. To evaluate the efficiency of solution approaches, model is solved with different numerical examples in small, medium and large sizes and compared with GAMS output. The results show that Lagrangian relaxation method provides better solutions comparing to PSO and also has a very small gap to optimum solution.[ES] La optimización de aerolíneas es un problema importante en investigaciones recientes e industria de aerolíneas, ya que puede determinar el nivel de servicio, el beneficio y el estado de competencia de la aerolínea. Las aeronaves y la tripulación son recursos costosos que necesitan una utilización eficiente. Este artículo se centra simultáneamente en dos cuestiones principales, incluyendo el enrutamiento de mantenimiento de aeronaves y la programación de la tripulación. En este modelo se consideran varios temas clave, como el reemplazo de aeronaves, la asignación de vuelos nocturnos y los aviones envejecidos. Usamos las horas de vuelo como un nuevo marco para controlar el mantenimiento de las aeronaves. Al principio, se desarrolla un modelo matemático integrado para el enrutamiento de aeronaves y los problemas de programación de la tripulación con el objetivo de la minimización de costos. A continuación, se utilizan como técnicas de solución la relajación lagran-giana y el algoritmo “Particle Swarm Optimization” (PSO). Para evaluar la eficiencia de los en-foques de la solución, el modelo se resuelve con diferentes ejemplos numéricos en tamaños pequeños, medianos y grandes y se compara con la salida GAMS. Los resultados muestran que el método de relajación lagrangiana proporciona mejores soluciones en comparación con PSO y también tiene una pequeña diferencia para una solución óptimaMirjafari, M.; Rashidi Komijan, A.; Shoja, A. (2020). An integrated model for aircraft routing and crew scheduling: Lagrangian Relaxation and metaheuristic algorithm. WPOM-Working Papers on Operations Management. 11(1):25-38. https://doi.org/10.4995/wpom.v11i1.12891OJS2538111Al-Thani, Nayla Ahmad, Ben Ahmed, Mohamed and Haouari, Mohamed (2016). A model and optimization-based heuristic for the operational aircraft maintenance routing problem, Transportation Research Part C: Emerging Technologies, Volume 72, Pages 29-44. https://doi.org/10.1016/j.trc.2016.09.004Azadeh, A., HosseinabadiFarahani, M., Eivazy, H., Nazari-Shirkouhi, S., &Asadipour, G. (2013). A hybrid meta-heuristic algorithm for optimization of crew scheduling, Applied Soft Computing, Volume 13, Pages 158-164. https://doi.org/10.1016/j.asoc.2012.08.012Barnhart C. and Cohn, A. (2004). Airline schedule planning: Accomplishments and opportunities, Manufacturing & Service Operations Management, 6(1):3-22, 47, 69, 141, 144. https://doi.org/10.1287/msom.1030.0018Basdere, Mehmet and Bilge, Umit (2014). Operational aircraft maintenance routing problem with remaining time consideration, European Journal of Operational Research, Volume 235, Pages 315-328. https://doi.org/10.1016/j.ejor.2013.10.066Bazargan, Massoud (2010). Airline Operations and scheduling second edition, Embry-Riddle Aeronautical University, USA, Ashgate publishing limite.Belien, Jeroen, Demeulemeester, Eric and Brecht (2010). Integrated staffing and scheduling for an aircraft line maintenance problem, HUB RESEARCH PAPER Economics & Management.Ben Ahmed, M., Zeghal Mansour, Farah and Haouari, Mohamed (2018). Robust integrated maintenance aircraft routing and crew pairing, Journal of Air Transport Management, Volume 73, Pages 15-31. https://doi.org/10.1016/j.jairtraman.2018.07.007Ben Ahmed, M., Zeghal Mansour, F., Haouari, M. (2017). A two-level optimization approach for robust aircraft routing and retiming, Computers and Industrial Engineering, Volume 112, Pages 586-594. https://doi.org/10.1016/j.cie.2016.09.021Borndorfer, R., Schelten, U., Schlechte, T., Weider, S. (2006). A column generation approach to airline crew scheduling, Springer Berlin Heidelberg, Pages 343-348. https://doi.org/10.1007/3-540-32539-5_54Clarke, L., E. Johnson, G. Nemhauser, Z. Zhu. (1997). The Aircraft Rotation Problem. Annals of Operations Research, 69, Pages 33-46. https://doi.org/10.1023/A:1018945415148Deveci, Muhammet and ÇetinDemirel, Nihan (2018). Evolutionary algorithms for solving the airline crew pairing problem, Computers & Industrial Engineering, Volume 115, Pages 389-406. https://doi.org/10.1016/j.cie.2017.11.022Dozic, S., Kalic, M. (2015). Three-stage airline fleet planning model, J. Air Transport. Manag, 43, Pages 30-39. https://doi.org/10.1016/j.jairtraman.2015.03.011Eltoukhy, A.E., Chan, F.T., Chung, S. (2017). Airline schedule planning: a review and future directions, Ind. Manag. Data Syst, 117(6), Pages 1201-1243. https://doi.org/10.1108/IMDS-09-2016-0358Feo, T. A., J. F. Bard. (1989). Flight Scheduling and Maintenance Base Planning. Management Science, 35(12), Pages 1415-1432. https://doi.org/10.1287/mnsc.35.12.1415Goffin, J. L. (1977). On the convergence rates of subgradient optimization methods. Math. Programming, 13, Pages 329-347. https://doi.org/10.1007/BF01584346Gopalakrishnan, B., Johnson, E. L (2005). Airline crew scheduling, State-of-the-art. Ann. Oper. Res, 140(1), Pages 305-337. https://doi.org/10.1007/s10479-005-3975-3Held, M. and Karp, R.M. (1970). The Traveling-Salesman Problem and Minimum SpanningTrees. Operations Research, 18, 1138-1162. https://doi.org/10.1287/opre.18.6.1138Held, M. Wolfe, P., Crowder, H. D. (1974). Validation of subgradient optimization, Math. Programming, 6, 62-88. https://doi.org/10.1007/BF01580223Jamili, Amin (2017). A robust mathematical model and heuristic algorithms for integrated aircraft routing and scheduling, with consideration of fleet assignment problem, Journal of Air Transport Management, Volume 58, Pages 21-30. https://doi.org/10.1016/j.jairtraman.2016.08.008Jiang, H., Barnhart, C. (2009) Dynamic airline scheduling, Transport. Sci, 43(3), Pages 336-354. https://doi.org/10.1287/trsc.1090.0269Kasirzadeh, A., Saddoune, M., Soumis, F. (2015). Airline crew scheduling: models, algorhitms and data sets, Euro Journal on Transportation and Logistics, 6(2), Pages 111-137. https://doi.org/10.1007/s13676-015-0080-xLacasse-Guay, E., Desaulniers, G., Soumis, F. (2010). Aircraft routing under different business processes, J. Air Transport. Manag, 16(5), Pages 258-263. https://doi.org/10.1016/j.jairtraman.2010.02.001Muter, İbrahim, Birbil, Ş. İlker, Bülbül, Kerem, Şahin, Güvenç,Yenigün, Hüsnü, Taş,Duygu andTüzün, Dilek (2013). Solving a robust airline crew pairing problem with column generation, Computers & Operations Research, Volume 40, Issue 3, Pages 815-830. https://doi.org/10.1016/j.cor.2010.11.005Saddoune, Mohammed, Desaulniers, Guy, Elhallaoui, Issmail and François Soumis (2011). Integrated airline crew scheduling: A bi-dynamic constraint aggregation method using neighborhoods, European Journal of Operational Research, Volume 212, Pages 445-454. https://doi.org/10.1016/j.ejor.2011.02.009Safaei, Nima and K.S.Jardine, Andrew (2018). Aircraft routing with generalized maintenance constraints, Omega, Volume 80, Pages 111-122. https://doi.org/10.1016/j.omega.2017.08.013Shao Shengzhi (2012). Integrated Aircraft Fleeting, Routing, and Crew Pairing Models and Algorithms for the Airline Industry, Faculty of the Virginia Polytechnic Institute and State University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Industrial and Systems Engineering.Shao, S., Sherali, H.D., Haouari, M. (2017). A novel model and decomposition approach for the integrated airline fleet assignment, aircraft routing, crew pairing problem, Transport. Sci, 51(1), Pages 233-249. https://doi.org/10.1287/trsc.2015.0623Sherali, H.D., Bish, E.K., Zhu, X. (2006). Airline fleet assignment concepts, models and algorithms, Eur. J. Oper. Res, 172(1), Pages 1-30. https://doi.org/10.1016/j.ejor.2005.01.056Warburg, V., Hansen, T.G., Larsen, A., Norman, H., Andersson, E. (2008). Dynamic airline scheduling: an analysis of potentials of refleeting and retiming, J. Air Transport. Manag. 14(4), Pages 163-167. https://doi.org/10.1016/j.jairtraman.2008.03.004Yan, C. and Kung, J. (2018). Robust aircraft routing, Transport. Sci, 52(1), Pages 118-133. https://doi.org/10.1287/trsc.2015.0657Yen, J.W., Birge, J.R., (2006). A stochastic programming approach to the airline crew scheduling problem. Transportation Science, Volume 40, Pages 3-14. https://doi.org/10.1287/trsc.1050.0138Yu, G. (1998). Operation Research in the Airline Industry. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-5501-8Zeren, Bahadir and Ozkol, Ibrahim (2016). A novel column generation strategy foe large scale airline crew pairing problems, Expert system with applications, Volume 55, Pages 133-144. https://doi.org/10.1016/j.eswa.2016.01.045Zhang, Dong, Lau, H.Y.K. Henry and Yu, Chuhang (2015). A two stage heuristic algorithm for the integrated aircraft and crew schedule recovery problems, Computers and Industrial Engineering, Volume 87, Pages 436-453. https://doi.org/10.1016/j.cie.2015.05.03

    Improving Distributed Decision Making in Inventory Management: A Combined ABC-AHP Approach Supported by Teamwork

    Get PDF
    [EN] The need of organizations to ensure service levels that impact on customer satisfaction has required the design of collaborative processes among stakeholders involved in inventory decision making. The increase of quantity and variety of items, on the one hand, and demand and customer expectations, on the other hand, are transformed into a greater complexity in inventory management, requiring effective communication and agreements between the leaders of the logistics processes. Traditionally, decision making in inventory management was based on approaches conditioned only by cost or sales volume. These approaches must be overcome by others that consider multiple criteria, involving several areas of the companies and taking into account the opinions of the stakeholders involved in these decisions. Inventory management becomes part of a complex system that involves stakeholders from different areas of the company, where each agent has limited information and where the cooperation between such agents is key for the system's performance. In this paper, a distributed inventory control approach was used with the decisions allowing communication between the stakeholders and with a multicriteria group decision-making perspective. This work proposes a methodology that combines the analysis of the value chain and the AHP technique, in order to improve communication and the performance of the areas related to inventory management decision making. This methodology uses the areas of the value chain as a theoretical framework to identify the criteria necessary for the application of the AHP multicriteria group decision-making technique. These criteria were defined as indicators that measure the performance of the areas of the value chain related to inventory management and were used to classify ABC inventory of the products according to these selected criteria. Therefore, the methodology allows us to solve inventory management DDM based on multicriteria ABC classification and was validated in a Colombian company belonging to the graphic arts sector.Pérez Vergara, IG.; Arias Sánchez, JA.; Poveda Bautista, R.; Diego-Mas, JA. (2020). Improving Distributed Decision Making in Inventory Management: A Combined ABC-AHP Approach Supported by Teamwork. Complexity. 2020:1-13. https://doi.org/10.1155/2020/6758108S1132020Poveda-Bautista, R., Baptista, D. C., & García-Melón, M. (2012). Setting competitiveness indicators using BSC and ANP. International Journal of Production Research, 50(17), 4738-4752. doi:10.1080/00207543.2012.657964Castro Zuluaga, C. A., Velez Gallego, M. C., & Catro Urrego, J. A. (2011). Clasificación ABC Multicriterio: Tipos de Criterios y efectos en la asignación de pesos. ITECKNE, 8(2). doi:10.15332/iteckne.v8i2.35Morash, E. A., & Clinton, S. R. (1998). Supply Chain Integration: Customer Value through Collaborative Closeness versus Operational Excellence. Journal of Marketing Theory and Practice, 6(4), 104-120. doi:10.1080/10696679.1998.11501814Fabbe-Costes, N. (2015). Évaluer la création de valeurdu Supply Chain Management. Logistique & Management, 23(4), 41-50. doi:10.1080/12507970.2015.11758621Flores, B. E., & Clay Whybark, D. (1986). Multiple Criteria ABC Analysis. International Journal of Operations & Production Management, 6(3), 38-46. doi:10.1108/eb054765Partovi, F. Y., & Burton, J. (1993). Using the Analytic Hierarchy Process for ABC Analysis. International Journal of Operations & Production Management, 13(9), 29-44. doi:10.1108/01443579310043619Balaji, K., & Kumar, V. S. S. (2014). Multicriteria Inventory ABC Classification in an Automobile Rubber Components Manufacturing Industry. Procedia CIRP, 17, 463-468. doi:10.1016/j.procir.2014.02.044Ramanathan, R. (2006). ABC inventory classification with multiple-criteria using weighted linear optimization. Computers & Operations Research, 33(3), 695-700. doi:10.1016/j.cor.2004.07.014Van Kampen, T. J., Akkerman, R., & Pieter van Donk, D. (2012). SKU classification: a literature review and conceptual framework. International Journal of Operations & Production Management, 32(7), 850-876. doi:10.1108/01443571211250112Flores, B. E., Olson, D. L., & Dorai, V. K. (1992). Management of multicriteria inventory classification. Mathematical and Computer Modelling, 16(12), 71-82. doi:10.1016/0895-7177(92)90021-cGajpal, P. P., Ganesh, L. S., & Rajendran, C. (1994). Criticality analysis of spare parts using the analytic hierarchy process. International Journal of Production Economics, 35(1-3), 293-297. doi:10.1016/0925-5273(94)90095-7Scala, N. M., Rajgopal, J., & Needy, K. L. (2014). Managing Nuclear Spare Parts Inventories: A Data Driven Methodology. IEEE Transactions on Engineering Management, 61(1), 28-37. doi:10.1109/tem.2013.2283170Hadad, Y., & Keren, B. (2013). ABC inventory classification via linear discriminant analysis and ranking methods. International Journal of Logistics Systems and Management, 14(4), 387. doi:10.1504/ijlsm.2013.052744Altay Guvenir, H., & Erel, E. (1998). Multicriteria inventory classification using a genetic algorithm. European Journal of Operational Research, 105(1), 29-37. doi:10.1016/s0377-2217(97)00039-8Rezaei, J., & Dowlatshahi, S. (2010). A rule-based multi-criteria approach to inventory classification. International Journal of Production Research, 48(23), 7107-7126. doi:10.1080/00207540903348361Hatefi, S. M., Torabi, S. A., & Bagheri, P. (2013). Multi-criteria ABC inventory classification with mixed quantitative and qualitative criteria. International Journal of Production Research, 52(3), 776-786. doi:10.1080/00207543.2013.838328Ishizaka, A., Pearman, C., & Nemery, P. (2012). AHPSort: an AHP-based method for sorting problems. International Journal of Production Research, 50(17), 4767-4784. doi:10.1080/00207543.2012.657966Yu, M.-C. (2011). Multi-criteria ABC analysis using artificial-intelligence-based classification techniques. Expert Systems with Applications, 38(4), 3416-3421. doi:10.1016/j.eswa.2010.08.127Tsai, C.-Y., & Yeh, S.-W. (2008). A multiple objective particle swarm optimization approach for inventory classification. International Journal of Production Economics, 114(2), 656-666. doi:10.1016/j.ijpe.2008.02.017Aydin Keskin, G., & Ozkan, C. (2013). Multiple Criteria ABC Analysis with FCM Clustering. Journal of Industrial Engineering, 2013, 1-7. doi:10.1155/2013/827274Lolli, F., Ishizaka, A., & Gamberini, R. (2014). New AHP-based approaches for multi-criteria inventory classification. International Journal of Production Economics, 156, 62-74. doi:10.1016/j.ijpe.2014.05.015Raja, A. M. L., Ai, T. J., & Astanti, R. D. (2016). A Clustering Classification of Spare Parts for Improving Inventory Policies. IOP Conference Series: Materials Science and Engineering, 114, 012075. doi:10.1088/1757-899x/114/1/012075Zowid, F. M., Babai, M. Z., Douissa, M. R., & Ducq, Y. (2019). Multi-criteria inventory ABC classification using Gaussian Mixture Model. IFAC-PapersOnLine, 52(13), 1925-1930. doi:10.1016/j.ifacol.2019.11.484Babai, M. Z., Ladhari, T., & Lajili, I. (2014). On the inventory performance of multi-criteria classification methods: empirical investigation. International Journal of Production Research, 53(1), 279-290. doi:10.1080/00207543.2014.952791Schneeweiss, C. (2003). Distributed decision making––a unified approach. European Journal of Operational Research, 150(2), 237-252. doi:10.1016/s0377-2217(02)00501-5Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. doi:10.1504/ijssci.2008.017590Cakir, O., & Canbolat, M. S. (2008). A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35(3), 1367-1378. doi:10.1016/j.eswa.2007.08.041Liu, J., Liao, X., Zhao, W., & Yang, N. (2016). A classification approach based on the outranking model for multiple criteria ABC analysis. Omega, 61, 19-34. doi:10.1016/j.omega.2015.07.004Douissa, M. R., & Jabeur, K. (2016). A New Model for Multi-criteria ABC Inventory Classification: PROAFTN Method. Procedia Computer Science, 96, 550-559. doi:10.1016/j.procs.2016.08.233Lolli, F., Balugani, E., Ishizaka, A., Gamberini, R., Rimini, B., & Regattieri, A. (2018). Machine learning for multi-criteria inventory classification applied to intermittent demand. Production Planning & Control, 30(1), 76-89. doi:10.1080/09537287.2018.1525506Kartal, H., Oztekin, A., Gunasekaran, A., & Cebi, F. (2016). An integrated decision analytic framework of machine learning with multi-criteria decision making for multi-attribute inventory classification. Computers & Industrial Engineering, 101, 599-613. doi:10.1016/j.cie.2016.06.004López-Soto, D., Angel-Bello, F., Yacout, S., & Alvarez, A. (2017). A multi-start algorithm to design a multi-class classifier for a multi-criteria ABC inventory classification problem. Expert Systems with Applications, 81, 12-21. doi:10.1016/j.eswa.2017.02.048Dweiri, F., Kumar, S., Khan, S. A., & Jain, V. (2016). Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Systems with Applications, 62, 273-283. doi:10.1016/j.eswa.2016.06.030Bruno, G., Esposito, E., Genovese, A., & Simpson, M. (2016). Applying supplier selection methodologies in a multi-stakeholder environment: A case study and a critical assessment. Expert Systems with Applications, 43, 271-285. doi:10.1016/j.eswa.2015.07.016Poza, C. (2020). A Conceptual Model to Measure Football Player’s Market Value. A Proposal by means of an Analytic Hierarchy Process. [Un modelo conceptual para medir el valor de mercado de los futbolistas. Una propuesta a través de un proceso analítico jerárquico]. RICYDE. Revista internacional de ciencias del deporte, 16(59), 24-42. doi:10.5232/ricyde2020.05903Guarnieri, P., Sobreiro, V. A., Nagano, M. S., & Marques Serrano, A. L. (2015). The challenge of selecting and evaluating third-party reverse logistics providers in a multicriteria perspective: a Brazilian case. Journal of Cleaner Production, 96, 209-219. doi:10.1016/j.jclepro.2014.05.040Ishizaka, A., & Labib, A. (2011). Selection of new production facilities with the Group Analytic Hierarchy Process Ordering method. Expert Systems with Applications, 38(6), 7317-7325. doi:10.1016/j.eswa.2010.12.004Partovi, F. Y., & Anandarajan, M. (2002). Classifying inventory using an artificial neural network approach. Computers & Industrial Engineering, 41(4), 389-404. doi:10.1016/s0360-8352(01)00064-xAlonso-Manzanedo, M., De-la -Fuente-Aragon, M. V., & Ros-McDonnell, L. (2013). A Proposed Collaborative Network Enterprise Model in the Fruit-and-Vegetable Sector Using Maturity Models. Annals of Industrial Engineering 2012, 359-366. doi:10.1007/978-1-4471-5349-8_42Augusto, M., Lisboa, J., Yasin, M., & Figueira, J. R. (2008). Benchmarking in a multiple criteria performance context: An application and a conceptual framework. European Journal of Operational Research, 184(1), 244-254. doi:10.1016/j.ejor.2006.10.05

    Applications using estimates of forest parameters derived from satellite and forest inventory data

    Get PDF
    From the combination of optical satellite data, digital map data, and forest inventory plot data, continuous estimates have been made for several forest parameters (wood volume, age and biomass). Five different project areas within Sweden are presented which have utilized these estimates for a range of applications. The method for estimating the forest parameters was a ”k-Nearest Neighbor” algorithm, which used a weighted mean value of k spectrally similar reference plots. Reference data were obtained from the Swedish National Forest Inventory. The output was continuous estimates at the pixel level for each of the variables estimated. Validation results show that accuracy of the estimates for all parameters was low at the pixel level (e.g., for total wood volume RMSE ranged from 58-80%), with a tendency toward the mean, and an underestimation of higher values while overestimating lower values. However, when the accuracy of the estimates is assessed over larger areas, the errors are lower, with best results being 10% RMSE over a 100 ha aggregation, and 17% RMSE over a 19 ha aggregation. Applications presented in this paper include moose and bird habitat studies, county level planning activities, use as input information to prognostic programs, and computation of statistics on timber volume within drainage basins and smaller land holdings. This paper provides a background on the kNN method and gives examples of how end users are currently applying satellite-produced estimation data such as these

    Mathematical Modeling of the Biogas Production in MSW Landfills. Impact of the Implementation of Organic Matter and Food Waste Selective Collection Systems

    Full text link
    [EN] Municipal solid waste (MSW) landfills are one of the main sources of greenhouse gas emissions. Biogas is formed under anaerobic conditions by decomposition of the organic matter present in waste. The estimation of biogas production, which depends fundamentally on the type of waste deposited in the landfill, is essential when designing the gas capture system and the possible generation of energy. BIOLEACH, a mathematical model for the real-time management of MSW landfills, enables the estimation of biogas generation based on the waste mix characteristics and the local meteorological conditions. This work studies the impact of installing selective organic matter collection systems on landfill biogas production. These systems reduce the content of food waste that will eventually be deposited in the landfill. Results obtained using BIOLEACH on a set of scenarios under real climate conditions in a real landfill located in the Region of Murcia (Spain) are shown. Results demonstrate that actual CH4 and CO2 production depends fundamentally on the monthly amount of waste stored in the landfill, its chemical composition and the availability and distribution of water inside the landfill mass.Rodrigo-Ilarri, J.; Rodrigo-Clavero, M. (2020). Mathematical Modeling of the Biogas Production in MSW Landfills. Impact of the Implementation of Organic Matter and Food Waste Selective Collection Systems. Atmosphere. 11(12):1-18. https://doi.org/10.3390/atmos11121306S1181112Calculation of CH4 and CO2 Emission Rate in Kahrizak Landfill Site THROUGH LandGEM Mathematical Model. In Proceedings of the 4th World Sustainability Forumhttps://sciforum.net/conference/wsf-4Krause, M. J., W. Chickering, G., Townsend, T. G., & Reinhart, D. R. (2016). Critical review of the methane generation potential of municipal solid waste. Critical Reviews in Environmental Science and Technology, 46(13), 1117-1182. doi:10.1080/10643389.2016.1204812Allen, M. R., Braithwaite, A., & Hills, C. C. (1997). Trace Organic Compounds in Landfill Gas at Seven U.K. Waste Disposal Sites. Environmental Science & Technology, 31(4), 1054-1061. doi:10.1021/es9605634Eklund, B., Anderson, E. P., Walker, B. L., & Burrows, D. B. (1998). Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill. Environmental Science & Technology, 32(15), 2233-2237. doi:10.1021/es980004sRey, M. D., Font, R., & Aracil, I. (2013). Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique. Energy, 63, 161-167. doi:10.1016/j.energy.2013.09.017Harborth, P., Fuß, R., Münnich, K., Flessa, H., & Fricke, K. (2013). Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N2O hotspots at the working face. Waste Management, 33(10), 2099-2107. doi:10.1016/j.wasman.2013.01.028Brown, K. A., & Maunder, D. H. (1994). Exploitation of landfill gas: a UK perspective. Water Science and Technology, 30(12), 143-151. doi:10.2166/wst.1994.0599Abbasi, T., Tauseef, S. M., & Abbasi, S. A. (2012). Biogas Energy. doi:10.1007/978-1-4614-1040-9El-Fadel, M., Findikakis, A. N., & Leckie, J. O. (1997). Environmental Impacts of Solid Waste Landfilling. Journal of Environmental Management, 50(1), 1-25. doi:10.1006/jema.1995.0131Levis, J. W., & Barlaz, M. A. (2011). Is Biodegradability a Desirable Attribute for Discarded Solid Waste? Perspectives from a National Landfill Greenhouse Gas Inventory Model. Environmental Science & Technology, 45(13), 5470-5476. doi:10.1021/es200721sFarquhar, G. J., & Rovers, F. A. (1973). Gas production during refuse decomposition. Water, Air, & Soil Pollution, 2(4), 483-495. doi:10.1007/bf00585092Rees, J. F. (2007). Optimisation of methane production and refuse decomposition in landfills by temperature control. Journal of Chemical Technology and Biotechnology, 30(1), 458-465. doi:10.1002/jctb.503300158Kasali, G. B., Senior, E., & Watson-Craik, I. A. (1990). Solid-state refuse methanogenic fermentation: control and promotion by water addition. Letters in Applied Microbiology, 11(1), 22-26. doi:10.1111/j.1472-765x.1990.tb00127.xGurijala, K. R., & Suflita, J. M. (1993). Environmental factors influencing methanogenesis from refuse in landfill samples. Environmental Science & Technology, 27(6), 1176-1181. doi:10.1021/es00043a018Shariatmad, N., Sabour, M. R., Kamalan, H., Mansouri, A., & Abolfazlza, M. (2007). Applying Simple Numerical Model to Predict Methane Emission from Landfill. Journal of Applied Sciences, 7(11), 1511-1515. doi:10.3923/jas.2007.1511.1515Peer, R. L., Thorneloe, S. A., & Epperson, D. L. (1993). A comparison of methods for estimating global methane emissions from landfills. Chemosphere, 26(1-4), 387-400. doi:10.1016/0045-6535(93)90433-6Kamalan, H., Sabour, M., & Shariatmad, N. (2011). A Review on Available Landfill Gas Models. Journal of Environmental Science and Technology, 4(2), 79-92. doi:10.3923/jest.2011.79.92Majdinasab, A., Zhang, Z., & Yuan, Q. (2017). Modelling of landfill gas generation: a review. Reviews in Environmental Science and Bio/Technology, 16(2), 361-380. doi:10.1007/s11157-017-9425-2Buswell, A. M., & Mueller, H. F. (1952). Mechanism of Methane Fermentation. Industrial & Engineering Chemistry, 44(3), 550-552. doi:10.1021/ie50507a033Symons, G. E., & Buswell, A. M. (1933). The Methane Fermentation of Carbohydrates1,2. Journal of the American Chemical Society, 55(5), 2028-2036. doi:10.1021/ja01332a039Boyle, W. C. (1977). ENERGY RECOVERY FROM SANITARY LANDFILLS - A REVIEW. Microbial Energy Conversion, 119-138. doi:10.1016/b978-0-08-021791-8.50019-6GARCIADECORTAZAR, A., & MONZON, I. (2007). MODUELO 2: A new version of an integrated simulation model for municipal solid waste landfills. Environmental Modelling & Software, 22(1), 59-72. doi:10.1016/j.envsoft.2005.11.003White, J. K., & Beaven, R. P. (2013). Developments to a landfill processes model following its application to two landfill modelling challenges. Waste Management, 33(10), 1969-1981. doi:10.1016/j.wasman.2012.12.006McDougall, J. (2007). A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste. Computers and Geotechnics, 34(4), 229-246. doi:10.1016/j.compgeo.2007.02.004Bareither, C. A., Benson, C. H., & Edil, T. B. (2013). Compression of Municipal Solid Waste in Bioreactor Landfills: Mechanical Creep and Biocompression. Journal of Geotechnical and Geoenvironmental Engineering, 139(7), 1007-1021. doi:10.1061/(asce)gt.1943-5606.0000835Lu, S.-F., Xiong, J.-H., Feng, S.-J., Chen, H.-X., Bai, Z.-B., Fu, W.-D., & Lü, F. (2019). A finite-volume numerical model for bio-hydro-mechanical behaviors of municipal solid waste in landfills. Computers and Geotechnics, 109, 204-219. doi:10.1016/j.compgeo.2019.01.012Liu, X., Shi, J., Qian, X., Hu, Y., & Peng, G. (2011). One-dimensional model for municipal solid waste (MSW) settlement considering coupled mechanical-hydraulic-gaseous effect and concise calculation. Waste Management, 31(12), 2473-2483. doi:10.1016/j.wasman.2011.07.013Hettiarachchi, H., Meegoda, J., & Hettiaratchi, P. (2009). Effects of gas and moisture on modeling of bioreactor landfill settlement. Waste Management, 29(3), 1018-1025. doi:10.1016/j.wasman.2008.08.018Chen, Y., Xu, X., & Zhan, L. (2011). Analysis of solid-liquid-gas interactions in landfilled municipal solid waste by a bio-hydro-mechanical coupled model. Science China Technological Sciences, 55(1), 81-89. doi:10.1007/s11431-011-4667-7Staub, M. J., Gourc, J.-P., Drut, N., Stoltz, G., & Mansour, A. A. (2013). Large-Scale Bioreactor Pilots for Monitoring the Long-Term Hydromechanics of MSW. Journal of Hazardous, Toxic, and Radioactive Waste, 17(4), 285-294. doi:10.1061/(asce)hz.2153-5515.0000160Machado, S. L., Vilar, O. M., & Carvalho, M. F. (2008). Constitutive model for long term municipal solid waste mechanical behavior. Computers and Geotechnics, 35(5), 775-790. doi:10.1016/j.compgeo.2007.11.008Hettiarachchi, C. H., Meegoda, J. N., Tavantzis, J., & Hettiaratchi, P. (2007). Numerical model to predict settlements coupled with landfill gas pressure in bioreactor landfills. Journal of Hazardous Materials, 139(3), 514-522. doi:10.1016/j.jhazmat.2006.02.067Sivakumar Babu, G. L., Reddy, K. R., Chouskey, S. K., & Kulkarni, H. S. (2010). Prediction of Long-Term Municipal Solid Waste Landfill Settlement Using Constitutive Model. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 14(2), 139-150. doi:10.1061/(asce)hz.1944-8376.0000024Hanson, J. L., Yeşiller, N., Onnen, M. T., Liu, W.-L., Oettle, N. K., & Marinos, J. A. (2013). Development of numerical model for predicting heat generation and temperatures in MSW landfills. Waste Management, 33(10), 1993-2000. doi:10.1016/j.wasman.2013.04.003Gawande, N. A., Reinhart, D. R., & Yeh, G.-T. (2010). Modeling microbiological and chemical processes in municipal solid waste bioreactor, part I: Development of a three-phase numerical model BIOKEMOD-3P. Waste Management, 30(2), 202-210. doi:10.1016/j.wasman.2009.09.009GHOLAMIFARD, S., EYMARD, R., & DUQUENNOI, C. (2008). Modeling anaerobic bioreactor landfills in methanogenic phase: Long term and short term behaviors. Water Research, 42(20), 5061-5071. doi:10.1016/j.watres.2008.09.040Garg, A., & Achari, G. (2010). A Comprehensive Numerical Model Simulating Gas, Heat, and Moisture Transport in Sanitary Landfills and Methane Oxidation in Final Covers. Environmental Modeling & Assessment, 15(5), 397-410. doi:10.1007/s10666-009-9217-3Feng, S.-J., Lu, S.-F., Chen, H. X., Fu, W.-D., & Lü, F. (2017). Three-dimensional modelling of coupled leachate and gas flow in bioreactor landfills. Computers and Geotechnics, 84, 138-151. doi:10.1016/j.compgeo.2016.11.024Grugnaletti, M., Pantini, S., Verginelli, I., & Lombardi, F. (2016). An easy-to-use tool for the evaluation of leachate production at landfill sites. Waste Management, 55, 204-219. doi:10.1016/j.wasman.2016.03.030Lei, L., Bing, L., Qiang, X., Ying, Z., & Chun, Y. (2011). The modelling of biochemical-thermal coupling effect on gas generation and transport in MSW landfill. International Journal of Environment and Pollution, 46(3/4), 216. doi:10.1504/ijep.2011.045480Zacharof, A. I., & Butler, A. P. (2004). Stochastic modelling of landfill leachate and biogas production incorporating waste heterogeneity. Model formulation and uncertainty analysis. Waste Management, 24(5), 453-462. doi:10.1016/j.wasman.2003.09.010Pommier, S., Chenu, D., Quintard, M., & Lefebvre, X. (2007). A logistic model for the prediction of the influence of water on the solid waste methanization in landfills. Biotechnology and Bioengineering, 97(3), 473-482. doi:10.1002/bit.21241Abdallah, M., Fernandes, L., Warith, M., & Rendra, S. (2009). A fuzzy logic model for biogas generation in bioreactor landfillsA paper submitted to the Journal of Environmental Engineering and Science. Canadian Journal of Civil Engineering, 36(4), 701-708. doi:10.1139/l09-015Rodrigo-Ilarri, J., Rodrigo-Clavero, M.-E., & Cassiraga, E. (2020). BIOLEACH: A New Decision Support Model for the Real-Time Management of Municipal Solid Waste Bioreactor Landfills. International Journal of Environmental Research and Public Health, 17(5), 1675. doi:10.3390/ijerph1705167

    Revisiting the thermodynamics of hardening plasticity for unsaturated soils

    Get PDF
    A thermodynamically consistent extension of the constitutive equations of saturated soils to unsaturated conditions is often worked out through the use a unique 'effective' interstitial pressure, accounting equivalently for the pressures of the saturating fluids acting separately on the internal solid walls of the pore network. The natural candidate for this effective interstitial pressure is the space averaged interstitial pressure. In contrast experimental observations have revealed that, at least, a pair of stress state variables was needed for a suitable framework to describe stress-strain-strength behaviour of unsaturated soils. The thermodynamics analysis presented here shows that the most general approach to the behaviour of unsaturated soils actually requires three stress state variables: the suction, which is required to describe the invasion of the soil by the liquid water phase through the retention curve; two effective stresses, which are required to describe the soil deformation at water saturation held constant. However a simple assumption related to the plastic flow rule leads to the final need of only a Bishop-like effective stress to formulate the stress-strain constitutive equation describing the soil deformation, while the retention properties still involve the suction and possibly the deformation. Commonly accepted models for unsaturated soils, that is the Barcelona Basic Model and any approach based on the use of an effective averaged interstitial pressure, appear as special extreme cases of the thermodynamic formulation proposed here
    corecore