49,745 research outputs found

    Note on Ward-Horadam H(x) - binomials' recurrences and related interpretations, II

    Full text link
    We deliver here second new H(x)−binomials′\textit{H(x)}-binomials' recurrence formula, were H(x)−binomials′H(x)-binomials' array is appointed by Ward−HoradamWard-Horadam sequence of functions which in predominantly considered cases where chosen to be polynomials . Secondly, we supply a review of selected related combinatorial interpretations of generalized binomial coefficients. We then propose also a kind of transfer of interpretation of p,q−binomialp,q-binomial coefficients onto q−binomialq-binomial coefficients interpretations thus bringing us back to Gyo¨rgyPoˊlyaGy{\"{o}}rgy P\'olya and Donald Ervin Knuth relevant investigation decades ago.Comment: 57 pages, 8 figure

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research

    Why Delannoy numbers?

    Full text link
    This article is not a research paper, but a little note on the history of combinatorics: We present here a tentative short biography of Henri Delannoy, and a survey of his most notable works. This answers to the question raised in the title, as these works are related to lattice paths enumeration, to the so-called Delannoy numbers, and were the first general way to solve Ballot-like problems. These numbers appear in probabilistic game theory, alignments of DNA sequences, tiling problems, temporal representation models, analysis of algorithms and combinatorial structures.Comment: Presented to the conference "Lattice Paths Combinatorics and Discrete Distributions" (Athens, June 5-7, 2002) and to appear in the Journal of Statistical Planning and Inference

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ∼1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    Statistics on Graphs, Exponential Formula and Combinatorial Physics

    Full text link
    The concern of this paper is a famous combinatorial formula known under the name "exponential formula". It occurs quite naturally in many contexts (physics, mathematics, computer science). Roughly speaking, it expresses that the exponential generating function of a whole structure is equal to the exponential of those of connected substructures. Keeping this descriptive statement as a guideline, we develop a general framework to handle many different situations in which the exponential formula can be applied
    • …
    corecore