96 research outputs found

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Steganalytic Methods for 3D Objects

    Get PDF
    This PhD thesis provides new research results in the area of using 3D features for steganalysis. The research study presented in the thesis proposes new sets of 3D features, greatly extending the previously proposed features. The proposed steganlytic feature set includes features representing the vertex normal, curvature ratio, Gaussian curvature, the edge and vertex position of the 3D objects in the spherical coordinate system. Through a second contribution, this thesis presents a 3D wavelet multiresolution analysis-based steganalytic method. The proposed method extracts the 3D steganalytic features from meshes of different resolutions. The third contribution proposes a robustness and relevance-based feature selection method for solving the cover-source mismatch problem in 3D steganalysis. This method selects those 3D features that are robust to the variation of the cover source, while preserving the relevance of such features to the class label. All the proposed methods are applied for identifying stego-meshes produced by several steganographic algorithms

    Multimedia Protection using Content and Embedded Fingerprints

    Get PDF
    Improved digital connectivity has made the Internet an important medium for multimedia distribution and consumption in recent years. At the same time, this increased proliferation of multimedia has raised significant challenges in secure multimedia distribution and intellectual property protection. This dissertation examines two complementary aspects of the multimedia protection problem that utilize content fingerprints and embedded collusion-resistant fingerprints. The first aspect considered is the automated identification of multimedia using content fingerprints, which is emerging as an important tool for detecting copyright violations on user generated content websites. A content fingerprint is a compact identifier that captures robust and distinctive properties of multimedia content, which can be used for uniquely identifying the multimedia object. In this dissertation, we describe a modular framework for theoretical modeling and analysis of content fingerprinting techniques. Based on this framework, we analyze the impact of distortions in the features on the corresponding fingerprints and also consider the problem of designing a suitable quantizer for encoding the features in order to improve the identification accuracy. The interaction between the fingerprint designer and a malicious adversary seeking to evade detection is studied under a game-theoretic framework and optimal strategies for both parties are derived. We then focus on analyzing and understanding the matching process at the fingerprint level. Models for fingerprints with different types of correlations are developed and the identification accuracy under each model is examined. Through this analysis we obtain useful guidelines for designing practical systems and also uncover connections to other areas of research. A complementary problem considered in this dissertation concerns tracing the users responsible for unauthorized redistribution of multimedia. Collusion-resistant fingerprints, which are signals that uniquely identify the recipient, are proactively embedded in the multimedia before redistribution and can be used for identifying the malicious users. We study the problem of designing collusion resistant fingerprints for embedding in compressed multimedia. Our study indicates that directly adapting traditional fingerprinting techniques to this new setting of compressed multimedia results in low collusion resistance. To withstand attacks, we propose an anti-collusion dithering technique for embedding fingerprints that significantly improves the collusion resistance compared to traditional fingerprints

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Statistical Tools for Digital Image Forensics

    Get PDF
    A digitally altered image, often leaving no visual clues of having been tampered with, can be indistinguishable from an authentic image. The tampering, however, may disturb some underlying statistical properties of the image. Under this assumption, we propose five techniques that quantify and detect statistical perturbations found in different forms of tampered images: (1) re-sampled images (e.g., scaled or rotated); (2) manipulated color filter array interpolated images; (3) double JPEG compressed images; (4) images with duplicated regions; and (5) images with inconsistent noise patterns. These techniques work in the absence of any embedded watermarks or signatures. For each technique we develop the theoretical foundation, show its effectiveness on credible forgeries, and analyze its sensitivity and robustness to simple counter-attacks

    MĂ©thodes de tatouage robuste pour la protection de l imagerie numerique 3D

    Get PDF
    La multiplication des contenus stéréoscopique augmente les risques de piratage numérique. La solution technologique par tatouage relève ce défi. En pratique, le défi d une approche de tatouage est d'atteindre l équilibre fonctionnel entre la transparence, la robustesse, la quantité d information insérée et le coût de calcul. Tandis que la capture et l'affichage du contenu 3D ne sont fondées que sur les deux vues gauche/droite, des représentations alternatives, comme les cartes de disparité devrait également être envisagée lors de la transmission/stockage. Une étude spécifique sur le domaine d insertion optimale devient alors nécessaire. Cette thèse aborde les défis mentionnés ci-dessus. Tout d'abord, une nouvelle carte de disparité (3D video-New Three Step Search- 3DV-SNSL) est développée. Les performances des 3DV-NTSS ont été évaluées en termes de qualité visuelle de l'image reconstruite et coût de calcul. En comparaison avec l'état de l'art (NTSS et FS-MPEG) des gains moyens de 2dB en PSNR et 0,1 en SSIM sont obtenus. Le coût de calcul est réduit par un facteur moyen entre 1,3 et 13. Deuxièmement, une étude comparative sur les principales classes héritées des méthodes de tatouage 2D et de leurs domaines d'insertion optimales connexes est effectuée. Quatre méthodes d'insertion appartenant aux familles SS, SI et hybride (Fast-IProtect) sont considérées. Les expériences ont mis en évidence que Fast-IProtect effectué dans la nouvelle carte de disparité (3DV-NTSS) serait suffisamment générique afin de servir une grande variété d'applications. La pertinence statistique des résultats est donnée par les limites de confiance de 95% et leurs erreurs relatives inférieurs er <0.1The explosion in stereoscopic video distribution increases the concerns over its copyright protection. Watermarking can be considered as the most flexible property right protection technology. The watermarking applicative issue is to reach the trade-off between the properties of transparency, robustness, data payload and computational cost. While the capturing and displaying of the 3D content are solely based on the two left/right views, some alternative representations, like the disparity maps should also be considered during transmission/storage. A specific study on the optimal (with respect to the above-mentioned properties) insertion domain is also required. The present thesis tackles the above-mentioned challenges. First, a new disparity map (3D video-New Three Step Search - 3DV-NTSS) is designed. The performances of the 3DV-NTSS were evaluated in terms of visual quality of the reconstructed image and computational cost. When compared with state of the art methods (NTSS and FS-MPEG) average gains of 2dB in PSNR and 0.1 in SSIM are obtained. The computational cost is reduced by average factors between 1.3 and 13. Second, a comparative study on the main classes of 2D inherited watermarking methods and on their related optimal insertion domains is carried out. Four insertion methods are considered; they belong to the SS, SI and hybrid (Fast-IProtect) families. The experiments brought to light that the Fast-IProtect performed in the new disparity map domain (3DV-NTSS) would be generic enough so as to serve a large variety of applications. The statistical relevance of the results is given by the 95% confidence limits and their underlying relative errors lower than er<0.1EVRY-INT (912282302) / SudocSudocFranceF

    Review of steganalysis of digital images

    Get PDF
    Steganography is the science and art of embedding hidden messages into cover multimedia such as text, image, audio and video. Steganalysis is the counterpart of steganography, which wants to identify if there is data hidden inside a digital medium. In this study, some specific steganographic schemes such as HUGO and LSB are studied and the steganalytic schemes developed to steganalyze the hidden message are studied. Furthermore, some new approaches such as deep learning and game theory, which have seldom been utilized in steganalysis before, are studied. In the rest of thesis study some steganalytic schemes using textural features including the LDP and LTP have been implemented

    Sensor Data Integrity Verification for Real-time and Resource Constrained Systems

    Full text link
    Sensors are used in multiple applications that touch our lives and have become an integral part of modern life. They are used in building intelligent control systems in various industries like healthcare, transportation, consumer electronics, military, etc. Many mission-critical applications require sensor data to be secure and authentic. Sensor data security can be achieved using traditional solutions like cryptography and digital signatures, but these techniques are computationally intensive and cannot be easily applied to resource constrained systems. Low complexity data hiding techniques, on the contrary, are easy to implement and do not need substantial processing power or memory. In this applied research, we use and configure the established low complexity data hiding techniques from the multimedia forensics domain. These techniques are used to secure the sensor data transmissions in resource constrained and real-time environments such as an autonomous vehicle. We identify the areas in an autonomous vehicle that require sensor data integrity and propose suitable water-marking techniques to verify the integrity of the data and evaluate the performance of the proposed method against different attack vectors. In our proposed method, sensor data is embedded with application specific metadata and this process introduces some distortion. We analyze this embedding induced distortion and its impact on the overall sensor data quality to conclude that watermarking techniques, when properly configured, can solve sensor data integrity verification problems in an autonomous vehicle.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttp://deepblue.lib.umich.edu/bitstream/2027.42/167387/3/Raghavendar Changalvala Final Dissertation.pdfDescription of Raghavendar Changalvala Final Dissertation.pdf : Dissertatio

    SECURING BIOMETRIC DATA

    Get PDF
    • …
    corecore