308 research outputs found

    Synchronization for capacity -approaching coded communication systems

    Get PDF
    The dissertation concentrates on synchronization of capacity approaching error-correction codes that are deployed in noisy channels with very low signal-to-noise ratio (SNR). The major topics are symbol timing synchronization and frame synchronization.;Capacity-approaching error-correction codes, like turbo codes and low-density parity-check (LDPC) codes, are capable of reaching very low bit error rates and frame error rates in noisy channels by iterative decoding. To fully achieve the potential decoding capability of Turbo codes and LDPC codes, proper symbol timing synchronization, frame synchronization and channel state estimation are required. The dissertation proposes a joint estimator of symbol time delay and channel SNR for symbol timing recovery, and a maximum a posteriori (MAP) frame synchronizer for frame synchronization.;Symbol timing recovery is implemented by sampling and interpolation. The received signal is sampled multiple times per symbol period with unknown delay and unknown SNR. A joint estimator estimates the time delay and the SNR. The signal is rebuilt by interpolating available samples using estimated time delay. The intermediate decoding results enable decision-feedback estimation. The estimates of time delay and SNR are refined by iterative processing. This refinement improves the system performance significantly.;Usually the sampling rate is assumed to be a strict integer multiple of the symbol rate. However, in a practical system the local oscillators in the transmitter and the receiver may have random drifts. Therefore the sampling rate is no longer an exact multiple of the symbol rate, and the sampling time follows a random walk. This random walk may harm the system performance severely. The dissertation analyzes the effect of random time walks and proposes to mitigate the effect by overlapped sliding windows and iterative processing.;Frame synchronization is required to find the correct boundaries of codewords. MAP frame synchronization in the sense of minimizing the frame sync failure rate is investigated. The MAP frame synchronizer explores low-density parity-check attributes of the capacity-approaching codes. The accuracy of frame synchronization is adequate for considered coded systems to work reliably under very low SNR

    Design tradeoffs and challenges in practical coherent optical transceiver implementations

    Get PDF
    This tutorial discusses the design and ASIC implementation of coherent optical transceivers. Algorithmic and architectural options and tradeoffs between performance and complexity/power dissipation are presented. Particular emphasis is placed on flexible (or reconfigurable) transceivers because of their importance as building blocks of software-defined optical networks. The paper elaborates on some advanced digital signal processing (DSP) techniques such as iterative decoding, which are likely to be applied in future coherent transceivers based on higher order modulations. Complexity and performance of critical DSP blocks such as the forward error correction decoder and the frequency-domain bulk chromatic dispersion equalizer are analyzed in detail. Other important ASIC implementation aspects including physical design, signal and power integrity, and design for testability, are also discussed.Fil: Morero, Damián Alfonso. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. ClariPhy Argentina S.A.; ArgentinaFil: Castrillon, Alejandro. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Aguirre, Alejandro. ClariPhy Argentina S.A.; ArgentinaFil: Hueda, Mario Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Agazzi, Oscar Ernesto. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. ClariPhy Argentina S.A.; Argentin

    A software and hardware evaluation of revolutionary turbo MIMO OFDM schemes for 5 GHz WLANs

    Get PDF

    Advanced Equalization Techniques for Digital Coherent Optical Receivers

    Get PDF

    An Optimal Unequal Error Protection LDPC Coded Recording System

    Full text link
    For efficient modulation and error control coding, the deliberate flipping approach imposes the run-length-limited(RLL) constraint by bit error before recording. From the read side, a high coding rate limits the correcting capability of RLL bit error. In this paper, we study the low-density parity-check (LDPC) coding for RLL constrained recording system based on the Unequal Error Protection (UEP) coding scheme design. The UEP capability of irregular LDPC codes is used for recovering flipped bits. We provide an allocation technique to limit the occurrence of flipped bits on the bit with robust correction capability. In addition, we consider the signal labeling design to decrease the number of nearest neighbors to enhance the robust bit. We also apply the density evolution technique to the proposed system for evaluating the code performances. In addition, we utilize the EXIT characteristic to reveal the decoding behavior of the recommended code distribution. Finally, the optimization approach for the best distribution is proven by differential evolution for the proposed system.Comment: 20 pages, 18 figure

    a novel physical layer scheme based on superposition codes

    Get PDF
    Abstract The recently proposed superposition codes (SCs) have been mathematically proved to be decoded at any rate below the capacity, for additive white Gaussian noise (AWGN) channels. The main objective of this paper is to study the feasibility of a novel SC approach as an alternative to the traditional way of designing modern physical (PHY) layer schemes. Indeed, currently, PHY solutions are based on the decomposition into two separate problems of modulation shaping and coding over finite alphabets. Since superposition codes are defined over real numbers, modulation and coding can be jointly realized. Moreover, a fast decoding method is developed and tested by comparing the obtained results with both the uncoded system performance and two approximate message passing (AMP) algorithms. Finally, possible perspective to fifth generation (5G) applications exploiting SC solutions are outlined in the paper, and some interesting relations with sparse signal recovery are analyzed for further future research lines
    corecore