23 research outputs found

    Informative sample generation using class aware generative adversarial networks for classification of chest Xrays

    Full text link
    Training robust deep learning (DL) systems for disease detection from medical images is challenging due to limited images covering different disease types and severity. The problem is especially acute, where there is a severe class imbalance. We propose an active learning (AL) framework to select most informative samples for training our model using a Bayesian neural network. Informative samples are then used within a novel class aware generative adversarial network (CAGAN) to generate realistic chest xray images for data augmentation by transferring characteristics from one class label to another. Experiments show our proposed AL framework is able to achieve state-of-the-art performance by using about 35%35\% of the full dataset, thus saving significant time and effort over conventional methods

    Can a single image processing algorithm work equally well across all phases of DCE-MRI?

    Full text link
    Image segmentation and registration are said to be challenging when applied to dynamic contrast enhanced MRI sequences (DCE-MRI). The contrast agent causes rapid changes in intensity in the region of interest and elsewhere, which can lead to false positive predictions for segmentation tasks and confound the image registration similarity metric. While it is widely assumed that contrast changes increase the difficulty of these tasks, to our knowledge no work has quantified these effects. In this paper we examine the effect of training with different ratios of contrast enhanced (CE) data on two popular tasks: segmentation with nnU-Net and Mask R-CNN and registration using VoxelMorph and VTN. We experimented further by strategically using the available datasets through pretraining and fine tuning with different splits of data. We found that to create a generalisable model, pretraining with CE data and fine tuning with non-CE data gave the best result. This interesting find could be expanded to other deep learning based image processing tasks with DCE-MRI and provide significant improvements to the models performance

    Generalized Zero Shot Learning For Medical Image Classification

    Full text link
    In many real world medical image classification settings we do not have access to samples of all possible disease classes, while a robust system is expected to give high performance in recognizing novel test data. We propose a generalized zero shot learning (GZSL) method that uses self supervised learning (SSL) for: 1) selecting anchor vectors of different disease classes; and 2) training a feature generator. Our approach does not require class attribute vectors which are available for natural images but not for medical images. SSL ensures that the anchor vectors are representative of each class. SSL is also used to generate synthetic features of unseen classes. Using a simpler architecture, our method matches a state of the art SSL based GZSL method for natural images and outperforms all methods for medical images. Our method is adaptable enough to accommodate class attribute vectors when they are available for natural images

    Advances in Groupwise Image Registration

    Get PDF

    Advances in Groupwise Image Registration

    Get PDF

    Groupwise Non-Rigid Registration with Deep Learning: An Affordable Solution Applied to 2D Cardiac Cine MRI Reconstruction

    Get PDF
    Groupwise image (GW) registration is customarily used for subsequent processing in medical imaging. However, it is computationally expensive due to repeated calculation of transformations and gradients. In this paper, we propose a deep learning (DL) architecture that achieves GW elastic registration of a 2D dynamic sequence on an affordable average GPU. Our solution, referred to as dGW, is a simplified version of the well-known U-net. In our GW solution, the image that the other images are registered to, referred to in the paper as template image, is iteratively obtained together with the registered images. Design and evaluation have been carried out using 2D cine cardiac MR slices from 2 databases respectively consisting of 89 and 41 subjects. The first database was used for training and validation with 66.6–33.3% split. The second one was used for validation (50%) and testing (50%). Additional network hyperparameters, which are—in essence—those that control the transformation smoothness degree, are obtained by means of a forward selection procedure. Our results show a 9-fold runtime reduction with respect to an optimization-based implementation; in addition, making use of the well-known structural similarity (SSIM) index we have obtained significative differences with dGW with respect to an alternative DL solution based on Voxelmorph

    The Probabilistic Active Shape Model: From Model Construction to Flexible Medical Image Segmentation

    Get PDF
    Automatic processing of three-dimensional image data acquired with computed tomography or magnetic resonance imaging plays an increasingly important role in medicine. For example, the automatic segmentation of anatomical structures in tomographic images allows to generate three-dimensional visualizations of a patient’s anatomy and thereby supports surgeons during planning of various kinds of surgeries. Because organs in medical images often exhibit a low contrast to adjacent structures, and because the image quality may be hampered by noise or other image acquisition artifacts, the development of segmentation algorithms that are both robust and accurate is very challenging. In order to increase the robustness, the use of model-based algorithms is mandatory, as for example algorithms that incorporate prior knowledge about an organ’s shape into the segmentation process. Recent research has proven that Statistical Shape Models are especially appropriate for robust medical image segmentation. In these models, the typical shape of an organ is learned from a set of training examples. However, Statistical Shape Models have two major disadvantages: The construction of the models is relatively difficult, and the models are often used too restrictively, such that the resulting segmentation does not delineate the organ exactly. This thesis addresses both problems: The first part of the thesis introduces new methods for establishing correspondence between training shapes, which is a necessary prerequisite for shape model learning. The developed methods include consistent parameterization algorithms for organs with spherical and genus 1 topology, as well as a nonrigid mesh registration algorithm for shapes with arbitrary topology. The second part of the thesis presents a new shape model-based segmentation algorithm that allows for an accurate delineation of organs. In contrast to existing approaches, it is possible to integrate not only linear shape models into the algorithm, but also nonlinear shape models, which allow for a more specific description of an organ’s shape variation. The proposed segmentation algorithm is evaluated in three applications to medical image data: Liver and vertebra segmentation in contrast-enhanced computed tomography scans, and prostate segmentation in magnetic resonance images
    corecore