2,842 research outputs found

    Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures

    Full text link
    Probabilistic graphical models are a central tool in AI; however, they are generally not as expressive as deep neural models, and inference is notoriously hard and slow. In contrast, deep probabilistic models such as sum-product networks (SPNs) capture joint distributions in a tractable fashion, but still lack the expressive power of intractable models based on deep neural networks. Therefore, we introduce conditional SPNs (CSPNs), conditional density estimators for multivariate and potentially hybrid domains which allow harnessing the expressive power of neural networks while still maintaining tractability guarantees. One way to implement CSPNs is to use an existing SPN structure and condition its parameters on the input, e.g., via a deep neural network. This approach, however, might misrepresent the conditional independence structure present in data. Consequently, we also develop a structure-learning approach that derives both the structure and parameters of CSPNs from data. Our experimental evidence demonstrates that CSPNs are competitive with other probabilistic models and yield superior performance on multilabel image classification compared to mean field and mixture density networks. Furthermore, they can successfully be employed as building blocks for structured probabilistic models, such as autoregressive image models.Comment: 13 pages, 6 figure

    Forecasting and Granger Modelling with Non-linear Dynamical Dependencies

    Full text link
    Traditional linear methods for forecasting multivariate time series are not able to satisfactorily model the non-linear dependencies that may exist in non-Gaussian series. We build on the theory of learning vector-valued functions in the reproducing kernel Hilbert space and develop a method for learning prediction functions that accommodate such non-linearities. The method not only learns the predictive function but also the matrix-valued kernel underlying the function search space directly from the data. Our approach is based on learning multiple matrix-valued kernels, each of those composed of a set of input kernels and a set of output kernels learned in the cone of positive semi-definite matrices. In addition to superior predictive performance in the presence of strong non-linearities, our method also recovers the hidden dynamic relationships between the series and thus is a new alternative to existing graphical Granger techniques.Comment: Accepted for ECML-PKDD 201

    Image Segmentation by Autoregressive Time Series Model

    Get PDF

    Bounded Influence Approaches to Constrained Mixed Vector Autoregressive Models

    Get PDF
    The proliferation of many clinical studies obtaining multiple biophysical signals from several individuals repeatedly in time is increasingly recognized, a recognition generating growth in statistical models that analyze cross-sectional time series data. In general, these statistical models try to answer two questions: (i) intra-individual dynamics of the response and its relation to some covariates; and, (ii) how this dynamics can be aggregated consistently in a group. In response to the first question, we propose a covariate-adjusted constrained Vector Autoregressive model, a technique similar to the STARMAX model (Stoffer, JASA 81, 762-772), to describe serial dependence of observations. In this way, the number of parameters to be estimated is kept minimal while offering flexibility for the model to explore higher order dependence. In response to (ii), we use mixed effects analysis that accommodates modelling of heterogeneity among cross-sections arising from covariate effects that vary from one cross-section to another. Although estimation of the model can proceed using standard maximum likelihood techniques, we believed it is advantageous to use bounded influence procedures in the modelling (such as choosing constraints) and parameter estimation so that the effects of outliers can be controlled. In particular, we use M-estimation with a redescending bounding function because its influence function is always bounded. Furthermore, assuming consistency, this influence function is useful to obtain the limiting distribution of the estimates. However, this distribution may not necessarily yield accurate inference in the presence of contamination as the actual asymptotic distribution might have wider tails. This led us to investigate bootstrap approximation techniques. A sampling scheme based on IID innovations is modified to accommodate the cross-sectional structure of the data. Then the M-estimation is applied to each bootstrap sample naively to obtain the asymptotic distribution of the estimates.We apply these strategies to the extracted BOLD activation from several regions of the brain from a group of individuals to describe joint dynamic behavior between these locations. We used simulated data with both innovation and additive outliers to test whether the estimation procedure is accurate despite contamination

    "Thresholds, News Impact Surfaces and Dynamic Asymmetric Multivariate GARCH"

    Get PDF
    DAMGARCH is a new model that extends the VARMA-GARCH model of Ling and McAleer (2003) by introducing multiple thresholds and time-dependent structure in the asymmetry of the conditional variances. Analytical expressions for the news impact surface implied by the new model are also presented. DAMGARCH models the shocks affecting the conditional variances on the basis of an underlying multivariate distribution. It is possible to model explicitly asset-specific shocks and common innovations by partitioning the multivariate density support. This paper presents the model structure, describes the implementation issues, and provides the conditions for the existence of a unique stationary solution, and for consistency and asymptotic normality of the quasimaximum likelihood estimators. The paper also presents an empirical example to highlight the usefulness of the new model.
    • …
    corecore