11 research outputs found

    Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Get PDF
    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.Comment: 17 pages, 12 figures; Open Access at http://www.mdpi.org/sensors/papers/s8074265.pd

    Minimum-Information LQG Control - Part I: Memoryless Controllers

    Full text link
    With the increased demand for power efficiency in feedback-control systems, communication is becoming a limiting factor, raising the need to trade off the external cost that they incur with the capacity of the controller's communication channels. With a proper design of the channels, this translates into a sequential rate-distortion problem, where we minimize the rate of information required for the controller's operation under a constraint on its external cost. Memoryless controllers are of particular interest both for the simplicity and frugality of their implementation and as a basis for studying more complex controllers. In this paper we present the optimality principle for memoryless linear controllers that utilize minimal information rates to achieve a guaranteed external-cost level. We also study the interesting and useful phenomenology of the optimal controller, such as the principled reduction of its order

    Distributed Sensing and Estimation Under Communication Constraints

    Full text link

    Distributed Sensing and Estimation Under Communication Constraints

    Get PDF
    In this paper we consider the impact of imperfect communication links on distributed sensing and estimation in mobile networks. First we find optimum sensing regions and sensor positions under communication constraints. We show that the optimum sensor configuration consists of overlapping sensing regions. We then show how the nodes can achieve the optimum configuration in a distributed manner

    Decentralized receding horizon control of cooperative vehicles with communication delays

    Get PDF
    This thesis investigates the decentralized receding horizon control (DRHC) for a network of cooperative vehicles where each vehicle in the group plans its future trajectory over a finite prediction horizon time. The vehicles exchange their predicted paths with the neighbouring vehicles through a communication channel in order to maintain the cooperation objectives. In this framework, more frequent communication provides improved performance and stability properties. The main focus of this thesis is on situations where large inter-vehicle communication delays are present. Such large delays may occur due to fault conditions with the communication devices or limited communication bandwidth. Large communication delays can potentially lead to poor performance, unsafe behaviour and even instability for the existing DRHC methods. The main objective of this thesis is to develop new DRHC methods that provide improved performance and stability properties in the presence of large communication delays. Fault conditions are defined and diagnosis algorithms are developed for situations with large communication delays. A fault tolerant DRHC architecture is then proposed which is capable of effectively using the delayed information. The main idea with the proposed approach is to estimate the path of the neighbouring faulty vehicles, when they are unavailable due to large delays, by adding extra decision variables to the cost function. It is demonstrated that this approach can result in significant improvements in performance and stability. Furthermore, the concept of the tube DRHC is proposed to provide the safety of the fleet against collisions during faulty conditions. In this approach, a tube shaped trajectory is assumed in the region around the delayed trajectory of the faulty vehicle instead of a line shaped trajectory. The neighbouring vehicles calculate the tube and are not allowed to enter that region. Feasibility, stability, and performance of the proposed fault tolerant DRHC are also investigated. Finally, a bandwidth allocation algorithm is proposed in order to optimize the communication periods so that the overall teaming performance is optimized. Together, these results form a new and effective framework for decentralized receding horizon control with communication faults and large communication delays
    corecore