256 research outputs found

    Optical network technologies for future digital cinema

    Get PDF
    Digital technology has transformed the information flow and support infrastructure for numerous application domains, such as cellular communications. Cinematography, traditionally, a film based medium, has embraced digital technology leading to innovative transformations in its work flow. Digital cinema supports transmission of high resolution content enabled by the latest advancements in optical communications and video compression. In this paper we provide a survey of the optical network technologies for supporting this bandwidth intensive traffic class. We also highlight the significance and benefits of the state of the art in optical technologies that support the digital cinema work flow

    Scalable Media Coding Enabling Content-Aware Networking

    Get PDF
    Increasingly popular multimedia services are expected to play a dominant role in the future of the Internet. In this context, it is essential that content-aware networking (CAN) architectures explicitly address the efficient delivery and processing of multimedia content. This article proposes the adoption of a content-aware approach into the network infrastructure, thus making it capable of identifying, processing, and manipulating media streams and objects in real time to maximize quality of service (QoS) and experience (QoE). Our proposal is built on the exploitation of scalable media coding technologies within such a content-aware networking environment. This discussion is based on four representative use cases for media delivery (unicast, multicast, peer-to-peer, and adaptive HTTP streaming) and reviews CAN challenges, specifically flow processing, caching/buffering, and QoS/QoE management

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    Joint coding/decoding techniques and diversity techniques for video and HTML transmission over wireless point/multipoint: a survey

    Get PDF
    I. Introduction The concomitant developments of the Internet, which offers to its users always larger and more evolved contents (from HTML (HyperText Markup Language) files to multimedia applications), and of wireless systems and handhelds integrating them, have progressively convinced a fair share of people of the interest to always be connected. Still, constraints of heterogeneity, reliability, quality and delay over the transmission channels are generally imposed to fulfill the requirements of these new needs and their corresponding economical goals. This implies different theoretical and practical challenges for the digital communications community of the present time. This paper presents a survey of the different techniques existing in the domain of HTML and video stream transmission over erroneous or lossy channels. In particular, the existing techniques on joint source and channel coding and decoding for multimedia or HTML applications are surveyed, as well as the related problems of streaming and downloading files over an IP mobile link. Finally, various diversity techniques that can be considered for such links, from antenna diversity to coding diversity, are presented...L’engouement du grand public pour les applications multimédia sans fil ne cesse de croître depuis le développement d’Internet. Des contraintes d’hétérogénéité de canaux de transmission, de fiabilité, de qualité et de délai sont généralement exigées pour satisfaire les nouveaux besoins applicatifs entraînant ainsi des enjeux économiques importants. À l’heure actuelle, il reste encore un certain nombre de défis pratiques et théoriques lancés par les chercheurs de la communauté des communications numériques. C’est dans ce cadre que s’inscrit le panorama présenté ici. Cet article présente d’une part un état de l’art sur les principales techniques de codage et de décodage conjoint développées dans la littérature pour des applications multimédia de type téléchargement et diffusion de contenu sur lien mobile IP. Sont tout d’abord rappelées des notions fondamentales des communications numériques à savoir le codage de source, le codage de canal ainsi que les théorèmes de Shannon et leurs principales limitations. Les techniques de codage décodage conjoint présentées dans cet article concernent essentiellement celles développées pour des schémas de codage de source faisant intervenir des codes à longueur variable (CLV) notamment les codes d’Huffman, arithmétiques et les codes entropiques universels de type Lempel-Ziv (LZ). Faisant face au problème de la transmission de données (Hypertext Markup Language (HTML) et vidéo) sur un lien sans fil, cet article présente d’autre part un panorama de techniques de diversités plus ou moins complexes en vue d’introduire le nouveau système à multiples antennes d’émission et de réception

    Scalable service for flexible access to personal content

    Get PDF

    Scalable Video Streaming with Prioritised Network Coding on End-System Overlays

    Get PDF
    PhDDistribution over the internet is destined to become a standard approach for live broadcasting of TV or events of nation-wide interest. The demand for high-quality live video with personal requirements is destined to grow exponentially over the next few years. Endsystem multicast is a desirable option for relieving the content server from bandwidth bottlenecks and computational load by allowing decentralised allocation of resources to the users and distributed service management. Network coding provides innovative solutions for a multitude of issues related to multi-user content distribution, such as the coupon-collection problem, allocation and scheduling procedure. This thesis tackles the problem of streaming scalable video on end-system multicast overlays with prioritised push-based streaming. We analyse the characteristic arising from a random coding process as a linear channel operator, and present a novel error detection and correction system for error-resilient decoding, providing one of the first practical frameworks for Joint Source-Channel-Network coding. Our system outperforms both network error correction and traditional FEC coding when performed separately. We then present a content distribution system based on endsystem multicast. Our data exchange protocol makes use of network coding as a way to collaboratively deliver data to several peers. Prioritised streaming is performed by means of hierarchical network coding and a dynamic chunk selection for optimised rate allocation based on goodput statistics at application layer. We prove, by simulated experiments, the efficient allocation of resources for adaptive video delivery. Finally we describe the implementation of our coding system. We highlighting the use rateless coding properties, discuss the application in collaborative and distributed coding systems, and provide an optimised implementation of the decoding algorithm with advanced CPU instructions. We analyse computational load and packet loss protection via lab tests and simulations, complementing the overall analysis of the video streaming system in all its components

    Cloud Radio Access Network architecture. Towards 5G mobile networks

    Get PDF

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges
    • …
    corecore