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Nederlandstalige samenvatting 

(Dutch Summary) 

Een belangrijke trend van dit moment is het online delen van persoonlijke content, 

zoals digitale foto’s en digitale films. Omdat eindgebruikers toestellen van 

verschillende aard bezitten die allen met elkaar verbonden zijn via een thuisnetwork 

of het Internet, verwachten zij dat ze hun persoonlijk archief op elke plek en op elk 

tijdstip kunnen raadplegen. Echter, de achterliggende technologieën die op de dag 

van vandaag dit soort toepassingen ondersteunen zijn nog altijd gebaseerd op de 

klassieke client-server modellen. Doordat de collecties van persoonlijke bestanden 

snel groeien zijn geavanceerdere technieken nodig om gebruikers de mogelijkheid te 

bieden om al hun persoonlijke content op een transparante en flexibele manier te 

beheren. 

De ‘Personal Content Storage Service’ (PCSS) is een genetwerkte oplossing die 

gebruikers opslagruimte biedt op een kostefficiënte en schaalbare manier (i.e. zowel 

in het aantal gebruikers als in het aantal bestanden). Gebruikers ervaren een PCSS 

als een lokale (virtuele) harde schijf die op een consistente en flexibele manier 

toegang biedt tot hun persoonlijke content. Van de verschillende belangrijke functies 

die een PCSS vervult (zoals aanwezigheidsbeheer, veiligheidsvoorziening en het 

monitoren van de onderliggende hardware-infrastructuur), hebben we in dit 

proefschrift twee belangrijke concepten onderzocht: het indexeren en ophalen van 

content. 

Doordat een PCSS een groot aantal eindgebruikers heeft, is een schaalbare 

architectuur vereist. Bij voorkeur dient de al bestaande netwerkinfrastructuur hierbij 

zo efficiënt mogelijk gebruikt te worden. Daarom zal een PCSS een (hybride) ‘Peer-

to-Peer’ (P2P) model  gebruiken voor het gedistribueerd indexeren en verzenden van 

de content in het netwerk. In een P2P netwerk wordt een virtuele topologie bovenop 

het bestaande Internet Protocol (IP) gevormd en elke ‘peer’ verzorgt zowel de rol 

van aanbieder als afnemer. 

Een interessante techniek om content op een efficiënte manier te indexeren in 

een gedistribueerde omgeving is een ‘Distributed Hash Table’ (DHT). Een DHT 

biedt in een gestructureerd P2P netwerk zoekmogelijkheden aan vergelijkbaar met 

een hashtabel. Om de zoekprestaties te verbeteren van een DHT wordt er typisch een 

‘caching’-laag aangebracht tussen de applicatielaag en de DHT. Omdat persoonlijke 

bestanden locatie-afhankelijke aanvraagpatronen vertonen, zal onze voorgestelde 

‘caching’-oplossing zowel populariteits- als afstandsmetrieken gebruiken om het 

proces van het lokaliseren van de persoonlijke content te optimaliseren. We hebben 

een update-protocol ontworpen dat buren informeert van veranderingen in een 

‘cache’. Dit coöperatieve mechanisme is door middel van simulaties geanalyseerd en 

vergeleken met een ‘state-of-the-art’ pro-actief replicatieraamwerk. De resultaten 
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laten zien dat onze strategie beter presteert dan het bestaande replicatiemechanisme 

en dat de ‘overhead’ dat het update-protocol introduceert aanvaardbaar is, omdat 

prestatiewinst substantieel groter is dan de geïntroduceerde ‘overhead’ van het 

protocol. 

Hoewel het verkleinen van opzoekvertragingen gunstig is, betekent dit niet dat 

de content zelf snel opgehaald kan worden. Daarom is de volgende uitdaging voor 

een PCSS het realiseren van een efficiënt transport van de persoonlijke bestanden 

naar de toestellen van eindgebruikers. We onderzoeken in dit proefschrift een 

raamwerk dat door middel van ‘caching’ met meerdere niveaus, veelvuldig 

aangevraagde persoonlijke content dichtbij gebruikers plaatst die deze vaak 

raadplegen. Het resultaat hiervan is dat gedeelten van het PCSS netwerk ontlast 

worden en dat ophaaltijden worden verkort. Door middel van een 

dimensioneringsstudie analyseren we de voorgestelde ‘caching’ met meerdere 

niveaus, door optimale groottes te berekenen van ‘caches’ in een 

boomnetwerktopologie, waarbij ieder ‘cache’-niveau instaat voor het afhandelen van 

een gelijk aantal aanvragen. De uitkomsten van de simulaties liggen dichtbij de 

theoretische verwachtigen. Bovendien laten de simulaties zien dat de snelheid (i.e. 

het aantal individuele ophalingen van een persoonlijk bestand) waarmee de content 

wordt opgeslagen in het eerste niveau van het ‘caching’-raamwerk overeenkomen 

met analytische berekeningen. 

Omdat een groot gedeelte van de gegevens die momenteel over het Internet 

worden verzonden bestaan uit zogenoemde ‘streaming-media’, onderzoeken we 

geavanceerde mechanismen om efficiënt (live) videostromen te vervoeren naar 

eindgebruikers. In tegenstelling tot traditionele bestanden zijn videostromen nuttig 

gelijk vanaf het moment dat het eerste datasegment aankomt. Een goede kandidaat 

om een zowel kostenefficiënte als schaalbare oplossing aan te bieden, is weer het 

P2P netwerkmodel. Door de heterogene omstandigheden in bandbreedtecapaciteiten 

en uitvoermogelijkheden van de gebruikte toestellen, zal de volgende generatie P2P 

(live) videostreaming-diensten meerlaagse videocodering gebruiken. Het afspelen 

van een video kan worden begonnen zodra de basislaag wordt ontvangen en elke 

laag die extra aankomt verhoogt de kwaliteit van de video voor de eindgebruiker. 

Om het verzenden van video’s te optimaliseren stellen we een dirigeercomponent 

voor, die kennis heeft van de netwerktopologie en het transport van elke videolaag 

beheert. Hiervoor hebben we een wiskundige formulering opgesteld die in staat is 

om de routering te bepalen van de verschillende videolagen, zowel op onder- als 

bovenlaagniveau. Huidige en traditionele P2P netwerken voor videostreaming 

hebben als doel om op een gretige manier de videokwaliteit te maximaliseren voor 

de gebruiker, hoewel een videoleverancier vooral geïnteresseerd is om het minimum 

aantal videolagen dat op elke bestemming toekomt te verhogen. Daarom gebruiken 

we het wiskundig model bij het analyseren en vergelijken van deze strategieën. We 

laten zien dat de strategie van de videoleverancier zorgt voor een aanzienlijke 

vermindering van het aantal eindbestemmingen die enkel de basislaag ontvangt. Als 

gevolg hiervan zullen meer eindgebruikers meer videolagen verkrijgen dan wanneer 

de traditionele gretige methode wordt gebruikt. 

Het gebruik van exacte oplossingsmethoden voor het berekenen van zowel de 

onder- als bovenlaagroutering voor meerdere videolagen is alleen haalbaar voor 

relatief kleine netwerktopologieën. Vandaar dat we een heuristisch algoritme hebben 

ontworpen dat in staat is om het routeringsproces te bereken voor grotere netwerken. 

Daarnaast hebben we deze heuristische strategie uitgebreid om de ideale posities te 
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berekenen om bestaande knopen uit te breiden met ‘peering’-applicatie 

functionaliteit. De meetresultaten tonen dat, zoals intuïtief verwacht, wanneer het 

aantal ‘peering’-knopen vergroot wordt, het gemiddeld aantal ontvangen videolagen 

groeit. Doordat bestemmingen gemiddeld meer videolagen ontvangen, neemt het 

gemiddelde bandbreedtegebruik per link toe. De simulatieresultaten laten echter zien 

dat de bandbreedtecapaciteiten efficiënter worden gebruikt wanneer het aantal 

‘peers’ toeneemt. 

Alle voorgestelde algoritmen en protocollen in dit proefschrift hebben gemeen 

dat ze coöperatieve technieken gebruiken om bestaande oplossingen uit te breiden en 

te verbeteren. Door middel van samenwerking zijn de toegepaste methoden in staat 

om een betere dienstverlening aan te bieden dan dat een enkele instantie dat kan. 





 

English Summary 

An important trend today is the online sharing of personal content, such as digital 

photos and digital movies. Since end-users have different types of devices that all 

are interconnected via home-networks or the Internet, users expect that they can 

access their personal content archive from anywhere and at any time. However, the 

back-ends of currently used frameworks supporting such applications are still based 

on classic client-server models. Due to the fast growing personal content collections, 

more advanced techniques are needed to offer users the ability to manage all their 

personal content in a transparent and flexible manner. 

The Personal Content Storage Service (PCSS) is a networked solution that offers 

storage space as a service to end-users in a cost-efficient and scalable way (i.e. in the 

number of users and (their) content). Users experience a PCSS as a local (virtual) 

hard disk that allows them to access their content consistently and flexibly. 

Although a PCSS exhibits several major functions (such as presence management, 

security provisioning and monitoring the underlying hardware infrastructure), this 

dissertation focusses on the two key concepts: content indexing and retrieval. 

Since large volumes of end-users use a PCSS, the architecture is required to be 

highly scalable and preferably use the already installed network infrastructures as 

efficiently as possible. Therefore, a PCSS uses (hybrid) Peer-to-Peer (P2P) overlay 

models for the distributed content indexing and transferring the content items in the 

network. In a P2P network a virtual topology is formed on top of the actual IP 

(Internet Protocol) network, and all peers are performing as both suppliers and 

consumers. 

An interesting approach to index content items efficiently in a distributed 

environment is a Distributed Hash Table (DHT). A DHT is a structured P2P network 

that offers scalable lookup similar to a hash table. To increase the lookup 

performance of a DHT, a caching layer is typically installed between the application 

layer and the DHT. Since personalized files exhibit location dependent request 

patterns, our proposed caching solution uses popularity and distance metrics to 

optimize the process of locating personal content items. We have designed an update 

protocol to inform neighbors of cache updates. This cooperative mechanism 

virtually increases the size of a node’s local cache, since the node can avoid storing 

the same copies that can be retrieved from a neighbor (in only one overlay hop). The 

proposed cooperative caching solution is analyzed by using simulations and 

compared with a state-of-the-art proactive replication framework. The results show 

that our strategy significantly outperforms the existing replication mechanism and 

that the message overhead introduced by the update protocol are acceptable since the 

performance gain is substantially higher than the introduced protocol overhead. 

Although reducing delays to locate items is highly favorable, no guarantees are 

actually made that the content itself can be accessed quickly. Therefore, a key 

challenge for a PCSS is efficiently transporting personal files to the devices of end-
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users. We investigate in this manuscript a multi-level caching framework to store 

frequently accessed personal content items closers to the users that are accessing 

them often. As a result significant parts of the PCSS network are relieved and access 

times are reduced. To analyze our proposed multi-level caching solution, we have 

performed a dimensioning study to find optimal values for the cache sizes in a tree 

network topology, so that each level serves an equal share of the requests. The 

simulation results show that the cache hit rates are close to theoretical expectations. 

Additionally, the simulation measurements confirm to the analytically calculated 

content distribution rate, which is the number of individual downloads necessary to 

fill as many caches as possible at the first level. 

Since a significant fraction of the data transferred in the Internet is classified as 

streaming media today, we investigate advanced mechanisms that efficiently 

transport (live) video streams to end-users. In contrast to traditional files, streaming 

media are useful from the moment the first data segment arrives at a destination. To 

offer cost-efficient and scalable solutions, P2P overlay technologies seem the right 

candidate. Due to the heterogeneous circumstances in both bandwidth capacities and 

rendering possibilities of the end-devices, next generation P2P (live) video 

streaming are using multi-layer video. Playback can already be started when at least 

the base layer is received and every additional incoming video layer increases the 

user’s experienced viewing quality of the video. To optimally transfer video streams 

to end-users we present an orchestrating engine that is topology-aware and manages 

the transport of each video layer in the network. We have developed a mathematical 

formulation that models both the underlay and overlay routing of the distinct video 

layers. Currently, traditional P2P video streaming networks have the objective to 

maximize greedily the local peer’s video quality. However, video service providers 

are mainly interested in the minimum number of video layers that can be delivered 

to each end-user. We use the mathematical formulation to analyze and compare both 

strategies, and show that by using the video service objective a significant reduction 

is achieved of destinations only receiving the base layer. Therefore, the number of 

end-users receiving higher layers increases compared to the traditional method. 

Using exact solvers to calculate the underlay-overlay-routing problem of 

multiple video layers is only feasible for relatively small network topologies. 

Therefore we present a heuristic optimization method that is able to compute the 

routing process for larger topologies. Additionally, we extend the heuristic strategy 

to calculate ideal positions to upgrade existing nodes with peering application 

functionality. Intuitively, our results show an increase in the average number of 

accommodated video layers when the number of peering nodes in the network 

increases. As a result of the increase of the average number of received video layers, 

the average bandwidth usage on a link also increases. However, the simulation 

results show that the bandwidth capacities are used more efficiently due to an 

increasing number of peering nodes. 

As a common denominator, all presented algorithms and protocols in the 

dissertation use cooperative mechanisms to extend and increase the performance of 

existing solutions and thereby providing a better service than one single instance is 

able to do. 
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1Introduction 

This introductory chapter sets the scene for the research carried out in the framework 

of this dissertation. The research is done in the context of sharing personal content. 

We provide a brief overview of distributed techniques for locating and transferring 

personalized content to end-users. Our major research contributions are highlighted 

subsequently. Additionally, an outline is presented of the dissertation and a list of 

publications that led to this manuscript. 

1.1 Research context: managing personal content items 

Every day our lives are getting more digitalized. In our society it is common to have 

access to multiple computers, most of the cellphones are equipped with high-quality 

(video) cameras and tablets are starting to replace printed brochures and magazines 

in living rooms. All devices are interconnected with each other via in-home 

networks or the Internet and, thereby, create a whole new set of applications and 

user expectations. A common desire users have is to share/store personal files 

‘online’, such as their digital movies [1]. Currently, web sites are migrating from 

static pages containing pre-rendered text and images to complete frameworks 

offering interactive (web) applications to end-users. However, the back-ends for 

these systems are mainly based on classic client-server models and files are still 

scattered over multiple devices and storage locations. Figure 1.1 illustrates the 

typical situation where personal content is stored on different devices and the user is 

faced with the complex task to manage his/her distributed personal content 

collection. 
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Figure 1.1: Today, personal files are stored on multiple locations across different 

types of devices. 

 
Figure 1.2: Users experience a Personal Content Storage Service (PCSS) as 

virtual hard disk, where all their content is accesssed in a transparent manner. 

In order to handle the explosive growth of content items and the user’s 

expectation to locate, access and manage their content archive from different (types 

of) devices at any time and from anywhere, technologies have to be developed and 

optimized to offer flexible access to personal content in a cost-efficient and scalable 

manner (i.e. in the number of users and (their) content). The Personal Content 

Storage Service (PCSS) is a networked solution offering storage space as a service 

in a transparent manner to end-users. The main functions for a PCSS concern user 
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and content management (including replica management and indexing), query 

handling, presence management, security provisioning, monitoring of the underlying 

hardware infrastructure, and retrieving and uploading personal content items. Users 

experience a PCSS as a local (virtual) hard disk that allows them to search, access 

and share their content in a consistent and transparent manner (see Figure 1.2). 

Different existing techniques can be incorporated into a PCSS such as cloud-

services offering storage space or Content Distribution Networks (CDN) to 

proactively replicate files for load balancing purposes. However, these underlying 

frameworks have to be optimized for serving large volumes of relatively unpopular 

content items and deliver their services in a scalable way. 

1.2 Problem statement and research objectives 

Since a PCSS serves large volumes of end-users, the architecture is required to be 

highly scalable and preferably use the already installed network infrastructures as 

efficiently as possible. Therefore, a PCSS uses (hybrid) Peer-to-Peer (P2P) overlay 

models for key features involving distributed content indexing and efficiently 

transferring content items in the network. In a P2P network a virtual overlay 

topology is formed on top of the actual IP (Internet Protocol) network, and all peers 

are acting as both suppliers and consumers. In contrast, in traditional client-server 

networks only servers supply and clients consume, therefore, P2P services are 

potentially highly scalable and robust. 

One of the main challenges for a PCSS is the ability to search worldwide through 

the data set of personal content items. Inherent to personalized files are the locality 

patterns in their request distributions [1]. Current solutions that provide distrusted 

storage for files [2-4], lack the power to efficiently handle scattered lookup request 

of content exhibiting location dependent request patterns. Query search in 

unstructured P2P networks is done via a query flooding model, where a Time-to-

Live (TTL) mechanism is used to prevent overloading the network. As a result of the 

TTL limit no guarantees are made that personal content stored in the network can be 

found, making this type of search mechanisms less suitable for a PCSS. In contrast, 

a data structure that guarantees that (even) rare objects can be located is called a 

Distributed Hash Table (DHT). A DHT is a structured P2P network offering scalable 

lookup similar to a hash table, exhibiting per lookup request an average (overlay) 

hop count in the order of O(log N) with N the number of nodes in the DHT. To 

increase the lookup performance, a caching layer is typically used between the 

application layer and the DHT [5]. Usually, these caching strategies are location 

independent and do not exploit location dependent lookup patterns. 

Although reducing lookup times to locate content items is highly favorable, no 

guarantees are actually made that the content itself can be accessed quickly. 

Therefore, another challenge for a PCSS is efficiently transporting personal files 

(including streaming media) to devices of end-users. Many distributed file systems 

exist [2-4], but none of them were designed for large-scale deployment in an access 

and aggregation network environment. Integrating a distributed cache in the network 

allows users to access (their) personal content with minimal delay. 

Today, a significant fraction of the data transported in the Internet is classified as 

streaming media (i.e. video streams) and [6] expects that the amount of video 

streams on the Internet will grow in the next years. In contrast to traditional files, 
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Figure 1.4: A more cost efficient, robust and scalable video streaming solution 

can be offered, when devices share downloaded video parts. Even when peers 

stream at a different number of video layers, received layers that they have in 

common can still be exchanged. 

 
Figure 1.3: Currently, video is mainly transported from source servers to the 

end-users client, without responding to heterogeneous circumstances (e.g. 

different rendering possibilities). 

streaming media are useful from the moment the first part of the data stream arrives, 

which provides a whole new set of challenges to us. A logical transition to offer a 

scalable and cost efficient solution, is to switch away from traditional platforms that 

uses servers to provide videos (see Figure 1.3) to P2P networks where multiple peers 

support to each other the download of video parts (see Figure 1.4). Next generation 

P2P (live) video streaming networks are using multi-layered video in order to adapt 

to heterogeneous circumstances [7], e.g. various asymmetric link bandwidths or end-

devices having different display resolutions. Another advantage is the ability for 

peers to exchange video layers, even if the other peer is streaming at a different 

video quality (i.e. expressed in the number of accumulated video layers). Current 

research studies mainly focus on advanced buffering strategies to increase the user’s 

experienced playback quality (in terms of e.g. startup delay or video resolution) [8-

10]. We investigate topology aware solutions to significantly increase the 

performance of a P2P (live) video streaming solutions (in the extent of the number 

of received video layers at each destination). 

Our objectives can be summarized as: 
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 Designing and studying advanced (cooperative) caching strategies that use 

popularity and distance metrics to increase the process of locating personal 

content items. 

 Investigating the effects of integrating a multi-level caching architecture to 

resolve the transport of content items to end-users. 

 Study mechanisms that stimulate cooperation between peers, and are aware 

of the underlying network topology, and as a result increase the viewing 

experience for the network as whole. 

1.3 Main research contributions 

This dissertation’s main focus is on designing advanced algorithms and protocols to 

locate and transport personal content items, for both non-streaming and streaming 

media. In general the developed strategies are required to be scalable in order to 

serve millions of end-devices that are using a PCSS. Our research can be divided in 

three major contributions: 

1. Cooperative caching for location dependent request patterns: we study 

different strategies to increase the performance of locating personal content 

items in a DHT. The proposed cooperative caching strategy reacts on location 

dependent request patterns and efficiently uses the underlying DHT 

infrastructure. An advanced update protocol is designed that informs 

neighbors of cache updates. By utilizing neighbors’ caches the size of the 

local cache is virtually increased, since nodes are able to avoid storing the 

same copies that can be retrieved from a neighbor (in only one overlay hop). 

The update mechanism itself introduces no extra lookup delay, in case of 

contacting a neighbor that very recently released the requested value at most 

one extra overlay hop is added to retrieve the lookup request. We compare 

our cooperative caching strategy to a state-of-the-art replication mechanism 

and show a significant increase in lookup performance when requests exhibit 

location dependent request patterns. 

2. Multi-level caching for personal content delivery: using multi-level caching 

architectures to bring frequently accessed files closer to user(s), which are 

requesting those files often. In this way significant parts of the PCSS network 

can be relieved and decreases the delay for end-users accessing (their) 

personal content items. We analyze the storage dimensioning for the caches 

on each level and study the content distribution rate (i.e. the number of 

individual downloads necessary to fill as many caches as possible located at 

the first level). 

3. Topology aware multi-layer video streaming: we look into efficiently 

transporting (live) video streams through the Internet. We assume that next 

generation P2P video streaming environments use multi-layer video to handle 

the burden of heterogeneous circumstances (such as different asymmetrical 

bandwidth capacities). By introducing a (centralized) orchestrating engine 

that controls video exchanges between peers, the efficiency of the data 
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Figure 1.5: Positioning of the different chapters in this dissertation. 

transport in the network can be increased. In contrast to current strategies 

(such as Tribler [11]) that try to maximize greedily the local peer’s video (i.e. 

download) quality, video service providers are mainly interested in the 

minimum video quality they can offer to their end-users. Therefore, the 

objective we propose maximizes the minimum received number of video 

layers at each destination. This contribution is subdivided into two subjects: 

- To study the benefits of managing the download process, we present a 

mathematical formulation that models both the underlay and overlay 

routing of the distinct video layers in a network. The model is used to 

study the effects and consequences of both objective strategies in 

different scenarios. The results show that our proposed objective 

reduces the fraction of end-users only receiving the base layer. 

- Since exact solvers, computing optimal solutions, are only feasible for 

relatively small network topologies, we provide a heuristic method to 



Introduction 7 

compute the routing process of the video layers in the topology. 

Additionally, the stochastic optimization strategy is extended to 

calculate ideal positions to upgrade nodes with peering application 

functionality. The results show that increasing the number of peering 

nodes, results in an increase in the average number of received video 

layers at each destination. Moreover, having more peering nodes in a 

network allows to increases the efficiency of link bandwidth utilization. 

All proposed algorithms and protocols are systematically analyzed through 

simulations and compared to analytical models. 

1.4 Outline of the dissertation 

The dissertation is composed out of a selection of publications that were realized 

during the PhD. The publications provide an integral and consistent overview of the 

performed work. Figure 1.5 positions the different contributions that are presented in 

the following chapters. 

Locating personal content in a distributed environment is presented in Chapter 2. 

Locality in user request patterns is exploited to design advanced (cooperative) 

caching techniques that increase the lookup performance of (general) DHTs. 

Although reducing lookup times to find content is highly favorable, no guarantees 

are made to access the content itself quickly. Therefore, Chapter 3 provides a 

distributed multi-level caching architecture to efficiently retrieve personal files. 

Chapter 4 continues with presenting a mathematical formulation to model next 

generation Peer-to-Peer (P2P) multi-layer video streaming frameworks. Since exact 

solvers are only feasible for relatively small network topologies, Chapter 5 provides 

a heuristic strategy to compute the routing of video layers in larger network 

topologies and, additionally, calculates ideal locations to upgrade nodes with peering 

functionality. Finally, Chapter 6 summarizes the conclusions of the dissertation, 

together with our perspective for future work.  

1.5 List of publications 

The results gathered during this PhD research have been published in scientific 

journals and presented at a series of international conferences. The following list 

provides an overview of the publications during the PhD research. 

1.5.1 A1: publications indexed by the ISI Web of Science “Science 

Citation Index Expanded” 

N. Sluijs, F. Iterbeke, T. Wauters, F. De Turck, B. Dhoedt, and P. Demeester, 

Cooperative caching versus proactive replication for location dependent request 

patterns, Journal of Network and Computer Applications, Vol: 34, no: 2, 2011, pp. 

562-574. 
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N. Sluijs, T. Wauters, C. Develder, F. De Turck, P. Demeester, and B. Dhoedt, 

Using topology information for quality-aware Peer-to-Peer video streaming 

networks, Computer Networks, submitted and under review, 2012. 

N. Sluijs, T. Wauters, C. Develder, F. De Turck, P. Demeester, and B. Dhoedt, 

Combining video layer routing with optimal peering node placement in Peer-to-Peer 

video streaming networks, Transactions on Emerging Telecommunications 

Technologies, submitted and under review, 2012. 

1.5.2 C1: publications in international and national conferences 

N. Sluijs, K. Vlaeminck, T. Wauters, B. Dhoedt, F. De Turck, and P. Demeester, 

Caching strategies for personal content storage grids, Proceedings of the 2007 

International Conference on Parallel and Distributed Processing Techniques and 

Applications (PDPTA2007), 2007, pp. 396-404. 

N. Sluijs, T. Wauters, B. Dhoedt, and F. De Turck, Optimized search in sistributed 

personal content systems, 9e UGent-FirW Doctoraatssymposium, Universiteit Gent. 

Faculteit Ingenieurswetenschappen, 2008, pp. 186-187. 

J. Famaey, J. Donders, T. Wauters, F. Iterbeke, N. Sluijs, B. De Vleeschauwer, F. 

De Turck, P. Demeester, and R. Stoop, Comparative study of peer-to-peer 

architectures for scalable resource discovery, Proceedings of the 2009 First 

International Conference on Advances in P2P Systems (AP2PS2009), 2009, pp. 27-

33. 

N. Sluijs, T. Wauters, B. De Vleeschauwer, F. De Turck, B. Dhoedt, and P. 

Demeester, Caching strategy for scalable lookup of personal content, Proceedings of 

the 2009 First International Conference on Advances in P2P Systems (AP2PS2009), 

2009, pp. 19-26. 

1.5.3 C3: publications in national conferences 

N. Sluijs, T. Wauters, B. Dhoedt, and F. De Turck, Live video streaming using peer-

to-peer technologies, 11e UGent-FirW Doctoraatssymposium, Universiteit Gent. 

Faculteit Ingenieurswetenschappen, 2010, p. 201. 
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One of the main challenges for a PCSS is the ability to search worldwide 

through the dataset of personal files. Therefore this chapter presents our 

research on a distributed approach to index large sets of personal content 

items. We provide a detailed description of our cooperative caching 

framework that reduces average lookup delays. The cooperative caching 

mechanism is compared in this chapter with a state-of-the-art proactive 

replication strategy (i.e. Beehive). When requests are uniformly distributed 

over the network, the analytical model of Beehive shows better performance 

increases than our caching solution. However, since lookup requests of 

personal content are location dependent, the measurement results obtained 

using location dependent request patterns indicate that our proposed solution 

outperforms Beehive quickly. Additionally, the simulation results show that 

the message overhead introduced by our cooperative framework is 

acceptable, since the performance increase is higher than the overhead that 

is introduced. 

2.1 Introduction 

The interaction with digital information plays an important role in our daily life. 

Different websites, such as YouTube and Flickr, offer platforms to store and share 

personal content (e.g. text documents, music files, digital photos and personal 
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Figure 2.1: Overview of the Personal Content Storage Service architecture. 
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movies). Due to the explosive growth of the user’s personal content collections, 

managing those archives becomes a complex and time consuming task. 

Nevertheless, end-users expect that they can access and share their personal content 

from any device, anywhere and at any time. Current systems that offer storage space 

for personal content fail to achieve this in a scalable and quality-aware way, 

constraints (e.g. on files sizes and formats) need to be set on the content in order to 

cope with the workload. To be able to deal with the future workload, a centralized 

approach is no longer feasible. A Personal Content Storage Service (PCSS) is a 

networked solution that offers storage space to end-users in a transparent manner, 

which can be accessed from different types of devices independent of place and 

time. Figure 2.1 presents an architectural view on such a distributed content 

management platform, where users (i.e. clients) are connected to super nodes in the 

PCSS overlay network. 

The PCSS uses a (hybrid) Peer-to-Peer (P2P) architecture to support all 

necessary operations and the architecture is split-up in two high-level components: 

super nodes and clients. The key functions of the super node component (as 

schematically shown in Figure 2.1) concern user and content management (including 

replica management and indexing), query handling, presence management, security 

provisioning, monitoring of the underlying P2P network. The client component is 

responsible for advertising shared content as well as retrieving and uploading 

personal content items. For end-users the PCSS acts as a virtual hard disk, as if 

personal content were accessed using their local file system. Additionally, end-users 

are relieved from cumbersome back-up issues, since the PCSS provides data 

integrity through replication. 

To efficiently lookup personal content references (i.e. through optimal content 

indexing), this chapter presents a novel cooperative caching strategy that is able to 

react on location dependent request patterns and making use of an underlying 

Distributed Hash Table (DHT) infrastructure. A DHT is a (structured) P2P network 

offering scalable lookup with performance and functionally similar to a traditional 

hash table data structure. The caching strategy introduced in this chapter is a more 
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adequate and detailed explanation of the base algorithm presented in [1]. In this 

chapter we extend our previous work by making a more thorough analysis of all 

parameters that are of concern for the caching framework, including results on the 

message overhead in relation to the network and cache size, the temporal behavior 

of the caching solution and a trace which elements are stored/replaced in a cache. 

Additionally, we provide in this chapter a detailed explanation and evaluation of our 

caching framework and its cache replacement strategy. The update protocol, which 

enables cooperative caching, is described in more detail and is extended with 

pseudo-code. In [1] we compared the caching framework with traditional caching 

algorithms (like Least Frequently Used and Least Recently Used), while, in this 

chapter our cooperative caching algorithm is compared to a state-of-the-art 

replication strategy referred to as Beehive [2]. Beehive is based on an analytical 

model that finds the minimal replication level for each object such that the average 

lookup performance is a predefined constant number of (overlay) hops. Like our 

caching framework, Beehive is one of the few mechanisms that increases a DHT’s 

lookup performance without introducing any additional requirements to applications 

using the improved version of the DHT and is therefore an ideal candidate to 

compare our framework to. Our solution clearly outperforms Beehive in case of 

(highly) localized request patterns due to the cooperation between caches. 

This chapter continues in Section 2.2 with an overview of related work, while 

Section 2.3 introduces the caching architecture for the PCSS. Section 2.4 provides 

the replication and caching algorithms, and both frameworks are validated and 

evaluated by simulations in Section 2.5. Conclusions and future work are presented 

in Section 2.6. 

2.2 Related work 

Different solutions exist for providing distributed storage of files, ranging from 

client-server systems (e.g. NFS [3], AFS [4] and Coda [5]) over cluster file systems 

(e.g. Lustre [6], GPFS [7] and the Google File System [8]) to global scale Peer-to-

Peer (P2P) file systems (e.g. OceanStore [9], FARSITE [10] and Pangaea [11]). 

However, none of the distributed file system are designed for efficiently handling 

scattered lookup of personal content items exhibiting locality in their request 

distributions, which is indeed a feature inherent to personal content. 

Query search in unstructured P2P networks is done using a query flooding mode, 

using a TTL (Time-To-Live) mechanism to prevent overloading the network. In 

order to improve the efficiency of the query flooding model, Wang et al describe a 

distributed caching mechanism for search results in [12]. However, using the TTL 

limit implies that personal content stored in such a network has no guarantees to be 

found, which makes this type of search mechanism less suitable for a PCSS. A data 

structure that guarantees that (even rare) objects that are stored in a network always 

can be located is called a Distributed Hash Table (DHT). A DHT is a structured P2P 

network that offers scalable lookup, similar to a hash table, where the average 

number of (overlay) hops per lookup request has a complexity of O(log N) with N 

the number of nodes in the DHT network. Different implementations of a DHT 

already exists, such as Chord [13], Pastry [14], and Tapestry [15]. Various research 

studies have been performed to improve the lookup performance of DHTs. The 

Beehive [2] framework enables DHTs to provide an average (i.e. for all stored 
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objects in the DHT) lookup performance of O(1) through proactive replication. 

According to the evaluation made in [2], Beehive outperforms the passive caching 

technique used by Pastry [16] in terms of average latency, storage requirements, 

work load distribution and bandwidth consumption. In passive caching, objects are 

cached along all nodes on a query path [2], while Beehive’s replication strategy 

consists of finding the minimal replication level for each object such that the average 

lookup performance for the system is a constant C number of hops [2].  Beehive 

assumes that there is a global power law (or Zipf-like) popularity distribution and 

requests are uniformly distributed over the network. However, in the scenario of the 

PCSS it is conceivable that locality exists in request patterns [17], which has a major 

influence on the performance of a caching algorithm and requires a less expensive 

solution than Beehive. 

In [18] results of queries are cached and are re-used to answer more detailed 

queries. In this way unnecessary duplication of work and data movement is avoided. 

The results of (conjunctive attribute) queries are cached in a view tree and are used 

later on to resolve queries that contain (parts of) the cached query results. Although 

the view tree tries to avoid duplication of work and data movement, each search 

query is issued to the root (node) of the view tree. This aspect prevents successful 

deployment of a view tree in a PCSS system, since it introduces a single point of 

failure. 

Previous studies on caching techniques [19] or distributed replica placement 

strategies for Content Distribution Networks (CDN) [20,21] show that by taking 

distance metrics and content popularity into account, a performance increase is 

obtained compared to more straightforward heuristics such as Least Recently Used 

(LRU) or Least Frequently Used (LFU). An even larger performance increase can be 

obtained by using cooperative caching [22], compared to independent caching. The 

caching strategy of [22] is not directly applicable onto a DHT, since their algorithms 

are designed for efficiently delivering multimedia streams and do not take the basic 

architecture of a DHT into concern. However, the general concepts [22] introduce 

still apply to our work; in cooperative caching it is important to keep track of 

(neighbor) cache states and as a result of using neighbor caches the load is more 

evenly balanced among the nodes, leading to improved system scalability. The 

proposed caching strategy uses the distance metrics and content popularity, as well 

as cooperative caching to increase the PCSS lookup performance, where references 

of content are stored that exhibit locality in the distribution of requests over the 

network. 

In [23] a cooperative caching strategy is proposed for increasing the performance 

of queries on Extensible Markup Language (XML) documents that are stored 

distributed in a network. A DHT is used to let the caches cooperate with each other 

by using a loosely coupled or tightly coupled strategy. The loosely coupled approach 

caches the results of each query locally at the peer that posed it and a DHT is used to 

provide an index of the query results so that the results can be located by other peers. 

The tightly coupled strategy assigns to each peer a specific part of the query space 

and results of queries are cached at the peer that is responsible for the corresponding 

part of the query space. The advantage of the tightly coupled strategy is that there is 

control over the placement of cached content and thus there is no redundancy. 

However, compared to the loosely coupled approach it induces an additional 

overhead of moving query results from the posing peer to the caching peer and no 

advantage is taken from location dependent request patterns. Although the 
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Figure 2.2: The Personal Content Storage Service enhances the distributed hash 

table with a caching architecture to increase the lookup performance. 
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cooperative caching strategy of [23] uses a DHT, it does not improve the basic 

working of a DHT. Therefore, like the strategy of [22], the general concepts about 

sharing information between caches still apply, but they cannot be directly compared 

to our cooperative caching solution. 

2.3 Caching architecture for DHT performance 

optimization 

Since the dataset of personal content is extremely large and in order to deal with the 

future workload, a distributed approach to index the personal content collection is a 

prerequisite for the PCSS. As explained above, a Distributed Hash Table (DHT) 

allows for highly scalable lookup in extremely large distributed datasets. A <key, 

value>-pair is stored into the DHT and every node participating in the DHT is able 

to efficiently locate values that correspond to a certain key. For the PCSS, the key 

can be a file name, or could alternatively represent tags/keywords describing the 

personal content item. Often, the value represents a link to the location where the 

content is actually stored. To further optimize the content lookup process, typically a 

caching layer is introduced on top of the DHT (e.g. Pastry [16] and Beehive [2]). 

The caching layer is located between the application and DHT layer, and typically 

stores search results of important requests, as shown in Figure 2.2. 

In the example of Figure 2.2, eight nodes span the Chord-based DHT network 

for storing references to locations of personal content. In this chapter, Chord is used 

as DHT implementation, in view of its wide spread use and its inclusion in multiple 
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P2P network simulators. The approach taken, however, can be applied to any 

underlying DHT implementation. By using a hash function both content references 

and nodes can be mapped to a numeric identifier space. In Figure 2.2 we assume that 

nodes depicted with a higher number have a higher numeric identifier. Each node is 

responsible for storing values belonging to keys, which numeric identifier is between 

the numeric identifier of the preceding DHT-node (excluding) and the numeric 

identifier of the current node (including). In order to efficiently route messages in a 

DHT, every node keeps a finger table. This finger table maps numeric identifiers to 

nodes, where the distance between the numeric identifier of the current node and the 

numeric identifiers in the finger table increases exponentially. In this way, messages 

are sent to a node at least half the distance of the key space closer to the destination 

node. When using the same numeric identifier space as the node numbers in Figure 

2.2, the finger table of, e.g., node 0 contains mappings to node 1, 2 and node 4. In 

this way the average (and worst case) number of hops for a lookup has a complexity 

of O(log N), where N is the number of nodes in the DHT network [13]. 

When a user requests a personal content object in the PCSS, the DHT is used to 

lookup the link to the location the object is stored. Figure 2.2 also presents an 

example of a traditional lookup request, initiated by a user connected to node 0. 

Node 0 forwards the request to the node in its finger table with the numeric identifier 

closest to and smaller than the hash value (i.e. node 4), this process is repeated until 

the target node is reached (i.e. node 6). Finally, the target node replies directly to the 

requesting node (i.e. node 0). Storing references to object locations into a DHT is 

performed in a similar way, except no reply message is returned. Since the value-

part of <key, value>-pairs are typically locations where (the latest version of) 

personal content items are stored, no synchronizations need to take place. 

To improve the lookup performance, the PCSS provides each node with a 

relatively small amount of storage space (the cache) to temporarily duplicate <key, 

value>-pairs, obtained from lookup results on the DHT. The cache contains a 

monitoring service component for measuring object popularity and for keeping track 

of neighbor cache information. By storing <key, value>-pairs on average closer to 

end-users, the average time (measured in number of hops) needed for a lookup 

decreases. Another benefit of the caching architecture is that multiple nodes are able 

to handle lookup request of popular content, which alleviates the hotspot problem 

(i.e. sudden huge popularity of a limited set of content items) enormously. 

2.4 Cooperative caching and proactive replication 

mechanisms 

In order to utilize the available cache space on each node efficiently, a caching or 

replication algorithm is mandatory to decide which entry to remove for a more 

valuable lookup result. The popularity of personal content is typically described by a 

power law (Zipf-like) distribution. This distribution states that some personal content 

is highly popular and the remainder of the content is more or less equally popular. In 

(1) the Zipf-like probability mass function [24] is provided, where M denotes the 

number of personal content items and  is the exponent characterizing the 

distribution. 
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PZipf-like(x) determines the probability that a personal content object having rank x 

is requested, where x  {1, …, M}. This implies that a personal content object 

having a lower rank (i.e. a larger value for x) is less popular,  > 0. Typically for 

P2P file sharing applications the value of  is between 0.6 and 0.8 [25]. 

In Section 2.4.1 the analytical model of Beehive’s proactive replication strategy 

is explained in detail and in Section 2.4.2 our cooperative caching strategy is 

introduced. 

2.4.1 Beehive: proactive replication 

The replication framework of Beehive [2] enables a DHT to achieve (on average) 

constant lookup performance for power law (Zipf-like) popularity of stored content. 

Through proactive replication Beehive reduces the average number of (overlay) 

hops, where copies of stored content are actively propagated among multiple nodes 

in the network.  The goal of Beehive’s replication strategy is to find the maximum 

replication level L for each object such that the average lookup performance for the 

system is a predefined constant number of hops [2]. In order to reach this goal, 

popular items are replicated to more nodes than less popular objects, aiming to 

minimizing both storage and bandwidth overhead. According to [2], Beehive is a 

general replication framework that can operate on top of any DHT implementation 

using prefix-routing, such as Chord [13]. In Chord-based DHT implementations the 

search space halves in each step of the lookup process (i.e. Chord is a DHT with 

base 2) and therefore provides O(log N) lookup performance, where N is the number 

of nodes in the DHT network. The main idea of Beehive is that the maximum 

number of hops for a lookup is reduced by h hops if objects are proactively 

replicated to all nodes on all query paths that logically precede the home nodes for 

the last h hops. A home node is the responsible DHT node for storing an object, 

according to the numeric identifier produced by the hash function of the key.  

Beehive controls the number of replicas by assigning each stored object a replication 

level L. The maximum number of (overlay) hops, for every node in the DHT, to 

locate an object on level L equals L. When Chord (i.e. b = 2) is considered, each 

object replicated at level L is stored on         ⁄  nodes, where N is the number 

of nodes in the DHT. Figure 2.3 illustrates the replication level mechanism of 

Beehive. 

In Figure 2.3 a Chord-based DHT network is considered with 8 nodes, which 

means that the maximum replication level       ( )   . All personal content 

references on level 3 are only stored on the home nodes of the objects. On level 2 

personal content item references are replicated to      ⁄  nodes, including the 

home node. The number of replicas made on level 1 is      ⁄  and level 0 lets all 

nodes store a replica of the personal content reference. The lookup query inserted at 

node 0 to lookup a personal content reference that is located on node 7, requires 3 

(overlay) hops when the object is only stored on its home node (i.e. the replication 

level is 3). When the replication level for this object is set to 2, Figure 2.3 depicts 

that the number of (overlay) hops is reduced to 2 hops. The (maximum) number of 
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Figure 2.3: Beehive’s level of replication mechanism, the maximum level L for 

this situation is three. The lower the level for a stored item in the DHT, the more 

it is replicated to other nodes. The goal is to find the minimal replication level 

for each item such that the average number of (overlay) hops per lookup is 

constant. 
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hops can be reduced to one hop, when the object has a replication level of 1. When 

the number of hops for the objects has to be 0, all nodes store the object (i.e. 

replication level 0). In this way each stored item in the DHT receives a replication 

level, based on the popularity of the item, so that the weighted average of the 

maximum number of hops for a lookup request for a stored item in the DHT matches 

a predetermined target number C. 

Let fi denote the fraction of items replicated at level i or lower (i.e. fk = 1, where 

k is the maximum replication level). The fraction of items that are replicated at all 

nodes is expressed by f0 and when M denotes the total number of items stored in the 

DHT, M × f0 equals the total number of objects that are stored on each node in the 

DHT (i.e. these are the most popular objects in the network). The number of objects 

that have a maximum number of i (overlay) hops per lookup request is Mfi – Mfi-1. 

The average storage (i.e. average number of objects stored) on a node for a DHT 

implemenation with base b is expressed whith the following equation [2]: 

    
 (     )

 
   

 (       )

  
 (2) 

When Q(m) represents the total number of lookup requests to the most popular m 

items, the number of queries that travel a maximum of i (overlay) hops is Q(Mfi) – 

Q(Mfi-1). The target number of hops C is reached when the following expression is 

fullfilled on the weighted average of the maximum number of (overlay) hops: 
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Note that the target number of hops C is the weighted average of the maximum 

number of (overlay) hops for a lookup request for a stored item in the DHT and not 

the average number of (overlay) hops as considered in [2]. Finally, assume that in 

the optimal solution the problem                , for some     . In [2] 

this leads, using equation (3), to the following closed-form solution that minimizes 

the (average) storage requirement but satisfying the target number of hops C: 
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    ) and α is the parameter describing the 

(Zipf-like) popularity distribution. The value of k’ can be derived by satisfying the 

condition that fk’-1 < 1, that is, 
      (     )

           
  . All   

           . With the 

closed-form solution of (4) the fraction fi is approximated by   
 , to achieve the 

desired constant lookup performance and k’ represents the upper bound for the worst 

case number of (overlay) hops for a lookup request. 

Since the analytical model of Beehive provides the optimal solution to increase 

the lookup performance, we use the analytical model to compare it with our 

cooperative caching strategy. In the experiments we have assumed that the 

popularity of items is known, such that the replication level can be set for all items. 

This approach allows investigating the performance after warm-up of the system. 

Note that, unlike our cooperative caching framework, Beehive has an advanced 

protocol to estimate the overall popularity distribution in the network. Our 

cooperative caching algorithm only needs to know the popularity of the items on 

each individual node, which is measured by the number of local requests to an object 

a from a node n. 

2.4.2 RTDc: cooperative caching 

An important concept for a caching algorithm is that locality exists in the request 

patterns of nodes inserting lookup requests. This idea is supported by the research 

performed by Duarte et al in [17], where geographical characterizations of requests 

patterns are studied for YouTube content. However, until now no concrete and 

generalized probability mass function has been proposed (either based on theoretical 

or experimental grounds) that describes the locality based request distribution. Here, 

we model locality using a Normal function
1
, where the mean is  and  the standard 

deviation. 

                                                           
1
 Since the request pattern is the sum over multiple aspects, the Normal function is 

presumed to be a valid distribution to model locality. 
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Let PNormal(y) be the probability that a personal content item is requested from 

node y. Parameter  represents the uploading (super) node, since it is conceivable 

that the (super) node that inserts the personal content object has the highest 

probability to request it. The value  is used to model the locality of requests over 

the network. A higher value of  makes the distribution more uniform, since more 

neighboring nodes will request the personal content item. 

Basic DHTs use hash functions to map nodes onto the numeric identifier space, 

which means that nodes are more likely to have different neighbors in the DHT than 

in the actual network topology. Different research studies are already performed that 

address the issue of including physical neighboring nodes as logical neighbors in 

DHTs [26,27], in order to reduce latencies in overlay hops. In [26] the network 

topology is embedded into the DHT by assigning a locality-aware identifier to each 

node. In our use case, we assume that the DHT is locality-aware, neighbors in the 

PCSS overlay network map to neighboring nodes in the physical network. 

Since we want to reduce the average number of hops needed for a lookup, the 

caching algorithm we propose reacts on both popularity and distance of lookups. 

The popularity pn,a represents the total number of requests to an object a, initiated by 

node n. The distance dn,a of a personal object a is measured by the number of 

(overlay) hops needed to obtain the lookup result from the requesting node n and the 

responsible node storing the object. Since objects can be cached (multiple times) in 

the network, the distance for an object is the minimal number of (overlay) hops of a 

(previous) successful lookup retrieval. The importance In,a for node n to store object 

a, which is used as a metric in the Request Times Distance (RTD) caching 

algorithm, is calculated as: 

               (5) 

Consequently, the references to personal content objects with the highest 

importance values for In,a in (5), will be stored in the local cache of node n. In [1] the 

RTD caching algorithm is extended with a sliding window in order to react on  

changes in content popularity. By adding a sliding window, only the last T requests 

that arrived in a node are used to determine the popularity of the requested content. 

However, to compare the caching algorithm with the analytical model of Beehive 

the sliding window size is set to infinite, since the popularity distribution of the 

stored content is constant during each simulation run. 

Since in a Chord-based DHT each node knows its predecessor and successor 

node on the DHT ring (to be able to update finger tables when nodes suddenly join 

or leave the DHT network) the performance of the caching algorithm can be 

increased by keeping a local copy of both neighbors’ cached keys. In order to keep 

the storage overhead to a minimum, only keys of both direct neighbors are kept 

locally. This cooperative caching strategy utilizes the neighbors’ caches to virtually 

increase the size of the local cache. In this way, nodes can avoid storing the same 

copies of <key, value>-pairs that can be retrieved from their neighbor, in only one 

hop. Figure 2.4 visualizes the update protocol for the three possible scenarios of 

performing a lookup using cooperative caching. In all scenarios the destination node 

for the lookup is node 6 (i.e. the node responsible for storing the values belonging to 

the search key), the request is initiated from node 0 and the node numbers are used 
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Figure 2.4: Three scenarios for a lookup using cooperative caching. Scenario (a) 

describes the case where local copies of neighbor cache entries do not contain 

the search key. In scenario (b), one of the local copies of the neighbor’s cache 

contains the search key and in scenario (c) the situation that the requesting node 

wrongly assumes that its neighbor’s caches the search key is depicted. 
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as the numeric identifier space. Figure 2.4a considers the case where the local copies 

of the cache entries of the neighbor nodes do not contain the search key of object a. 

The scenario in Figure 2.4b describes the case that the local copy of the cache entry 

of the neighbor node, in this case node 1, contains the search key. And Figure 2.4c 

represents the scenario where node 0 wrongly assumes that node 1 caches the search 

key of object a (i.e. in between cache update messages). 

When the local copy of the neighbor’s cache does not contain the search key 

(Figure 2.4a), the lookup is performed as usual. A request message REQ (a) is 

routed via node 4 to node 6. Node 6 responds by sending the requested value using a 

reply message REP (b). In the case that node 0 decides to cache the lookup value, it 

updates the local cache table of both its neighbor nodes with the cache update 

message CACHE (c). These nodes then re-compute their values of the importance 

I1,a and I7,a of object a, as the distances d1,a and d7,a are now equal to one hop. No 

extra lookup delay is introduced by this update mechanism. 

In the case that one (or both) of the local copies of the neighbor’s caches contain 

the search key, the lookup request is routed to that neighbor node. In Figure 2.4b, the 

situation is presented where the local copy at node 0 of the cached entries in node 1 

contains the search key. As a consequence, the request message REQ (d), initiated 

by node 0, is forwarded to node 1. When node 1 still has the value of the search key 

in its cache, it updates the popularity p1,a and responds the value using the reply 

message REP (e). Node 0 again decides whether or not to cache locally the lookup 

value, in the case node 0 keeps the lookup results in its local cache it uses the cache 

update message CACHE (c) to inform the neighbors. 

The situation that node 1 no longer caches the value of the search key and has 

not sent the corresponding cache update message CACHE to its neighbors yet (i.e. it 

very recently released the value), is illustrated in Figure 2.4c. The lookup message 

REQ (d) is forwarded by node 1 as usual using the request message REQ (f) via 

node 5 to node 6. Node 6 responds with the value of the search key, using the reply 

message REP (g). Similar to the other two scenarios, node 0 decides whether or not 

to store the result in its cache by computing the importance I0,a of object a (with 

distance d0,a = 1 in case the entry is stored in its other neighbor’s cache), and informs 

the neighbors in case of a cache change with the cache update message CACHE (c). 

Only in the case when a neighbor is contacted erroneously because it very recently 
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A.01 initiateLookupRequest(key) { 

A.02  if(storedOrCachedOnThisNode(key)) { 

A.03   return lookup_result; 

A.04  } else if(neighborCachesKey(key)) { 

A.05   sendLookupRequest(neighbor, key); 

A.06  } else { 

A.07   targetNode = hash(key); 

A.08   sendLookupRequest(targetNode, key); 

A.09  } 

A.10 } 

 

Figure 2.5: Pseudo-code for initiating lookup requests. 

B.01 receiveLookupRequest(key) { 

B.02  if(storedOrCachedOnThisNode(key)) { 

B.03   if(cachedOnThisNode(key)) { 

B.04    updateCounters(key); 

B.05   } 

B.06   sendLookupResult(key); 

B.07  } else { 

B.08   targetNode = hash(key); 

B.09   sendLookupRequest(targetNode, key); 

B.10  } 

B.11 } 

 

Figure 2.6: Pseudo-code showing the processing when receiving a lookup 

request. 

released the requested value, one extra hop is added to the lookup delay. In all other 

cases, no extra delay is introduced. 

To illustrate the inner working of the RTD caching algorithm, Figure 2.5 

presents the pseudo-code for the method that describes the initiation of a lookup 

request, Figure 2.6 illustrates the process of receiving a lookup request, the method 

handling a lookup reply is shown in Figure 2.7 and receiving a cache update 

message is presented in Figure 2.8. Other routines used by the DHT are not changed 

by the RTD algorithm. 

When a user initiates a lookup request, the method on line A.01 of Figure 2.5 is 

invoked. When the node is already storing (or caching) a local copy of the lookup 

result itself (A.02), the result is returned directly to the user (A.03). Otherwise, the 

node checks whether a neighbor caches the lookup result (A.04) and, if so, the 

request is then sent to that neighbor (A.05). In case the result is not stored or cached 

locally, and not available through a neighbor’s cache, the request is sent as a 

traditional DHT lookup (A.08) by using the hash function (A.07) to determine the 

target node. 

Upon receiving a lookup request (B.01), the node replies (B.06) the result to the 

requesting node when the node is storing or caching the lookup result (B.02). When 

the node is caching the key (B.03) the popularity counter is updated (B.04). In the 
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C.01 receiveLookupReply(key, value) { 

C.02  updateCounters(key); 

C.03  if(storedOrCachedOnThisNode(key)) { 

C.04   return; 

C.05  } 

C.06  lowest_importance_value = 

C.07  getLowestImportanceValueofCachedKeys(); 

C.08  lookup_importance_value = 

C.09  calculateImportanceValue(key); 

C.10  if(lookup_importance_value >  

C.11    lowest_importance_value) { 

C.12   removed_key = 

C.13  removeLowestImportanceValueKeyFromCache(); 

C.14   insertNewKeyIntoTheCache(key, 

C.15 value); 

C.16  updateCacheChangeToNeighbors(removed_key, 

C.17 key); 

C.18  } 

C.19 } 

 

Figure 2.7: Pseudo-code executed when receiving a lookup reply. 

D.01 receiveCacheChangeUpdateOfNeighbor(removed_key,  

D.02 key) { 

D.03  neighbor_cache.remove(removed_key); 

D.04  neighbor_cache.add(key); 

D.05  updateImportanceValueofCachedKeys(); 

D.06 } 

 

Figure 2.8: Pseudo-code describing the process of receiving a cache update 

message. 

case the node is not storing or caching the lookup result (in the situation of Figure 

2.4c), the request is forwarded (B.09) as usual to the target node (determined by 

using the hash function (B.08)). 

The node initiating the lookup request receives the lookup reply through method 

C.01 in Figure 2.7. First, the counters that measure the popularity of objects and the 

distance (i.e. overlay hop count) needed to obtain the lookup request are updated 

(C.02), ensuring that the importance values are calculated correctly. In the case 

where the node already stores or caches the lookup result, no further actions need to 

take place (C.03). Otherwise, the entry in the local cache having the lowest 

importance value is retrieved (C.06) and the importance value of the lookup result is 

calculated (C.08) using equation (5). When the importance value of the lookup result 

is larger than the lowest importance value (C.10), the entry having the lowest 

importance value is evicted from the cache (C.12) and replaced by the lookup result 

(C.14). Finally, the neighbors are updated of the local cache change (C.16) using the 

cache update message CACHE. 
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When a node receives the cache update message CACHE (D.01), the node 

removes the old entry (D.03) from the local copy of the specific neighbor’s cache 

entries and adds the new neighbor’s cache entry into the local copy (D.04). The node 

than updates the importance values of its cache entries, since the distance values 

might be changed due to the update (D.05). 

2.5 Evaluating cooperative caching with proactive 

replication 

In order to compare the (cooperative) RTD caching algorithm to the analytical 

model of Beehive, the discrete-event simulator PlanetSim [28] is used. PlanetSim 

offers a framework to simulate large scale overlay services and networks, such as 

DHTs, and can be extended at the network, overlay or application layer. For the 

validation and evaluation of caching algorithms, we have extended PlanetSim at the 

application layer with a lookup service that can use the RTDc caching algorithm or 

Beehive’s replication model. An advantage of PlanetSim is that it already has an 

implementation of the DHT lookup protocol Chord [13]. For each simulation the 

DHT network is created by PlanetSim and randomly selected <key, value>-pairs are 

inserted into the network, so that every personal content reference is initially stored 

on only one node. All stored items in the DHT are ranked according to the 

popularity distribution and when locality is required in the request pattern, the 

Normal distribution is used to compute the probability that an item is requested from 

a node. The mean value of the locality distribution is the uploading (super) node and 

the standard deviation (parameter σ) is used to control the uniformity of this 

distribution. The probability Prequested(x, y) that an item having rank x is requested 

from a node y is calculated as
2
: 

          (   )            ( )         ( ) (6) 

When the replication strategy of Beehive is used, all objects are replicated into 

the caches according to the analytical model of Beehive. When the RTDc 

(cooperative RTD) caching algorithm is used, the sizes of the caches are calculated 

according to the analytical model of Beehive and are left empty. To initialize (i.e. 

warm-up) the network properly for RTDc, a startup phase is used where search 

queries enter the network using the cooperative caching algorithm to decide which 

lookup result to cache. After the whole network is initialized properly, search 

queries are made by the peers according to the popularity and locality distribution. 

The simulation stops when the network reaches a non-equilibrium steady state, i.e. 

when the average number of hops and the cache hit ratio have stabilized. In order to 

cancel out noise due to random fluctuations, the average values over ten independent 

simulation runs are used. 

In Section 2.5.1 both algorithms are compared using the traditional uniform 

distribution of requests over the DHT network. The distribution of lookup requests 

for personal content retrieval is expected to be more localized, therefore Beehive is 

                                                           
2
 Prequested is used in section 2.5.3.4 to calculate the local theoretical importance rank 

of the personal content items for each node. 
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Figure 2.9: Number of hops per lookup request in relation to the average storage 

per node, for Beehive analytically calculated with dots representing simulated 

results of the weighted average of the maximum number of hops, simulated 

average number of hops for Beehive and simulated average number of hops for 

the cooperative RTD caching algorithm. 

compared with RTDc using the locality in lookup requests in Section 2.5.2. Finally, 

section 2.5.3 makes a more detailed study of the RTDc caching algorithm, 

addressing the message overhead of the update protocol and the temporal behavior 

of the RTDc caching framework. 

2.5.1 Comparing Beehive with RTDc for traditional distribution 

of lookup requests 

The analytical model of Beehive is used to calculate the replication factor for each 

personal content reference. The solution that Beehive proposes aims to minimize the 

storage space (i.e. number of personal content references stored), while offering a 

predetermined average number of (overlay) hops per lookup request, where the 

distribution of lookup requests over the network is expected to be uniform. As 

explained in Section 2.4.1, the target hops C of Beehive is the weighted average of 

the maximum number of (overlay) hops per item stored in the DHT. Figure 2.9
3
 

illustrates the relation between the average number of (overlay) hops in relation to 

the average storage space on a node. Three different curves are presented in Figure 

2.9: Beehive calculated analytically (the dots representing the simulated results of 

the weighted average of the maximum number of hops), the simulated average 

number of hops for Beehive and simulated average number of hops for the 

cooperative RTD caching algorithm. In order to compare our caching framework 

                                                           
3
 The maximum standard deviation over the measured averages was less than 1.3 

percent, indicating that ten independent simulation runs is sufficient to cancel out 

noise due to random fluctuations. 
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Figure 2.10: Relation between the number of caches that store a personal content 

reference and the popularity rank of the personal content reference for the both 

the model of Beehive as the cooperative RTD caching algorithm. A lower rank 

indicates a higher popularity and in (a) the target number of  hops C is set to 1.0 

and in (b) to 2.0. 

with Beehive, all input parameters are set beforehand and used for each personal 

content item to determine in which replication level it belongs. In the simulation 

setup the network size N is set to 32 nodes, the number of personal content items M 

is 50 × N, the power law (Zipf-like) popularity distribution parameter α is 0.6.
4
 In 

order to get representative results for the weighted average of the maximum number 

of hops for each personal content object, a random personal content item is selected 

and is requested by all nodes in the DHT network. 

As shown in Figure 2.9, for relatively small caches, Beehive outperforms the 

RTDc considerably. This due to the fact that each node in the DHT makes 

independent estimations of the popularity distribution. When the cache space is 

relatively small, small mistakes in the estimations of the most important content 

have a high impact on the performance of the caching algorithm. As explained in 

Section 2.4.1, the output of Beehive’s analytical model is the weighted average of 

the maximum number of overlay hops per stored item. Therefore, the simulated 

weighted average of the maximum number of hops is plotted onto the analytical 

curve, which shows the correct working of the simulation framework. In order to 

compare the average number of (overlay) hops for RTDc and Beehive, the 

simulation results of the average number of hops per lookup request for Beehive are 

used in the remainder of this chapter. 

Figure 2.10 depicts the number of nodes storing a replica for each personal 

content item for both the Beehive and RTDc strategies, where the personal content 

items are sorted by their popularity rank (i.e. the smaller the rank, the more popular 

the personal content object). The same simulation results are used as for Figure 2.9 

(i.e. N = 32, M = 50 × N and α = 0.6), the target average number of hops C for 

Figure 2.10a is set to 1.0 and for Figure 2.10b to 2.0. 

Figure 2.10 shows that Beehive replicates a larger fraction of popular content 

items to more nodes, in order to decrease the average number of hops. When the 

same amount of storage space is provided to the RTDc caching framework, the 

                                                           
4
 These values provide enough depth to study the improvements of our proposed 

solution, though the number of users and items is relatively small compared to a 

realistic PCSS. 
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Figure 2.11: Influence on the performance of introducing locality in lookup 

request for RTDc with different values for the locality variance parameter σ. 

Since the performance of Beehive is not affected by the locality distribution of 

lookups, the curve representing the average number of hops for Beehive (of 

Figure 2.9) is plotted as a reference. 

RTDc caching algorithm also tries to cache popular content more often. However, 

the performance increase of RTDc compared to Beehive is lower (as depicted in 

Figure 2.9), since RTDc also caches a lot of relatively unpopular content. Note that 

the analytical model of Beehive has a perfect centralized view on content popularity 

beforehand. 

2.5.2 Comparison between RTDc and Beehive for distributed 

lookup of personal content 

In Figure 2.11 the influence on the performance when introducing locality of lookup 

requests on RTDc is shown, when the simulation has reached the non-equilibrium 

steady state situation. Since the performance of Beehive is not affected by the 

locality distribution of lookups, the average number of hops curve of Beehive (see 

Figure 2.9) is plotted as a reference. In order to get results for a larger P2P network 

the network size N is scaled to 256 nodes, the number of personal content items M is 

50 × N, the power law (Zipf-like) popularity distribution α is 0.6 and the locality 

parameter σ ranges from 1.0 to 10.0. 

Figure 2.11 illustrates that a higher locality in the request pattern (i.e. a lower value 

of the locality variance parameter σ) increases the lookup performance when RTDc 

is used, using the same amount of storage space as Beehive requires. When the 

cache space is relatively low, a more localized requests distribution induces a 

relatively higher performance gain. 
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Figure 2.12: Average message overhead for a lookup request in relation to the 

network size (a: σ = 1.0 and b: σ = 3.0) and the cache size (c: σ = 1.0  and d: σ 

= 3.0). The message overhead is measured by the number of reply messages 

REP, request messages REQ en cache update messages CACHE. The cache size 

for (a and b) is set to 10 entries per node and is compared to the situation no 

caching is used. The network size of (c and d) is set to 256 peers. 

2.5.3 Detailed evaluation of the RTDc caching algorithm 

In this section the RTDc caching algorithm is evaluated in more detail in terms of 

message overhead, and more specifically overhead generated by the update protocol 

described in Section 2.5.3.1. This is done by inspecting the fraction of lookups that 

uses cooperative information versus standard lookup requests in Section 2.5.3.2. In 

addition, Section 2.5.3.3 examines the dynamic behavior of RTDc. Section 2.5.3.4 

investigates the content of caches in terms of popularity. 

2.5.3.1 Message overhead of the update protocol for cooperative caching 

Although the main goal of the caching framework is to reduce the average number 

of hops required to obtain a lookup result, the message overhead created by keeping 

cache states of neighbors up-to-date should be as a low as possible. Therefore, the 

average number of messages sent (and forwarded) for a lookup request is shown in 

Figure 2.12, in relation to the network size (Figure 2.12a and Figure 2.12b) and the 

cache size (Figure 2.12c and Figure 2.12d). For these simulations the network size N 

is set to 256 nodes, the cache size is 10 items, the number of personal content items 

M is 50 × N, the power law (Zipf-like) popularity distribution α is 0.6 and the 

locality parameter σ is set to 1.0 and 3.0. 

In Figure 2.12a (σ = 1.0) and Figure 2.12b (σ = 3.0) the message overhead is 
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depicted in relation to the network size, for the situation where no caching is used 

and the case that every node has a cache size of 10 items. The average amount of 

reply messages for a lookup request is (close to) one (i.e. only requests for items 

located on the requesting node need no lookup reply message REP) and independent 

of the network size, for the situation where no caching is used. When caching is 

enabled, the average number of reply messages REP per lookup request further 

reduces, since cache hits on the requesting node need no reply message as well and 

is still independent of the network size (i.e. the total number of items and cache size 

increases linearly with the network size). When the caching framework is used, both 

Figure 2.12a and Figure 2.12b show that the average number of sent and forwarded 

messages to obtain a lookup result (REP plus REQ messages) decreases 

significantly compared to the situation caching is disabled. The total cost (measured 

in terms of average number of messages for each lookup request, including cache 

update messages CACHE) of the cooperative RTD caching algorithm in Figure 

2.12a and Figure 2.12b is considerably less than the total average cost for a lookup 

request when no caching is used, for all network sizes. This implies that the 

cooperative caching framework is able to efficiently update cache states to 

neighbors, without introducing extra network overhead.  

When the cache size increases, Figure 2.12c (σ = 1.0) and Figure 2.12d (σ = 3.0) 

illustrate that the average number of reply and request messages decreases, since 

more objects are cached at (multiple) nodes. The message overhead created by the 

update protocol slightly increases when the cache size increases (i.e. the required 

number of cache update messages CACHE), because multiple items of similar 

popularity are stored in the same cache, which results in more cache changes taking 

place. However, the increase in the average number of cache update messages 

CACHE in Figure 2.12c and Figure 2.12d is much smaller than the decrease in 

average number of reply and request (REP plus REQ) messages and therefore has no 

negative impact on the performance of the caching algorithm. The benefits of using 

the cooperative caching via the cache update protocol are higher than the cost that is 

introduced to keep neighbor cache states up-to-date. 

2.5.3.2 Fraction of lookup request using cooperative versus standard lookup 

In [1] we show that using the update protocol to inform neighbors of cache state 

changes results in a performance surplus for the RTD algorithm, since the average 

number of cache duplicates between neighbors is reduced significantly. To 

understand this performance increase better, Figure 2.13 depicts the fraction of 

lookup requests that use cooperative information and the fraction performing 

standard DHT lookups. The same simulation setup is used as for Figure 2.12 (i.e. N 

= 256, M = 50 × N, α = 0.6, and σ is 1.0 and 3.0). 

Figure 2.13a (σ = 1.0) and Figure 2.13b (σ = 3.0) indicate that when the network 

size increases, the fraction of lookup requests using cooperative information (i.e. a 

neighbor caches the result of the lookup request) is stable. However, when the cache 

size increases, Figure 2.13c (σ = 1.0) and Figure 2.13d (σ = 3.0) illustrate that the 

fraction of lookup requests using cooperative information initially increases and then 

slightly decreases. The increase can be explained by the fact that nodes get more 

space available to cache lookup results that are also requested often by their 

neighbors. When the cache space increases even further, all nodes can store those 

lookup results themselves and therefore the fraction of lookup requests using 
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Figure 2.13: The fraction of lookup requests that is performed using standard 

lookup and the fraction using cooperative information is plotted as a function of 

the network size (a: σ = 1.0 and b: σ = 3.0) and the cache size (c: σ = 1.0 and 

d: σ = 3.0). The cache size for (a and b) is set to 10 items per node and the 

network size of (b and c) is set to 256 peers. 

cooperative information decreases. In all simulations, the lookup requests that use 

cooperative information successfully find the result at their neighbor (i.e. scenario 

(c) of Figure 2.4 did not occur during the simulation experiments). 

2.5.3.3 Temporal behavior of the RTDc caching framework 

Another important aspect of the caching framework is the behavior of cache changes 

over time. In Figure 2.14 the number of local cache changes over the last 10 lookup 

requests are shown as a function of the number of lookup requests initiated. For each 

simulation run 10 nodes are randomly chosen that record the moments their cache 

changes, finally, the averages are taken over all nodes together (over ten 

independent simulation runs). The same simulation setup is used as for Figure 2.12 

(i.e. N = 256, M = 50 × N, α = 0.6), with locality variance σ 1.0 and 3.0, and a cache 

size of 10 items for each node. 

Figure 2.14 shows that the average number of cache changes for the first 10 

lookup requests is higher when σ is higher. During initialization, the chance that the 

first 10 request are distinct objects is larger when the locality in requests is more 

uniformly distributed (i.e. a higher value for σ). Therefore when caches start empty, 

the average number of cache changes during the startup phase is on average larger 

and more requests are required to get a (more or less) stabilized cache change rate.  

When reaching steady state, cache changes regularly take place, with a higher 

average number of cache changes for a smaller value of σ and a larger cache size. 
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Figure 2.14: Average number of cache changes (over the last 10 requests) in 

relation to the number of lookup requests initiated locally, the cache size is set in 

(a) at 10 entries and in (b) at 50 entries. 

  
Figure 2.15: Normalized fraction of cache removals in relation to the local 

personal content rank number. In (a) the fraction of cache removals is shown for 

a cache size of 10 items and in (b) the cache size is set to 50 entries. 

When σ is smaller the probability that neighbors request items that are popular for a 

node is smaller (i.e. the distribution of requests gets more localized), and therefore 

neighbor’s caches can be used less often which requires nodes themselves to decide 

whether to cache an item. A larger cache size (Figure 2.14b) indicates that more 

lookup results are stored locally that have similar importance values. Therefore, the 

average number of cache changes over the last 10 lookup requests is higher for a 

larger cache size. 

To examine the relative importance of replaced cache entries, Figure 2.15 depicts 

the normalized fraction of cache removals for each personal content item stored in 

the PCSS. On the x-axis, the personal content items are ranked according to their 

afterwards calculated rank number (i.e. rank 0 is the locally most important object). 

The same simulation results are used as for Figure 2.14 (i.e. N = 256, M = 50 × N 

and α = 0.6). 

The optimal solution is to cache the most locally important items at all times (i.e. 

with highest values for In,a). By measuring the frequency that a specific item is 

located in the cache, the importance of the item for that node can be established 

(automatically taking cached items of neighbors into account). Figure 2.15 depicts, 

as expected, that the locally most important personal content items are removed less 
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Figure 2.16: Relation between the average fraction of nodes (and their 

neighbors) caching an object and the objects, ordered by their local rank (i.e. the 

smaller the rank number, the more popular the object is on a node locally). Part 

(a) of the figure shows the simulation results for locality variance σ set to 1.0 and 

(b) the results for locality variance σ set to 3.0. 

often from the cache than the objects that are just slightly less popular. The reason 

that the fraction of cache removals decreases when the local popularity rank 

decreases further, is that those less important items are sometimes accidentally 

cached and are removed almost instantly. The chance that a less important object is 

requested decreases according to the personal content rank number and therefore the 

number of cache removals decreases. When the lookup pattern is more location 

dependent, the fraction of cache removals is more concentrated on the locally 

important personal content items, since the probability that a less important item is 

requested is lower (i.e. a lower value of locality variance σ indicates a higher 

fraction of lookup requests of locally more important items). Figure 2.15b shows 

that when the cache size increases, the most important items are not removed at all 

once they are stored locally in a cache. Additionally, cache removals are also more 

evenly distributed over all items, since there is more cache space to store (more or 

less) equally important lookup results. Most of the cache changes involve two 

lookup results having a roughly equal importance value. 

2.5.3.4 Fraction of nodes caching locally popular personal content items 

The fraction of nodes caching a specific item in its final cache state is depicted in 

Figure 2.16, the location variance σ is set to 1.0 (a) and σ is set to 3.0 (b). For each 

node the local theoretical importance rank is calculated by multiplying PZipf-like(x) 

with PNormal(x), where x is an item stored in the DHT (i.e. the popularity rank does 

not take neighbor values into account). For each item the availability of that item at 

one (or both) of the neighbors is also measured, when the specific item is not stored 

in the local cache. The same simulation parameters are used as for Figure 2.14 (i.e. 

N = 256, M = 50 × N and α = 0.6) with a cache size of 10 entries at each node. 

Figure 2.16 shows that on average more than 80% of the nodes are storing the 

locally most popular object into their cache. More than 20% of the nodes store on 

average their top 10 locally most popular items. In the case that a node does not 

store a top 10 item in its cache, chances are relatively high that one (or both) of the 

neighbors is caching that particular object. When the locality of lookup requests 

decreases (i.e. the value of locality variance σ increases), the chance increases that a 
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neighbor caches a specific item that is not available from the local cache. For the 

situations depicted in Figure 2.16, more than 60% of all nodes is able to obtain their 

top 10 local popular items within one (overlay) hop.
5
 

2.6 Conclusion and future work 

In order to successfully deploy a Personal Content Storage Service (PCSS), it has to 

provide storage space to end-users transparently, with small access times, and 

available at any place and at any time. One of the main features of a PCSS is the 

ability to search through the dataset of personal files. To optimize searching times in 

a PCSS, we introduced a caching solution on a Distributed Hash Table (DHT). The 

scalability of a DHT is increased by using the cooperative Requests Times Distance 

(RTDc) caching algorithm. 

The RTDc caching framework is compared to the state-of-the-art proactive 

replication framework Beehive. When the lookup request distribution over the nodes 

(participating in the DHT) is uniform, the analytical model of Beehive provides a 

better performance increase compared to our RTDc caching solution. However, the 

analytical model of Beehive has a perfect centralized view on the content popularity 

beforehand and therefore no performance is lost by making small mistakes when 

estimating the popularity parameters. Furthermore, it is highly conceivable that 

lookup requests are localized (i.e. popularity of objects is different for each node). 

Unlike the RTDc caching framework, Beehive has no mechanism to take advantage 

of the locality pattern. When locality exists in the request distribution of lookup 

request, the RTDc caching algorithm outperforms Beehive quickly. Besides the 

comparison between the RTDc caching algorithm and Beehive, this chapter also 

presents a more detailed evaluation of RTDc’s inner working. We show that the 

message overhead caused by the update protocol to enable cooperative caching is 

acceptable, since the performance increase (i.e. reduction of the average number of 

hops needed for a lookup request) is higher than the cost the update protocol 

introduces. Besides that, the simulation results show that more than 20% of the 

nodes store on average their top 10 locally most popular items. When a node does 

not store a top 10 item in its cache, the chances are relatively high that one (or both) 

of the neighbors is caching that particular item. 

Although the proposed solution optimizes the scalable lookup in a DHT, it can 

only be used for lookup when the exact name of the key is known (this is the case for 

e.g. Domain Name System queries). This deterministic search property introduces 

limitations on the suitability of using a DHT for a PCSS. However, the performance 

of any existing DHT-based framework offering multiple keyword and range queries 

can already be increased by the proposed framework, since those frameworks still 

(have to) use the basic key-based routing mechanism of the DHT. The advantage of 

our caching strategy is that it extends the basic features of a DHT and increases the 

performance significantly. Nevertheless, we plan for further research to focus on 

optimizing DHTs by enabling multiple keywords and range query searches, since 

currently no solution exists that fulfills all needs for a PCSS. An issue not addressed 

                                                           
5
 Figure A.7 in Appendix A shows the fraction of nodes sharing duplicates between 

neighbors. A significant reduction is observed for fraction of nodes sharing 

duplicates between neighbors when using our cooperative caching scheme.  
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in this chapter is that by reducing the time it takes to obtain content locations does 

not imply that the actual content itself can be accessed quickly. Therefore, we plan 

to investigate caching/replication algorithms for personal content itself, in order to 

allow fast access of personal content by using a PCSS. 
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Although the solutions addressed in the previous chapter increases the 

lookup performance of personal content items, no guarantees are made that 

the content can be accessed quickly. To reduce access times for retrieving 

personal content files, this chapter provides our work on multi-level caching. 

The concepts Personal Content Storage Grids and Personal Content Storage 

Service are similar and are used in the manuscript interchangeably. The 

proposed framework allows storing frequently accessed files closer to (their) 

users, which relieves significant parts of the network and decreases delays 

when accessing the personal content items. The simulation results in this 

chapter confirm to analytical calculations for both the dimensioning of the 

cache sizes and the rate the personal content items are distributed in the 

caching framework.  

3.1 Introduction 

Using the Internet, one is able to communicate and share information with others. 

One of the latest trends is to share your personal content with other people. Personal 

content typically consists of text documents, digital photos, music files, personal 

movies, etcetera. For instance you can share your personal movies or pictures on 

central-server architectures like YouTube and Flickr. 

However, systems that provide the possibility to store personal content for users 

still have limitations, namely: scalability in the number of users and files, and the 



40 Caching strategies for personal content storage grids 

 

delay caused by central-server architectures. Ultimately users want to have space 

available to store their personal content, where access properties of the online 

storage is the same as using your own hard disk. The main benefit of such a system 

is that one can access content fast at any time and from anywhere. Another 

advantage of such a system is that users can be relieved from the burden of making 

backups of their precious files. 

In order to overcome the limitations caused by the infrastructure one can use the 

technology of Grid computing. Grid computing offers computational and storage 

resources in a transparent way to users. Transparency means that the exact 

geographical locations of the physical resources are made abstract for users [1]. In 

this way one tries to increase the utilization of underused resources, in order to 

enhance the efficiency of a system as a whole. 

A Grid that provides the possibility to store personal files is called a Personal 

Content Storage (PCS) Grid. Although a lot of research has already been done into 

Grid technology, there has not been done a lot in dimensioning cache sizes for a 

Grid that stores personal content. This is due to the fact that Grids, at the time of 

writing, are mostly used to solve large and computationally complex problems. Most 

of the research that tries to improve Grid technology tries to increase the efficiency 

of the utilization of the computational resources, thereby realizing huge savings on 

execution times of computationally intensive jobs. However, savings can also be 

obtained by increasing the efficiency of data transfers. Grids that are optimized to 

transfer data efficiently for computational intensive jobs are called data Grids. 

A PCS Grid differs from a data Grid, in the sense that the latter is designed to 

store a set of relatively large data files, which will typically be accessed by a few 

hundred to a few thousand researchers. In contrast, a PCS Grid will store a large set 

of relatively small data files and will typically be accessed by thousands to millions 

of users. 

When designing such a PCS Grid, an important question that needs answering is 

where files are cached in the Grid, in order to meet the user requirements. With data 

caching in the Grid, frequently accessed files can be brought closer to the user(s) 

that are requesting that file often. In this way a big part of the Grid can be relieved 

and the quality of the service of the Grid will remain, even when the number of users 

and files grows. 

At first glance, such a caching strategy seems very similar to caching strategies 

in Content Distribution Networks (CDN). In a CDN streaming content, which is 

very sensitive to jitter and packet loss, is replicated to so-called surrogate servers at 

the edge of the network in order to tackle the performance issues of the classical 

client-server-approach [2]. However, CDNs are designed to distribute a limited 

amount of very popular content, while a PCS Grid will store a huge amount of 

relatively unpopular content. For such a PCS Grid, where each user adds his/her 

data, storage requirements are more important. Furthermore, guaranteeing low 

latency and high bandwidth in an environment where end users each access different 

files simultaneously, requires data to be cached even closer to the end user. 

Nowadays there exists many distributed file systems, ranging from client-server 

systems (e.g. NFS [3], AFS [4] and Coda [5]) over cluster file systems (e.g. Lustre 

[6], GPFS [7] and the Google File System [8]) to global scale peer-to-peer file 

systems (e.g. OceanStore [9], FARSITE [10] and Pangaea [11]). None of the 

distributed file systems enumerated above, were designed for large-scale 

deployment in an access and aggregation network environment. However, 
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Figure 3.1: Access network with a tree topology, having split s and depth d. 

Users are situated at the leaf nodes and connected to a level one cache. The 

server cache is located at level d. On the links sufficient capacity is available. 
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OceanStore, for which a prototype (Pond [12]) is being developed, seems a good 

candidate for this purpose. The OceanStore’s core system is composed of a 

multitude of highly connected pools, among which data is allowed to flow freely [9]. 

A pool could for instance be associated with an access and aggregation network. 

Most of the time, data will be accessed from within the pool, but when a user is 

traveling, his data is still accessible. Pangaea [11], with its pervasive replication 

mechanism that replicates data based on user activity, also seems a good candidate. 

Data that is only accessed from within the access and aggregation network will be 

kept locally. Users on the move will trigger replication of their data in other access 

and aggregation networks.  

 We describe a caching strategy and an evaluation of the results in this chapter. A 

description of the caching strategy and the test scenario that we use is provided in 

section 1.2. The measurements that we did with the discrete event simulator are 

described in section 1.3. Finally, we provide a discussion and future work in section 

1.4. 

3.2 Personal content management 

As stated in the introduction, this section presents a test scenario for personal 

content storage. Figure 3.1 represents a typical (Digital Subscriber Line – DSL) 

access network with a tree topology, having split s and depth d. Users at the leaf 

nodes are connected to the level one caches, the server is located at level d. We 

assume that sufficient capacity is available on the links. 

In our simulations, users make their personal files available in the network by 

uploading them to the central server. The uploaded file of a user is cached at the 

caches on the path to the central server. In total, N files with equal size are uploaded, 

on average once every A seconds. The number of uploads is a lot smaller than the 

number of downloads. The popularity of each file is equal at the time of upload, but 

decreases exponentially afterwards. The popularity distribution of file i at time t, 

where λ0 represents the initial request rate, τ is a time constant and Ti,0 determines 
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Figure 3.2: Popularity distribution λi(t) for a file i, with λ0 = 0.01/s and τ = 

100,000 s, assumed that the file is uploaded at time 0. The popularity distribution 

is represented as the request rate per hour against the time in days. 

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7

Time in days

Request 

rate per 

hour

the upload time stamp of file i, is given by (1): 
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The function in equation (1) describes an exponentially decreasing popularity for 

files, which implies that the longer a file is in the system, the less attractive it will be 

for a user to request it. When a user downloads a file for the first time, each 

intermediate cache stores that file locally and serves consecutive requests for that 

file. When a cache is full, older files are deleted according to a Least Recently Used 

(LRU) policy. 

Although previous studies on proxy caching techniques [13] or distributed 

replica placement strategies for CDNs [14-16] show that greedy algorithms that take 

distance metrics and content popularity into account perform better than more 

straightforward heuristics, such as LRU or LFU (Least Frequently Used). We use 

the LRU algorithm to be able to compare our analytical solution with the simulation 

results. 

3.2.1 Test scenario 

Before we present our analytical and simulation results, we have to define the 

parameters that we use in our test scenario. For the parameters depth d and split s, 

we take the value four. This implies that we have 85 cache servers in the topology 

and in total 64 users, where each user represents the aggregation of an access 

network. Users are connected to a single level one cache in the network. 

Figure 3.2 shows an example of the popularity distribution for each file, with λ0 

= 0.01/s and τ = 100,000 s. The area below the function shown in Figure 3.2 

represents the total number of file requests that are made for each file. This means 
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that a total number of 




0,

1000)( 0
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i dtt   requests (downloads) are made 

per file. The number of files N is set to 1,024 and each user has an equal probability 

to download a file, implying that users have no preference for a certain file. Since 

we have stated that we assume there is sufficient capacity available on the links, the 

file size is neglected. Furthermore, we assume that the cache at level d has enough 

capacity to store all files that will be uploaded. The last parameter that we need to 

define is the inter-arrival time between uploads A, we assume that every hour a new 

file is uploaded by a random user.
6
 

3.2.2 Storage dimensioning 

First, we present an analytical solution for the content placement that determines the 

storage capacity on each level of the network, so that the total cache serve ratio on 

each level is equal. The cache serve ratio is the ratio between the number of files 

served by a cache layer and the total number of requested files. An equal cache 

serve ratio implies that load is balanced for each cache level. Afterwards, these 

results are compared to those of the discrete event simulator, using the LRU caching 

algorithm. 

3.2.2.1 Analytical model 

When file i becomes available in the network at time Ti,0, it should be located at each 

of the caches on level one, closest to the end users, so that the delay and transport 

cost are minimized. 

As its popularity decreases, a file will be relocated to all caches on level two 

after Ti,0 + t1 seconds, and so on, until the file is stored in the server at the top after 

Ti,0 + td-1 seconds. To achieve an equal total cache serve ratio for this file on each 

level in the tree, all tl (l = 1, 2, …, d-1) have to be calculated so that the total number 

of requests made for that file in the intervals [Ti,0 + t0, Ti,0 + t1], …, [Ti,0 + td-1, ∞] is 

equal, or in other words: 
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When the same procedure is used for all files, each level in the tree serves an 

equal total number of requests. As we assume that in non-equilibrium steady state 

new files enter the system at a (nearly) constant rate, the cache serve rate per level is 

always equally distributed. 

                                                           
6
 We neglect in this model different file sizes, however, to perform a more detailed 

study an advanced cache replacement policy should be designed that reacts both on 

popularity and file sizes. 
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Figure 3.3: Cache size on each level expressed in number of files, for different 

tree depths d, to get an equally distributed cache serve rate per cache level. We 

assume that the inter-arrival time of new files in the system is 3,600 seconds. 
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3.2.2.2 Analytical example 

When 1,024 files are available, each with the request rate shown in Figure 3.2, on a 

tree network with depth d = 4 and split s = 4, we find that t1 = 8.0 hours, t2 = 19.3 

hours and t3 = 38.5 hours. If a constant entry rate of one file per hour is assumed, 

this means that each cache on level one has to store the eight most recent (i.e. most 

popular) files, each cache on level two the next eleven most popular files, each 

cache on level three the next nineteen files and the central server the least popular 

already available files. 

Doubling the entry rate doubles the number of files on each level, the split has no 

influence. The solution for different values of the depth d is shown in Figure 3.3. 

Since the cache server at level d is assumed to have enough capacity available to 

store all files, only the cache sizes at level one till level d-1 have to be calculated. 

Figure 3.3 shows that increasing the number of cache levels results in a decrease of 

the needed cache size at a cache level, in order to have an equally distributed cache 

serve ratio. However, the sum of the files to be stored over all cache levels increases 

when parameter depth d increases 

3.2.3 Content distribution rate 

We know, however, that in a more realistic situation, where an LRU caching 

algorithm is used instead of an optimal dynamic replacement over all caches of the 

appropriate level, the location of the files is very suboptimal. In this section, we 

study the time it takes to store one file on as many level one caches as possible, 

through individual downloads. In section ‘1.3 Simulation and evaluation’ we 

compare these results to those of the discrete event simulator, using the LRU 

caching algorithm. 
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3.2.3.1 Analytical model 

At random, each of the users at the leaf nodes sends one of the M (= λ0 ∙ τ) requests 

for a file i to one of the J (= s
d-1

) caches located at the lowest level in the tree. We 

look for the probability P[k] that k of the J caches store the requested file, after 

request m (m = 1, ..., M). In the beginning, P[0] = 1, P[k ≠ 0] = 0.  After one request 

(m = 1), P[1] = 1, P[k ≠ 1] = 0. The probability that the first k caches store file i, and 

the other J – k cache do not store file i is given by P[k]. 

Identify Sj (j = 1, ..., k) as the set of possible ways to distribute all m requests 

over k caches so that cache j remains empty. All sets Sj can be combined into 

intersections of p subsets, each with cardinality (k - p)
m
 to distribute m requests over 

k - p caches, in p
kC  different ways. Following the principle of inclusion and 

exclusion, the number of possible distributions with at least one cache where a file i 

is not stored is represented by equation (3): 
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The number of possible distributions where none of the first k caches is empty is 

then  - ...)(k -  C )(k -  -Ck m
k

m
k

m 21 21   

In total, J
m
 distributions (all with an equal probability) are possible, so that the 

general probability distribution of the number of caches at level one storing a file i 

after m downloads becomes: 
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(4) 

In the next section we use equation (4) in an analytical example. 

3.2.3.2 Numerical example 

For the same parameter values as described in ‘1.2.1 Test scenario’, 64 level one 

caches are present and file i is requested a thousand times. A plot (see Figure 3.6) of 

the probability distribution of the number of level one caches storing file i after one 

hundred downloads for this example is given in ‘1.3.2 Content distribution rate’. 

The analytical result is that after a hundred downloads of a file i on average 51 

caches store file i. For the development of the number of filled caches with file i 

against the number of downloads we refer to Figure 3.7 in ‘1.3.2 Content 

distribution rate’. We notice that the optimal situation (i.e. all caches store the 

particular file i) in Figure 3.7 is only (almost) reached after two hundred requests 

and not immediately, as we presumed in the analytical model described in section 

‘1.2.2 Storage dimensioning’. 
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Figure 3.4: Convergence of the cumulative cache serve ratios for each cache 

level against the total of number of downloads during the simulation. The 

number of downloads depicted in this figure, is limited to 2500. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500

Number of downloads

Cumulative 

cache 

serve ratio

Level 1 Level 2 Level 3 Level 4

Level 1

Level 2

Level 3

Level 4

3.3 Simulation and evaluation 

Besides solving the problem analytically, we use a discrete event simulator to 

approximate the statistics. In [17] a number of data Grid simulators are described, 

like: Bricks, SimGrid, GridSim, GangSim and OptorSim. We use the simulator 

OptorSim [18], since it is an event driven simulator and was originally designed to 

explore effects of dynamic data replication in the European DataGrid (EDG) project 

[19]. 

We use the same parameter values as described in ‘1.2.1 Test scenario’; this 

means that there are 64 level one caches, 1,024 different files and each file is upload 

once and downloaded a thousand times. For the simulation we use the calculated 

optimal values for cache sizes at each level; the level one caches have a capacity to 

store the eight most popular files, the caches located at level two can store the next 

eleven most popular files and the level three caches are able to store the next 

nineteen most popular files. Since the cache at level four should have sufficient 

capacity to store all files, this cache can store 1,024 files. In the next two subsections 

we show that the analytically obtained results and the results obtained with the 

simulator are similar. 

3.3.1 Storage dimensioning 

Since we used the analytical calculated cache size in our simulations, we should get 

an approximately constant cache serve ratio for each of the cache layers in non-

equilibrium steady state.
7
 In Figure 3.4 and Figure 3.5 the convergence of the cache 

                                                           
7
 Since no time variance exists in the relative popularity between files, the cache 

serve ratio converges since files are cached according to popularity. 
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Figure 3.5: Convergence of the cumulative cache serve ratios for each cache 

level against the total of number of downloads during the simulation. 
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serve ratios for each cache level in relation to the number of downloads of all files, 

is presented. Figure 3.4 depicts the first 2500 downloads and Figure 3.5 shows the 

convergence over all downloads. 

In the first 2500 downloads, you see that the cache serve ratio of cache level four 

starts at 1.0 and the other cache levels begin at 0.0, after the first download. In the 

simulation a user does an upload of the file to the cache at level four (i.e. the central 

server), and on every cache on the path from the user to the cache at level four the 

file is cached. When a user downloads the file for the first time in this simulation, 

the closest copy of the file was located at the cache in level four. This explains why 

the cache serve ratio for level four is 1.0 after one download. 

The further developments of the cumulative cache serve ratios in Figure 3.4, is 

that the caches at level one mainly serve the users;  this agrees with the observation 

in Figure 3.7, Figure 3.7 shows that after approximately two hundred downloads all 

caches at level one store file i and thus serve the requests to file i. 

The reason why the cache serve ratio for cache layer two is higher than the cache 

serve ratio for cache level three (and four), is that when a user downloads a file for 

the first time it uses the closest replica of a file in the system. If one of the direct 

neighbors (i.e. users that share the same cache at level two) of the user already 

downloaded the file, the file is available at cache level two and cache level two gets 

a cache hit. The same explanation can be given for the difference between the cache 

serve ratios of cache level three and four. 

As mentioned above, Figure 3.5 presents the convergence of the cache serve 

ratios for all downloads. 

When the total number of downloads advances, the cache serve ratio of cache 

level one decreases, since more new files enter the system. The relative number of 

older files (files that are served by cache level two, three or four) increases, but users 

will still produce some requests to these files. The same is valid for the caches at 

level two and three. For these lower level caches, the drop in cache serve ratio 

happens after more downloads, since these caches store the next most popular files. 
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Cache level 
Cache serve 

ratio 

Level 1 0.2196 

Level 2 0.2584
 

Level 3 0.2241 

Level 4 0.2978 

 

Table 3.1: Cache serve ratios for each cache level at the end of the simulation. 

Eventually the caches at level four becomes important when the caches at level three 

have no space left to store the old files. The requests that users make to these old 

files will all be served by cache level four, so the cache serve ratio of level four will 

increase. 

The cache serve ratio numbers of the caches at the end of the simulation are 

summarized in Table 3.1. 

According to the analytical example in ‘1.2.2 Storage dimensioning’ cache serve 

ratio should be equal for each cache level. Since we have four cache levels, the 

cache serve ratio should be 0.25. 

The ratios of Table 3.1 more or less correspond to the calculated values. The 

cache serve ratio of cache level one has the lowest cache serve ratio. This is due to 

the empty caches, when the simulation starts. It will take some time, after a user 

uploads the ninth file, before the first file is deleted from cache level one and further 

requests to the first file are served by cache level two. Since all requests of a user 

that downloads a file for the first time is handled by a cache level other than cache 

level one, cache level one misses requests that were assigned to cache level one in 

the analytical calculations. Cache level four profits from this, which explains why 

the ratio of this cache level is higher. The cache serve ratios of cache level two and 

three more closely approximate to the calculated value, despite all caches start 

empty. 

3.3.2 Content distribution rate 

In this section we study the time (or number of downloads from file i) it takes to 

store one file on as many level one caches as possible, through individual 

downloads. According to the analytical calculations after one hundred downloads of 

file i on average 51 caches should store file i. This is visualized in Figure 3.6. 

Besides the analytical solution, the measured values of the simulation are also 

depicted in Figure 3.6. From Figure 3.6 we can conclude that the probability 

distribution obtained with the simulation confirms the analytical probability 

distribution. The small difference is due to the random number generator in the 

simulations. 

Besides the probability distribution of the filled level one cache with file i after 

one hundred downloads of file i, we are also interested in the evolution (i.e. in 

number of downloads) of the average number of filled level one caches in time. 

Figure 3.7 provides this information. 

Both the analytical solution and the measured average number of level one 

caches that store a file i in relation to the total number of downloads of a file i are 
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Figure 3.6: Probability distribution of the number of level one caches storing file 

i after one hundred downloads. The line depicts the analytical solution of 

equation (4); m = 100 and J = 64. The dots represent the measured values, 

obtained from the simulation. 
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Figure 3.7: Average number of level one caches that store a file i in relation to 

the total number of downloads of a file i. 
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shown. The upper limit in this example is 64, since there are only 64 level one 

caches present. We can conclude that the measured approximation fits the analytical 

solution. The small differences can again be explained by using a random number 

generator in the simulation. 

3.4 Conclusion 

To realize a PCS Grid, the Grid should be scalable in the number of users and files, 

and the delay should be limited. In order to meet these requirements an optimized 

caching strategy for personal content should be used to increase the efficiency of a 
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Grid. We show with a basic test scenario on an access network with a tree topology, 

that the results that we obtain with our simulator confirm analytical calculations. 

We have determined the required cache capacities at each level of the tree 

network based on an analytical model, in order to obtain an equal cache serve ratio 

for each cache level. The simulation shows that the cache serve ratios converge 

closely to the calculated values. 

We are aware that in a more realistic situation, where a Least Recently Used 

(LRU) caching algorithm is used instead of an optimal dynamic replacement over all 

caches of the appropriate level, the location of the files is suboptimal. This is why 

we also studied the time it takes to store one file on as many level one caches as 

possible, through individual downloads. The measurements of the simulation of the 

probability distribution of the number of caches at level one that store a file that is 

downloaded one hundred times, approximates the analytical calculation closely. 

Now that we have a simulator that is able to closely match analytical 

calculations, we will use it in future work to investigate properties and topologies for 

which analytical calculations are too complex. Future work will include studying 

different caching strategies, different topologies where links have a different and 

limited bandwidth, a more realistic file size distribution, and users having 

preferences for some common and their own files. Our study will lead to caching 

strategies where the user experience of the online storage system will be similar to 

using a local hard disk. 
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Watching videos via the Internet is becoming a popular activity of users. 

Therefore, we explore in this chapter next generation P2P video streaming 

frameworks. The routing of video layers in both the underlay and overlay 

network is modeled in an Integer Linear Programming (ILP) formulation, 

and by using an ILP solver we investigate the advantages of an orchestrating 

engine that manages video exchanges between peers. The objective of current 

P2P video streaming networks maximizes greedily the local peer’s video 

quality. However, video service providers are generally interested in the 

minimum number of video layers that can be transported to end-users. We 

have studied both objective strategies and our simulation results indicate that 

by orchestrating the video streams a significant increase is obtained of the 

fraction of destinations that are able to receive more than only the base 

layer.  

4.1 Introduction 

Watching videos on websites, e.g. YouTube or Eurovision Sports, is a popular 

activity of users today. Using the Internet to watch videos is expected to become 

more prominent, since the new HTML5 standard natively supports videos on 

websites. Although the video quality and length of the videos that are transported via 

the Internet have significantly increased over the last couple of years, offering a full 
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Figure 4.1: Next generation Peer-to-Peer (live) video streaming network uses 

multi-layer video coding, which allows to start watching a video when only the 

base layer is downloaded. Additional received layers increase the video quality, 

and this strategy allows peers to adopt to their output abilities and the network to 

offer a higher average (or minimal) received video quality to end-users. 
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video-on-demand or live broadcasting service is still not viable. Different television 

broadcasters are already setting up streaming services to watch (live) television 

programs via their websites (e.g. BBC iPlayer, iWatch and RTL XL), but often the 

quality of the stream and the total number of viewers is limited. An interesting 

technology that offers a cost efficient mechanism for distributing live video is the 

Peer-to-Peer (P2P) overlay network model. In a P2P network the peers form a 

virtual overlay network, on top of the actual IP (Internet Protocol) network, and all 

peers act as both suppliers and consumers. In contrast, in traditional client-server 

networks only servers supply and clients consume, therefore, P2P services are 

potentially highly scalable and robust. 

The open source research project Tribler [1] enables users to find and share (live) 

video content and is a representative example of a typical P2P (live) streaming 

framework. Inspired by BitTorrent’s [2] file sharing protocol, Tribler has 

incorporated mechanisms to enable (live) video in a P2P fashion. The main idea is to 

let peers download a video in small parts and immediately share the downloaded 

parts with other peers in the network. To support playback while downloading a 

video, Tribler prioritizes in-order downloading for parts that are close to the current 

playback position. The traditional peer selection policy (i.e. BitTorrent’s tit-for-tat 

mechanism [2]), makes it difficult to find good sharing partners for pieces at the 

current playback position. Therefore Tribler introduces a peer selection strategy that 
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chooses peers based on their forwarding capabilities [3]. In this way in-order 

downloading is not a problem, because peers get a positive incentive to share 

downloaded parts to peers even if those are not able to give anything in return. Since 

peers can only receive parts when they are sharing to others, free-riding is still 

prevented. 

However, to adapt to typical heterogeneous circumstances in a P2P network (i.e. 

various asymmetric link bandwidths, end-devices having different display 

resolutions, etc.), the next generation P2P systems offering over-the-top (live) video 

streaming use multi-layer video (such as Scalable Video Coding (SVC) [4]). The 

resulting P2P network, illustrated in Figure 4.1, consists of the following entities: 

 Injector node: offers the video stream, separated into distinct video layers 

(e.g. four). 

 Tracker node: a (often centralized) bootstrap server, providing all necessary 

information for peering nodes to start the download process. 

 Peering node: nodes located at the destinations in the overlay topology and 

containing peer functionality, allowing them to download the video layers 

from the injector node or other peering nodes. 

 Forwarding node: nodes that forward data through the network and are 

usually located in the core network (i.e. underlay network topology). 

A video is encoded into multiple video layers, which allows playing the video 

when only the base layer is received. Every additional layer that a peering node 

receives increases the video quality. This allows peering nodes to only download 

those video layers that they are able to output (e.g. based on screen resolution or 

stereoscopic rendering abilities). Moreover, the bandwidth requirements of the 

injector node can be reduced significantly, since at least one stream (containing each 

distinct video layer) has to be provided in order to enable each device to select the 

right number of video layers to stream. In this chapter we use the term peering node 

and peer interchangeably. 

An important aspect when using multi-layer video coding in a P2P network is the 

piece picking and peer selection mechanism. Current strategies try to maximize the 

local peer’s video (i.e. download) quality. However, for a video streaming network 

to become successful, it is important to optimize the overall received video quality 

in the network. When peering nodes would collaborate, the average video quality 

can be increased by the peers that are currently streaming at a higher than average 

quality. When these peers decide to give up a bit of their high video quality (i.e. drop 

a few of the top video layers), more bandwidth and (possible) lower layer quality 

pieces will become available to the rest of the network. Peers streaming at a much 

lower video quality benefit from this strategy and are provided a chance to increase 

their streaming quality to acceptable levels. The strategy we propose in this chapter 

maximizes the minimum received video quality at each destination, by using 

topology information of the actual network to orchestrate the peer selection and 

thereby forming a future prove and robust framework for distributing (live) video 

streams over the Internet. 
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To optimize the received video quality, we setup an Integer Linear Problem 

(ILP) formulation that describes the underlay-overlay-routing problem of the video 

layers in the network. The core network topology in our case study is based on the 

GÉANT research network [5]. Our use case focuses on efficiently distributing a live 

video feed from the France site of the European Parliament to a select group of end-

users (e.g. journalists, translators, …) located in different countries in Europe. The 

deployment perspective of our work is provider centric, considering a limited 

number of end-users and a complete knowledge on the network infrastructure. 

This chapter continues in Section 4.2 with an overview of related work. Section 

4.3 provides the generic problem formulation and shows correctness of our model in 

a tree-like network topology. In section 4.4 the use case is used to evaluate our 

proposed strategies. Conclusions and future work are presented in section 4.5. 

4.2 Related work 

Several commercial platforms (e.g. Octoshape, RawFlow and RayV) offer streaming 

video solutions using the Internet. However, these platforms mainly use traditional 

client-server based network models, inducing large bandwidth and server costs for 

broadcasters. On the other hand, freeware/open-source applications (such as 

Alluvium, End System Multicast, PeerCast, PPTV (formerly known as PPLive) and 

Tribler [1]) provide video streaming solutions using P2P mechanisms. In order to 

achieve stable streams with decent quality, these systems require a large number of 

users watching the same video stream and, to our knowledge, do not use location-

aware protocols to optimize the load in the P2P network. 

Since IP Multicast [6] is only sparsely deployed on the Internet, this technology 

cannot be used to offer a scalable video streaming service. Therefore, our research 

aims at advanced P2P technologies since these solutions can be deployed on the 

Internet without requiring specific hardware changes or deployments. 

BitTorrent’s tit-for-tat mechanism [2] and Tribler’s give-to-get algorithm [3] try 

to motivate/force peers to contribute to each other in the download process. 

According to [7-9], unbalanced data exchanges decrease a P2P system’s potential 

performance in terms of bandwidth utilization. Not only unwillingness to contribute 

by users forms a burden, also inefficiencies in the algorithms used by P2P streaming 

applications are a challenge. Therefore, incentives that stimulate contributing 

content are necessary in order to offer a real robust and scalable (live) video 

streaming framework. Our solution agrees to this and extends them by using a 

tracker node to orchestrate data transfers. In this way we can provide the optimal 

strategy for the complete network, reaching the highest possible performance gain. 

Multiple recent research studies, like [10-12], use P2P services combined with 

layered video coding and mainly focus on altering piece picking algorithms and/or 

neighbor selection mechanisms for advanced buffering strategies. Our aim is to 

improve these systems by using topology information to orchestrate the peer 

selection so that the minimum video streaming quality is maximized for each 

destination. 

In [13] a P2P video-on-demand (VoD) strategy to optimally (pre-)fetch video 

segments is presented, integrating localization and congestion-aware peer selection 

schemes. Simulation results show that utilizing location information (and preventing 

congestion) increases the average supported playback rate of a video. However, in 
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[13] multi-layer video coding is not considered and peers are classified to a fixed set 

of domains. In our research study we consider multi-layer video coding, offering a 

whole new set of optimization possibilities. Moreover, we do not restrict a peer to be 

part of a fixed set of domains, which allows us to calculate the optimal solution. 

Modeling video streaming in a P2P network by using an ILP formulation is 

performed by [14-16]. However, the mathematical formulations in these studies only 

model overlay network routing and assume the upload and download capacities per 

peer to be the main bottlenecks. Besides overlay routing our proposed model also 

takes the underlay network into account, increasing the complexity of the problem 

significantly and, therefore, allowing more realistic research studies. 

Contributions of this chapter can be summarized as: 

 Providing a mathematical formulation that is capable to model the 

underlay-overlay-routing problem of multi-layer video in a P2P network. 

 Proposing a piece picking and peer selection strategy for next generation 

P2P video streaming networks that maximizes the minimum video quality 

for each destination, which is accomplished by orchestrating the download 

using a tracker node that has a precise view on both the underlay and 

overlay network topology. 

4.3 Problem formulation 

In order to find an optimal solution and to present a precise view on the problem, an 

ILP (Integer Linear Programming) formulation is given here. First, section 4.3.1 

describes the network model, introducing all parameters and variables. Then, section 

4.3.2 provides the formulation in terms of the objective function and a set of 

constraints that specify the relation between the parameters and the variables. 

Finally, in section 4.3.3 the correctness of our model is shown by comparing the 

results of solving our formulation on a basic network structure, with an analytical 

solution. 

4.3.1 Model description 

The problem can be characterized by the network topology, an injector node, 

forwarding nodes, peer nodes, destination nodes and a list of video layers. 

4.3.1.1 The network 

The underlay network is represented by a directed graph G, characterized by a set of 

nodes V of size |V| and a set of directed edges E of size |E|. The graph is presumed to 

be bi-directional but the edge properties can be asymmetric. Each (direction of) edge 

e from E is characterized by a constant maximum bandwidth capacity ue ≥ 0. Iv and 

Ov are the sets of respectively ingoing and outgoing links of a node v. To enforce 

shortest-path routing, Dijkstra’s algorithm is used to compute the k-shortest-paths 

(measured in network hops) between node x and y. Each link e is provided with a 

constant binary parameter me,d that denotes whether or not link e can be used to 

transport data to node d, using one of the k-shortest-paths. The value me,d is 1 if and 
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only if link e is one of the k-shortest-paths to destination node d from a peer or 

injector node. 

4.3.1.2 Forwarding and peer nodes 

All network nodes that contain no application intelligence act as forwarding nodes. 

F is the set of all forwarding nodes,     and has size |F|. 

Peer nodes are the nodes running the P2P streaming application (i.e. an incoming 

stream can be sent to multiple destination peers) and are typically located at a user’s 

home, connected via an asymmetric bandwidth connection to the Internet (i.e. rest of 

the network). P is the set of all peer nodes,    ,       and has size |P|. 

4.3.1.3 Injector and destination nodes 

The original source of the live video stream is provided by the injector node z. 

Destination nodes request the video stream and are usually connected to a peer node. 

D is the set of all destination nodes,     and has a size of |D|. 

4.3.1.4 Video layers 

There is an ordered list of video layers L of size |L|, containing each different video 

layer sorted by increasing layer rank (i.e. layer l0 is the base layer).
8
 Each layer l 

from L has a constant bandwidth cost per time unit of cl ≥ 0. Note that receiving a 

layer li+1 is useless, without also receiving li, where i ≥ 0. 

In order to prioritize situations for fairness where multiple destinations all 

receive a layer li over situations that only a few receive layer l>i and the rest receive 

l<i a constant value bi per layer li is set to express the benefit of receiving the layer. 

The values    | |(| |    ) guarantee the following principle:    (| |   )  

∑   
| |  
     , for     | |. This means that the benefit contribution bi when a node 

receives layer li is greater than combining the benefits bj for every other destination 

for all video layers lj where j > i. 

4.3.1.5 Variables 

In this subsection e is an edge from set E, d and d’ are destination nodes from set D 

and l is a video layer from set L. The binary variable is: 

 h e,d,d’,l is 1 iff edge e is used to carry traffic destined for node d, which is 

(in)directly sent to node d’ and has layer l (with |E|∙|D|∙|D|∙|L| h-variables). 

Index d represents the destination node of the direct video traffic (i.e. underlay 

routing) and node d’ indicates that another node can benefit from this traffic via P2P 

routing (i.e. indirect or overlay routing). The h-variable is used to ensure flow 

                                                           
8
 In our model we consider one scalability axis by representing the scalable video 

stream as one single (totally) ordered set of elements. However, the model can be 

adjusted to relieve this requirement or embed several scalability axes, the objective 

function and constraint (14) have to be altered. 
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Figure 4.2: Usage scenario of the he,d,d’,l variables in the ILP formulation. Node z 

inserts a video, consisting of one quality layer, into the network. Since all the 

network links have a capacity to transport one layer, the direct traffic is send 

from the injector node z to destination node D0. The peering node directly 

connected to D0, duplicates the video stream and also sends it to destination D1. 
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conservation through the network and, where d = d’, allows the calculation of the 

bandwidth carried by the edges. 

To illustrate the behavior of variable h, Figure 4.2 shows a scenario of a tree 

network with injector node z at its root. The video stream in this example consists of 

one layer and is transported over links that all have a bandwidth capacity of one 

layer. Two destination nodes receive the video layer and in between there are three 

peer nodes connected by a forwarding node. To ensure a correct solution, the 

injector node z sends the layer directly to node D0 and indirectly to node D1 over 

link a (i.e. another correct solution is sending the stream directly to node D1 and 

indirectly to node D0). Node Pz and F forward this traffic over respectively link c 

and e. Peer node PD0 duplicates the video layer and sends this traffic to destination 

node D0 and D1 via, respectively, link g and f. Forwarding node F and peer node 

PD1 forwards the direct traffic to D1 via link, respectively, link i and k. 

This approach allows to perform both underlay and overlay routing through the 

network and guaranteeing that the injector node z is the origin of every video layer 

that a destination node receives. However, the downside of this strategy is the 

increased complexity of solving the underlay-overlay-routing problem of the video 

layers and as a consequence limits the size of our network topologies. 
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4.3.2 Formulation 

Now that all symbols and variables are presented, the objective function to optimize 

can be formulated as follows: 

         (∑ ∑ ∑             

           

) (1) 

By optimizing objective function Q each node receives a maximum video 

quality, without requiring any other node in the network to lower its receiving 

quality. Hereby, the minimum quality that is received by each node is maximized. In 

order to solve the problem, a set of constraints have to be considered to make sure 

the relation between all parameters and variables comply with the general network 

model. 

4.3.2.1 Capacity and routing constraints 

∑ ∑         

   

   
   

               
(2) 

                                            (3) 

                                   (4) 

Constraint (2) restricts the total flow through the edges. This flow may not exceed 

the capacity of the edge. Constraint (3) imposes that link e can only be used in a 

virtual path to destination d’ for video layer l, when e is directly transporting l to a 

destination node d. Constraint (4) ensures that edge e can only be used to transport 

(any) layer l directly to destination node d when e is on one of the shortest paths to 

node d. 

4.3.2.2 Ingoing and outgoing constraints 

∑         

    

                        
(5) 

∑         

    

                        
(6) 
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∑ ∑         

       

                   
(7) 

Constraint (5) guarantees that for every node in the network, there is maximum one 

incoming edge transporting a specific video layer to a specific destination node. This 

constraint is necessary to make sure each destination node receives a video layer 

only once. Constraint (6) imposes that for every node in the network, there is 

maximum one outgoing edge containing traffic for a specific video layer to a 

specific destination. Constraint (7) prevents that multiple streams of the same video 

layer l are incoming on a peer node p. These constraints reduce the solution space of 

the ILP formulation. 

4.3.2.3 Flow conservation and peer node constraints 

∑          

    

 ∑          

    

                          
(8) 

∑ ∑          

       

 ∑ ∑          

       

                       
(9) 

Constraint (8) guarantees that (direct and indirect) traffic flows through the 

forwarding nodes in the network (i.e. all nodes except for injector, destination and 

peer nodes). Constraint (9) ensures that all incoming direct and indirect flows leave 

the peer node, where indirect flows can be converted into direct traffic by the peer 

node. 

4.3.2.4 Injector and destination node constraints 

                            
          (10) 

                                         (11) 

                          
                 (12) 

                                         (13) 
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Figure 4.3: A tree network with the injector node at the root providing a video 

stream consisting of four quality layers. The injector node is directly connected 

to a peer node, which on its turn is connected to a level 2 forwarding node. The 

level 2 forwarding node is connected to two level 1 forwarding nodes. Each level 

1 forwarding node is connected to five forwarding nodes, that each provides 

access to one destination’s peer node. 
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Constraint (10) ensures that the injector node z only sends data. Since the 

injector has all layers available, no other constraints are necessary. Constraints (11), 

(12) and (13) guarantee that all destination nodes only receive data meant for them, 

and prevent destinations from creating data. Constraint (14) ensures that when a 

destination node d receives video layer li+1, also video layer li is received on one of 

d’s direct incoming links. Constraint (15) imposes that when a destination node d 

receives layer l, there must be (at least) a virtual path starting from the injector node 
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z. 

4.3.3 Solving our problem on a tree video distribution network 

To find the optimal solution, the formulation described above was implemented in 

an ILP solver [17]. For validation purposes, a video distribution tree is investigated, 

for which the optimal solution can be derived analytically. Figure 4.3 illustrates the 

tree network topology with the injector node at the root, which inserts the video 

stream consisting of four video layers into the network. We assume that all video 

layers have the same constant transport (i.e. bandwidth) cost cl = 1. The injector 

node is directly connected to a peer node, which on its turn is connected to a level 2 

forwarding node. The bandwidth on this level 2 link equals α × 4 × N (the influence 

of the parameter α is investigated), with N the number of destination nodes. The 

level 2 forwarding node is connected to two level 1 forwarding nodes, with each 

connection having a bandwidth equal to β × 2 × N (the influence of parameter β is 

investigated). In the scenario that both α and β are set to 1, each destination is able to 

stream the video at full quality directly from the injector’s peer node. 

The destination nodes (N=10) are directly connected to a peer node (e.g. a 

residential gateway), which in turn is connected via an access forwarding node to 

one of the level 1 forwarding nodes. Each level 1 forwarding node is connected to 

five access forwarding nodes. The downstream bandwidth on these connections is 

enough to transport all video layers to each of the destinations. Since the 

destination’s peer node is able to (re)distribute (a part of the) received video layers 

and is typically located in the access network, the upload bandwidth of these peers is 

limited (i.e. asymmetrical connection). 

The basic network structure of Figure 4.3 allows us to form an analytical 

formulation, to calculate the average received video layers on a destination node E: 

    | |    (16) 

  
  | |   
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Figure 4.4: Results of using our model on the tree based topology (represented as 

dots) compared to the analytical solution (depicted by solid lines), when using 

symmetrical versus asymmetrical (access) link bandwidths. In case of 

symmetrical access links all results coincide for presented situation. 
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In (16) - (21) N is the number of destination nodes in the tree network (i.e. fo_1 × 

fo_2), fo_1 and fo_2 are respectively the fan-out on level 1 (i.e. 5) and level 2 (i.e 2), 

up is the upload bandwidth, peer_a is the fraction of peer nodes at the destination 

that are able to distribute received video layers and peer_l1 is the number of level 1 

nodes with peer functionality. The average number of received video layers I 

(equation (21)) is the minimum over four arguments. The first argument of (21) 

states that the average received number of layers is never larger than the number of 

distinct video layers. The second and third element (i.e. A defined by (16)  and B 

defined by (17)) state that the average received number of layers is less than the 

amount of traffic that the link from the injector’s peer to the level 2 node or the link 

from the level 2 to the level 1 node are able to transport. The fourth argument in (21) 

describes that the highest average quality that can be received is the weighted sum 

between the part of the tree that has no level 1 peer functionality (i.e. denoted by 

expression C of (18)) and the fraction that has level 1 peer functionality (i.e. defined 

by expression C’ of (19)). When the level 1 peer exhibits no peer functionality, the 

average received quality for that sub-tree is not larger than dividing the bandwidth 

contributed by the injector peer and the level 1 peers, over all destinations that are 

part of the sub-tree as expressed by equation H in (20). Since the destination’s peer 

node can contribute to this sub-tree, the fraction of peer nodes times the uplink has 
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Figure 4.5: Results of our model compared with the analytical solution, when 

peer functionality is brought into the core network, when all, 60% or no access 

peer have uploading capabilities. None, one or two of the level 1 nodes exhibit 

peer functionality and asymmetrical bandwidths are used in the access network. 

to be added. The destinations that are located under the level 1 nodes having peer 

functionality, the weighted result is simply limited by the available bandwidth it 

receives according to expression B (and no more than the number of video layers). 

Note that in the case that peer_l1 = fo_2 (i.e. this generates division by zero), we 

simply neglect that part since the value of C is 0. 

To show correctness of our proposed model and to study the effect of parameter 

α and β, a parameter sweep is performed by setting α to 0.2, 0.4, 0.6, 0.8 and 1.0, 

and β to 0.2, 0.4 and 0.6. The value for peer_a = 1.0, peer_l1 = 0.0 and k is one, 

since only one shortest-path is possible from a source to a destination. Figure 4.4 

compares the results (represented as dots) of using our model on the tree topology 

with the analytical solution (depicted by solid lines), when the access link bandwidth 

are symmetrical (i.e. up- and download capacity of four video layers) and 

asymmetrical (i.e. upload capacity of one and download capacity of four video 

layers). When symmetrical (access) links are used, each destination receives all 

video layers if α and β sufficiently high; however, asymmetrical (access) links 

require more bandwidth in the core network in order to allow each destination to 

receive the video in full quality. Note that our ILP solution indeed produces the 

results predicted by the analytical approach. 

Figure 4.5 depicts the results of the parameter sweep in the situation where 

asymmetrical access links are used when all, six out of ten or no access peer have 

uploading capabilities of one layer and none, one or two out of two level 1 node(s) 

exhibit peer functionality. Bringing peer functionality into the core network 

increases the average received quality significantly, even when a large part of the 
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Figure 4.6: A ring network connecting R forwarding nodes. Each ring node acts 

as a root for a tree topology, build up in the same way as in Figure 4.3. 
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access peer cannot contribute downloaded information to the rest of the network. 

Like the results of Figure 4.4, Figure 4.5 shows that both the analytical solution as 

our model produce the same results.  

4.4 Use case: European Parliament streaming 

In traditional P2P video distributing networks, selection of nodes to download video 

chunks from (i.e. choking) is performed in a selfish manner. Typically, those nodes 

are selected that have the highest bandwidths connections [1-3]. In order to model 

this, the ILP formulation is extended with a constant parameter rx,y that represents 

the minimum bandwidth on the shortest-path (i.e. k=1) between node x and y (i.e. 

the link that has the smallest maximum bandwidth ue is used for rx,y). 

The objective function to optimize that represents the traditional form of node 

selection can be formulated as follows: 
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Figure 4.7: Comparing our strategy with the traditional method on the 

ring-of-trees network topology. Since both methods produces similar results in 

terms of average received quality, this figure shows the minimum and maximum 

number of received video layers (averaged over ten independent simulation 

runs). 

         ( ∑ ∑ ∑ ∑             
            {   }

) (22) 

By optimizing objective function R, peer nodes have the incentive to transport 

video layers to destinations that seem to have the highest bandwidth connection, 

which, in principle, is exactly the same as selecting (the injector or peer) nodes to 

download from, that have the highest bandwidth connection. Since the injector peer 

nodes are encouraged by objective function R to send as much video layers as 

possible, it is important to prevent unnecessary transport of data between nodes, 

which is taken care of by constraint (7). 

In Figure 4.6 a ring-of-trees topology is depicted, which describes the network 

model that is representative for a core network in Belgium. The injector node is 

placed on the main ring and γ is the parameter controlling the available bandwidth 

on the main ring links connecting the four other root nodes. The number of video 

qualities is (again) set to four layers, the fan out for the level 2 node is set to two and 

for the level 1 node to 5. The peers on the access level are assumed to be 

asymmetrical with a download capacity of four layers and an upload capacity of one 

layer. Since two shortest-paths are possible between a source and a destination, k is 

set to two. Parameters α and β are both set to 0.6 (in order to see effects when 

changing parameter γ) and γ is varied between 0.1 and 1.0.  

Figure 4.7 shows the results of using our strategy, which purpose is to deliver 

each destination a maximum minimal quality, and the traditional solution, where 

each destination maximizes its received quality. In order to obtain results from the 

ILP solver [17] within reasonable times, we select ten random destination nodes that 
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Figure 4.8: Mesh-based network topology, inspired by the GÉANT backbone 

topology. The injector node inserts a live video stream from the European 

Parliament, located in France, into the network. A random group of destination 

nodes try to receive the video feed. The link bandwidth capacities are expressed 

in number of quality layers. 
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are allowed to receive the video and the results show the average over ten 

independent simulation runs. Because of the symmetrical nature of the topology, 

both methods produce similar results in terms of average received quality by the 

destinations. However, as Figure 4.7 illustrates, the gap between the minimum and 

maximum received quality for our strategy is smaller, indicating that our strategy 

indeed maximizes the minimum quality that is received by all nodes. 

An interesting use case is distributing a live video from the European Parliament, 

where we use the GÉANT backbone topology as it is in June 2011 [5]. The GÉANT 

topology [5] depicts the network connections (and their bandwidth capacities) 

between research and education networks in the European area. Figure 4.8 illustrates 

the topology that we use in our experiments, where the network link bandwidths are 

expressed in the maximum number of transportable video layers. The (live) video 

consists of four layers and the injector peer is located in France. We set k = 1 for the 

traditional strategy and for our optimal method   {     } shortest-paths. Again, in 

order to obtain results from the ILP solver [17], ten random destination nodes are 

selected and connected to one of the country’s forwarding nodes. All peer nodes that 

are connected to a destination node have an uplink capacity of one video layer and a 

download bandwidth of four layers in the case of homogeneous end-devices. To 

model heterogeneous end-devices 60% of the peer nodes connected to a destination 

node have a capped download capacity of one layer, 30% are able to receive two 

video layers and 10% are allowed to get the video in its highest quality (i.e. four 

layers). The results are based on ten independent simulation runs.  

Figure 4.9a illustrates the fraction of the destination nodes receiving a specific 
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Figure 4.9: Comparing our optimization strategy with a typical traditional (i.e. k 

is one) Peer-to-Peer video streaming methodology on mesh network topology 

(i.e. k is one, two or three). Figure 4.9a depicts the situation for homogeneous 

end-devices (i.e. each destination is allowed to receive the video feed at its 

highest quality). Figure 4.9b shows the results when heterogeneous end-devices 

are modeled, where 60% of the users are able to stream at maximum one layer, 

30% at maximum two layers and 10% at four video layers. 

number of video layers, when using homogeneous end-devices. When applying the 

traditional (selfish) method for neighbor/piece selection, most destinations watch the 

video in its base video layer. Only a few destinations are able to receive the video in 

two or four video layers. When our optimization strategy is used, compared to the 

traditional method, a smaller fraction of the destinations watch the video stream 

consisting out of only one video layer and a much larger part of the destination 

nodes receives the video in two video layers. Although no destination node is able to 

watch the video at full quality using our strategy (i.e. receiving all four video layers), 

Figure 4.9a shows that our method offers a more robust solution since a larger 

fraction of nodes receive layer l1. 

In the situation that heterogeneous end-devices are modeled, Figure 4.9b depicts 

that less nodes are receiving two video layers. However, since a quality cap is 

enforced into the network, unused bandwidth becomes available and our strategy 

allows some nodes to receive three video layers.  

4.5 Conclusion and future work 

The P2P network model in combination with multi-layer video coding allows to 

offer a cost efficient mechanism that uses over-the-top video stream routing to 

optimally adopt to the specifications of heterogeneous end-devices. We believe that, 

from a video service provider’s perspective, the objective should be to maximize the 

minimum received video quality at each destination, rather than the selfish approach 

in traditional P2P networks, where each node maximizes its own video quality. To 

accomplish this, a (centralized) orchestrating unit (e.g. performed by the tracker 

node) is necessary that manages the video data exchanges by the peers and therefore 

needs a precise view on both the underlay and overlay network. To study the 

advances that this orchestrating unit offers, this chapter presents an ILP formulation 

that is capable to model the underlay-overlay-routing problem of the video layers in 

the network. By implementing both our solution and the strategy applied in 
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traditional P2P video streaming networks, we are able to make a thorough evaluation 

of both and show that our strategy increases the number of nodes that stream the 

video consisting out of more layers than only the base layer. 

To find the optimal solution, the formulation is implemented in an ILP solver 

[17]. For validation purposes we have investigated a video distribution structure, for 

which the optimal solution can be derived analytically. Both the analytical solution 

and our model produce exactly the same results. When applying both our and the 

traditional strategy on a ring-of-trees network topology, we show that the difference 

between the minimum and maximum received video layer is smaller for our 

solution, providing a more robust solution, without reducing the average received 

quality. A more realistic use case focuses on distributing a live video feed from the 

France site of the European Parliament to a select group of end-users (e.g. 

journalists, translators, …) located in different countries in Europe, where the 

network topology is based on the GÉANT research network [5]. We model 

homogeneous end-devices by allowing each destination node to download the video 

feed in its full quality. Heterogeneous end-devices have a limited video quality that 

they can download and we assume that 60% of the end-devices are capable to 

receive the base layer, 30% can receive two video layers and only 10% is allowed to 

get the video in its highest quality. The results show that our optimal strategy 

significantly decreases the fraction of destinations receiving only the base layer and 

increases the fraction of destinations downloading two video layers, for both the 

situation of homogenous and heterogeneous end-devices. However, compared to the 

traditional method, no destination receives the video in maximum quality. 

Our work in this chapter focusses on a steady-state situation, where each video 

layer is obtained from one source. For future work we plan to study the effects when 

multiple sources deliver a video layer and look into the robustness of our solution 

when nodes (suddenly) join or leave the network. In order to analyze larger network 

topologies we plan to design heuristics that deliver acceptable results for our 

proposed model within reasonable times. Another approach to compute the routing 

of video layers for more realistic scenarios (i.e. larger network topologies) is to use a 

hybrid solution where our solver is used in a multi-step strategy. End-users are 

divided in groups and in a first step the video layer routing is determined between 

these groups. In the next step our solver can again be used to compute the optimal 

solution within each (sub)group separately. Of course, solving the video distribution 

problem in a multi-step way, will yield sub-optimal solutions, and the quality of 

these solutions will depend on the topology at hand. 
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The previous chapter addresses our research on modeling multi-layer (live) 

video streaming in a P2P network. However, using exact solvers to calculate 

the routing of video layers for both the underlay and overlay is only feasible 

for relatively small network topologies. Therefore, this chapter provides a 

heuristic method that is able to compute the routing process of multi-layer 

video for larger networks sizes. Moreover, we extend the optimization 

strategy to calculate the locations to upgrade nodes with peering application 

functionality. The simulation results show that increasing the number of 

peering nodes in a network, increases the average number of received video 

layers at a destination, with same network capacities. Additionally, 

bandwidth capacities are used more efficiently by adding extra peering 

nodes. 

5.1 Introduction 

Today, broadcasting of video is mainly performed in a traditional manner; where 

servers send video feeds directly via dedicated networks to end-users. Due to 

growing bandwidth capacities (especially in the access networks) the Internet gets a 

more prominent role as being the main medium for transporting (live) video streams 

to millions of heterogeneous end-devices. Websites of e.g. YouTube and Eurovision 

Sports are already exploring the possibilities of broadcasting popular (live) events all 
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over the world, such as World Championships and the Olympic Games. However, 

the number of users that can watch the (live) video feed at the same time is still 

limited since bandwidth capacities on the broadcasting servers form the main 

bottleneck. An interesting network model that offers a scalable mechanism for 

distributing (live) video is the Peer-to-Peer (P2P) overlay technology. In a P2P 

network, the peers form a virtual overlay network on top of an actual network, and 

all peers act as both supplier and consumers (contrary to traditional client-server 

networks). Since peers can supply downloaded data to each other (i.e. parts of the 

video stream), not only a scalable and robust solution is offered, but also the server 

loads on the original source nodes (i.e. injector node) are reduced. 

In order to optimally adapt to typical heterogeneous circumstances (such as 

various asymmetric link bandwidths, end-devices having different display 

resolutions or even stereoscopic rendering possibilities), next generation P2P video 

streaming networks use multi-layered video (e.g. Scalable Video Coding [1]) [2]. 

The video is encoded into multiple layers (i.e. usually divided into a temporal, 

spatial or quality resolution or a combination of the three) and allows playback of 

the video when only the base layer is received. Every additional received video layer 

increases the user’s experienced viewing quality of the video feed (such as an 

increased frame rate or the resolution scaled from e.g. 720p to 1080p). Using multi-

layered video coding, end-devices can choose to download only the video layers that 

they are able to output. Even when two nodes are choosing to receive a different 

video quality, using multi-layer video has the advantage that both nodes have the 

ability to exchange video layers. The bandwidth requirements for the node inserting 

the (live) video stream into the network can be mitigated significantly, since one 

stream (containing each distinct video layer) might already be sufficient to allow 

each device to select the right number of video layers to stream. 

Our P2P framework that is used to transport multi-layer video consists out of the 

following entities: 

 Injector node: offers the video stream to the rest of the network, separated 

into distinct video layers. 

 Tracker node: a (often centralized) bootstrap server, providing all necessary 

information for peering nodes to start the download process. When the 

streaming of video is started, the tracker node has a coordinating role. 

 Peering node: nodes containing the peering software functionality and 

(usually) acting as the entry points for end-devices (i.e. destination nodes) 

to get the video stream from. In this chapter we use the term peering node 

and peer interchangeably. 

As a use case we study the possibility of using a P2P multi-layer video 

framework to transport a (live) video feed from the European Parliament to end-

users located all over Europe. We assume that Internet Service Providers (ISPs) are 

willing to make relatively small hardware investments in order to turn their networks 

into a good alternative for distributing (live) video streams (i.e. by upgrading nodes 

in their network to exhibit peering application intelligence). Since ISPs are mainly 

interested in the minimum video quality they can offer, our objective focusses on 

maximizing each destination’s minimum video quality while using network 
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Figure 5.1: Mesh-based core network topology, inspired by the GÉANT 

backbone topology. We consider the injector node, inserting the multi-layer 

(live) video feed from the European Parliament, to be located in France. The 

bandwidth capacities represent the maximum number of video layers the link is 

allowed to carry, in each direction separately. We assume that each video layer 

has the same constant bandwidth cost and dashed lines are used to indicated non-

intersecting links. 
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resources as smartly as possible. Therefore, we propose in this chapter a heuristic 

strategy to compute both the underlay and (consequently) overlay routing for a video 

stream. The deployment perspective of the proposed method is provider centric, 

indicating that a limited number of end-users is considered and we have a precise 

view on the (underlying) network topology. Additionally, our optimization method 

also allows calculating the locations to install/upgrade nodes to exhibit peering 

application functionality. We assume that connections between peers are 

orchestrated by a (central) unit that has the power to control the number of video 

layers received by a destination in function to increase the number of video layers 

for multiple other destinations. Although the orchestrating unit (i.e. tracker node) 

forms a single-point-of-failure in our architecture, the benefit of using a (centralized) 

coordination instance is to alleviate the burden of decreased network performance 

formed by free-riders or inefficient data exchanges caused by the distributed 

algorithms and protocols used by traditional P2P streaming applications. Since the 

number of nodes ISPs are willing to upgrade with peering functionality mostly 

depends on the extra benefit they deliver, our proposed heuristic is able to calculate 

the video layer routing information (e.g. to be used by the orchestrating unit) and the 

network locations for the peering nodes. 

The core network topology used in this chapter is illustrated in Figure 5.1, which 

is a derived version of the GÉANT backbone topology as it is in June 2011 [3]. The 

GÉANT topology represents a schematic overview of the connections and their 
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bandwidth limitations between research and education networks in the European 

area. Although complex models exist to generate (background) traffic representing 

different kinds of applications (e.g. general P2P software or Content Distribution 

Networks (CDN)) [4], we use a simplified method by directly transforming the 

bandwidth capacities to represent the maximum number of video layers the network 

link is allowed to carry in each direction.
9
 We assume that each layer has the same 

constant bandwidth cost. In our use case the (live) video stream is inserted from the 

European Parliament located in Strasbourg, France (abbreviated as FR). End-users 

requesting the (live) video feed are modeled by connecting a <peering, destination> 

node couple to a country’s forwarding node. To study the effects of asymmetrical 

bandwidth capacities, which is one of the currently limiting factors for the overall 

performance of P2P networks, the peering node’s uplink (i.e. the link from the 

peering node to the country’s forwarding node) is limited to the average of the 

incoming link capacities. For instance, the uplink of the peering node at Iceland 

(abbreviated as IS in Figure 5.1) has a maximum bandwidth capacity of three video 

layers. We assume that at most one <peering, destination > node pair is connected to 

a country’s forwarding node. 

This chapter continues in section 5.2 with an overview of related work. Section 

5.3 provides and validates our heuristic for solving the routing of video layers in a 

network. An extension of our optimization strategy is given in section 5.4 that 

calculates the locations in the network to place peering node functionality. 

Conclusions and future work are presented in section 5.5. 

5.2 Related work 

A number of commercial platforms exist that offer streaming video using the 

Internet as a transport medium (e.g. Octoshape, RawFlow and RayV). However, 

often traditional client-server based network models are used to transport the video 

data, resulting in large server and bandwidth costs for broadcasters. On the other 

hand, several freeware/open-source frameworks employ P2P techniques to offer 

(live) video streaming solutions, e.g Alluvium, End System Multicast, PeerCast, 

PPTV (formerly known as PPLive) and Tribler [5]. In order to get decent and stable 

streams, large numbers of end-users are required that watch the same video feed. To 

the best of our knowledge, none of the P2P (multi-layer) video streaming networks 

use topology information to optimize the load in the network. 

Another option would be to use IP multicast [6]. However, IP multicast is not a 

feasible solution for a scalable video streaming service due to the sparse deployment 

on the Internet. Therefore, our solutions focus on advanced P2P techniques, without 

requiring large hardware changes to deploy the designed frameworks. 

Inherent to P2P networks are mechanisms that motivate/force peers to share with 

each other when downloading, such as BitTorrent’s tit-for-tat mechanism [7] and 

Tribler’s give-to-get algorithm [8]. An unbalanced data exchange is a problem that 

decreases a P2P system’s potential performance in terms of bandwidth utilization [9-

11]. Both the unwillingness to share by users and inferior data exchanges as a result 

of the distributed algorithms form a huge challenge when designing a P2P streaming 

                                                           
9
 The bandwidth values are multiplied with two in Figure 5.1 compared to Figure 

4.8, to challenge our optimization strategy when calculating peering node positions. 



Combining video layer routing with optimal peering node placement in Peer-to-Peer video streaming networks 77 

applications. Therefore, incentives mechanisms are necessary to allow successful 

deployment of robust and scalable (live) video streaming framework. Our approach 

to solve these issues is based on extending tracker node privileges with an 

orchestrating function, managing all data transfers in the network. Based on the 

orchestration our heuristic method is used to compute the optimal routing strategy 

for the complete network and providing the highest possible performance gain. 

Studies combining P2P technologies with layered video are performed in [12-14] 

and mainly focus on advanced and selfish buffering strategies by altering the piece 

picking algorithms and/or neighbor selection strategies. Our solution complements 

that work by using topology information to manage the video streaming process and 

increase the network’s performance as whole. 

In [15-17] mathematical formulations are introduced to model video streaming 

using P2P mechanisms. In these studies only overlay routing is considered and the 

authors assume the upload and download capacities for each peer to be the main 

bottlenecks. In addition to overlay routing, our proposed optimization strategy takes 

the underlay network into account, allowing to take constraints into account imposed 

by shared network links in data exchanges. As a consequence the complexity of the 

problem significantly increases and therefore we use a heuristic algorithm to solve a 

multi-layered video routing problem in a P2P network. 

Capone et al. [18] study underlay and overlay routing optimization in 

combination with overlay node positioning to create virtual topologies on Internet-

like networks, so called Service Overlay Networks (SON). Since the Internet was 

designed to provide best effort delivery, SONs are used to provide end-to-end 

Quality of Service (QoS) without requiring any modification to the underlying 

network infrastructure. Compared to [18], our proposed model considers the routing 

of multiple video-layers to each destination, possibly via distinct overlay routes 

(including asymmetric bandwidth properties on the access links). Additionally, we 

require the video layers to be delivered in-order and originated from the source (i.e. 

injector) node, resulting in a significant increase in the complexity to solve our 

problem. 

Several generic heuristic strategies exist that are used to find (almost) optimal 

solutions for various kinds of (combinatorial) problems, such as Ant Colony 

Optimization, Tabu Search, Genetic Algorithms and Simulated Annealing (SA). As 

a common denominator, all above mentioned techniques use probabilistic 

approaches to prevent getting trapped in local optima. The problem we solve in this 

chapter is in essence similar to the classic and heavily studied vehicle routing 

problem (VRP), where SA has proven to be a good candidate to solve 

computationally more complex versions of the standard VRP [19,20]. Therefore, SA 

forms the basis for our global optimization strategy. 

Contributions of this chapter can be summarized as: 

 Providing a stochastic heuristic optimization method to calculate the 

routing of multi-layered video in a P2P overlay network, taking into 

account the underlay topology. 

 Using our heuristic strategy to find ideal positions to upgrade forwarding 

nodes to contain peering application functionality. 
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Symbol Description 

E Set of all links in the network topology 

ue Total bandwidth capacity of link     

V Set of all nodes in the network topology  

Iv All incoming links on node     

Ov All outgoing links from node     

z The node that inserts the (live) video stream into the network, 

    

F Set of forwarding nodes,      

P Set of nodes containing peering application intelligence,     

D Set of nodes where an end-user is connected to,     

L Set of distinct video layers 

li Video layer      

bi Benefit value of receiving layer li 

cl Bandwidth cost of transporting layer l 

he,x,l Binary variable indicating whether link e is used to transport layer 

l to destination   {   } 
 

Table 5.1: Symbols that define the problem solved by our optimization strategy. 

5.3 Heuristic method for routing of multi-layer video in 

a P2P network  

Our heuristic method is based on Simulated Annealing (SA), a stochastic 

optimization strategy used to find a (close to) optimal solution for a problem. The 

solution space is randomly sampled and occasionally inferior solution states are 

accepted in order to jump out of local minima. Before we provide our proposed 

algorithm based on SA, we introduce in section 5.3.1 all parameters and variables 

that describe the underlay-overlay-routing problem of multi-layer video streaming in 

a P2P network. Section 5.3.2 continues with a detailed description of our heuristic 

strategy, while a validation and evaluation of the proposed strategy is provided in 

section 5.3.3.  

5.3.1 Problem formulation for distributing multi-layer video over 

a P2P network topology 

The problem of transporting a multi-layer video stream over a P2P network is 

characterized by a network topology, containing an injector node, multiple 

forwarding nodes, peering and destination nodes and a list of the distinct video 

layers. Table 5.1 provides an overview of all symbols declared in sections 5.3.1.1 to 

5.3.1.5.  
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5.3.1.1 The network topology 

A directed graph G represents the underlay network topology and contains a set of 

nodes V and a set of directed edges E. We presume the graph is bi-directional, but 

asymmetric edge properties can be specified. Each (direction of) edge e from E is 

characterized by a given maximum bandwidth capacity ue ≥ 0. The sets of ingoing 

and outgoing links of a node v are respectively represented by Iv and Ov. We assume 

that video layers are routed through the network using a standard shortest-path 

method (i.e. measured in network hops) [21]. Therefore, Dijkstra’s algorithm is used 

to calculate the shortest-path between two nodes.  

5.3.1.2 Forwarding and peering nodes 

All nodes in the network that exhibit no peering application intelligence simply 

forward received data on the shortest-path to the destination, with F the set of all 

forwarding nodes. P is the set of all peering nodes, which are the nodes running the 

P2P streaming software and are able to send an incoming stream to multiple 

destination nodes. 

5.3.1.3 Injector and destination nodes 

The injector node z is the original source of the (live) video stream and we presume 

that the injector node is connected to the rest of the network via a peering node. All 

video streaming requests are performed by the destination nodes, which are located 

in set D.
10

 

5.3.1.4 Video layers 

The ordered set L contains each different video layer, sorted by increasing layer rank 

with l0 the base layer. We assume that each layer l from L has a constant bandwidth 

cost per time unit of cl ≥ 0. Receiving a layer li+1 is only useful if layer li is also 

received, where i ≥ 0. 

In order to prioritize situations for fairness where multiple destinations all 

receive a layer li over situations that only a few receive layer l>i and the rest receives 

l<i a constant value bi per layer li is set to express the benefit of receiving the layer. 

The values    | |(| |    ) guarantee the following principle:    (| |   )  

∑   
| |  
     , for     | |. This means that the benefit for contribution bi when a 

node receives layer li is greater than combining the benefits bj for every other 

destination for all video layers lj where j > i. Therefore, bi allows the strategy of 

maximizing the minimum number of received video layers per destination. 

5.3.1.5 Variables 

In this subsection e is an edge from E, x a node from set {   }, and l is a video 

layer from list L. The binary variable is: 

                                                           
10

 Heterogeneous end-devices can be modeled by limiting the incoming bandwidth 

property on the incoming destination node. 
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Figure 5.2: Example indicating the usage of variables h, where the injector node 

z sends a video layer l destined for node d. The video layer is transported over 

link e1 to peering node p. Peer p sends the layer over links e3 and e5 to 

destination node d. 

z p fe1

e2

e3

e4
de5

e6

 he,x,l is 1 iff link e is used to transport layer l to node x (i.e. a peering or 

destination node). 

The h-variables in combination with cl allow the calculation of the bandwidth 

carried by the links and will be used to assure flow conservation through the 

network. Figure 5.2 illustrates an example of transporting a layer l to destination 

node d. The injector node z sends the stream over link e1 to peering node p. Peer p 

sends the video layer via link e3 to forwarding node f, which on its turn forwards l to 

destination d using link e5. All other h-variables (not depicted in Figure 5.2) are set 

to 0. 

The combination of the fixed parameters and variables h allows us to describe an 

underlay-overlay-routing model and is solved using our stochastic heuristic strategy. 

5.3.2 Stochastic heuristic optimization strategy 

Our optimization strategy is inspired by the generic optimization strategy Simulated 

Annealing (SA), where random states are generated and accepted based on the 

quality of a new state compared to the current solution state. In order to compare 

two generated states, equation (1) depicts the sum that expresses a solution into a 

numeric value, which adheres to our proposed objective strategy; the numeric value 

of the solution state is the sum of the benefit values bi according to the received 

video layers li over all destination nodes d in the network topology. When the 

solution state value is optimized, the minimum received number of video layers at 

each destination node is maximized. 

               ∑ ∑ ∑           

           

 
(1) 

In order to jump out of local minima (or maxima), SA uses the Metropolis 

criterion [22] to calculate the probability of temporarily accepting an inferior 

proposal. 

Parameter delta is the numeric difference between two proposals, e.g. calculated 

by the sum in equation (1). New proposals that are slightly worse than the current 

 (                 )   

      
          

   ( )
  

 
(2) 
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B.01 accept(delta, avg_delta, T) { 

B.02  if(random() < M(delta, avg_delta, T)){ 

B.03   return true; 

B.04  } else { 

B.05   return false; 

B.06  } 

B.07 } 

 

Figure 5.3: Metropolis criterion is used to decide whether or not to accept a 

proposal (i.e. a newly created route or solution state). 

Parameter Description Default value 

T0 

Starting temperature, used to define the 

acceptance probability for the Metropolis 

criterion 

1 

Tstop 

Stopping temperature, when the temperature 

drops below this value the optimization process 

finishes 

0.001 

α 

Used by the exponential cooling schedule to 

define the rate the temperature T decreases in 

each temperature update 

0.99 

β 
Initial probability of accepting an inferior 

proposal, where the value of delta = avg_delta 
0.9 

N 
Number of dummy inferior proposals needed to 

calculate avg_delta 
100 

MCL1 
Markov chain length: the number of iteration per 

temperature step 
500 

 

Table 5.2: List of parameters used by our optimization method. 

state, have a higher chance to be temporarily accepted. The generated (pseudo) 

random numbers are uniformly distributed between 0 and 1. Since the magnitude of 

delta is problem dependent, we generalize the probabilities by using an average 

value avg_delta and parameter β to control the starting probability of the average 

delta value. During the course of the simulation, the chance of accepting a less 

attractive proposal decreases according to the so-called cooling schedule. The 

temperature T of the cooling schedule starts with a relatively large value, causing the 

simulation to start with relatively high chances of accepting a less attractive state 

(i.e. when T0 = 1, β is the initial probability of a accepting the average inferior 

proposal). By lowering the temperature, the acceptance probability of inferior states 

decreases over time. In this way, the optimization strategy is able to search a large 

part of the solution space and finally narrows down to an (almost) optimal solution. 

The decision to accept a new proposal (i.e. a newly created route or a solution 

state) is given in Figure 5.3. Line B.02 indicates that the Metropolis criterion of 

equation (2) is used to decide whether to accept or reject the proposal. Table 5.2 
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C.01 findOptimalSolution() { 

C.02  initializeParameters(); 

C.03  while(T > Tstop) { 

C.04   for(i = 0 : MCL1) { 

C.05    initiateTransaction(); 

C.06    if(congestedLinks()) { 

C.07  dropVideoLayerFromCongestedLink(); 

C.08    } 

C.09    sources = cleanUp(); 

C.10    createNewRoute(sources, T); 

C.11    if(acceptNewSolution(T)) { 

C.12     if(bestSolution() &&  

C.13     !congestedLinks()) { 

C.14     markNewBestSolution(); 

C.15     } 

C.16    } else { 

C.17     performRollBack(); 

C.18    } 

C.19   } 

C.20   T *= α; 

C.21  } 

C.22  useBestSolution(); 

C.23 } 

 

Figure 5.4: Main method highlighting the Simulated Annealing inspired 

optimization approach. 

summarizes all input parameters for the optimization method, appended with a brief 

description of the parameters and the standard value used in our experiments. 

5.3.2.1 Initialization of configuration parameters 

The main process of finding the optimal solution is given by the algorithm in Figure 

5.4. First, all configuration parameters are initialized (C.02): 

 Average delta values when constructing new routes and solution states, 

computed by generating N inferior proposals using a dummy local 

optimization strategy. 

 The start value for the temperature parameter T is set (i.e. T0). 

5.3.2.2 Starting the temperature steps and the Markov chain 

The optimization strategy then continues as long as the temperature parameter T is 

larger than the predetermined stopping temperature Tstop. During each temperature 

step a Markov chain is executed which results in the generation of a number of 

solution states (i.e. MCL1, the Markov chain length) that are accepted (or rejected) 

based on the Metropolis criterion (see Figure 5.3). We propose the use of a 
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transaction mechanism, for an easy switch back to the current network state in case 

of a rejection (C.05).  

5.3.2.3 Link dropping strategy 

When the network contains congested links (i.e. links that currently require more 

bandwidth than they have available according to ue), a random network link e is 

selected from the set of congested links and a random layer l is dropped transported 

to a random node x (i.e. by setting parameter he,x,l =
 
0 and x is a peering or 

destination node) (C.07). After dropping a layer from a link, a clean-up process is 

necessary to guarantee that all streams flow correctly in the network. 

5.3.2.4 Clean-up process 

A clean-up process is started (C.09), that makes sure that each destination node d 

from D receives video layers in-order (and removing layers that do not fulfill this 

property) and each peering node p from P is only receiving a video layer when it is 

actually (re)sending it to another peering or destination node (and vice versa). The 

clean-up method returns per quality layer a list of nodes that are able to act as a 

source to another peering or destination node (i.e. injector combined with multiple 

peering nodes). 

5.3.2.5 Constructing a new download route 

To find an optimal solution, we propose an opportunistic method for creating new 

routes. Even if a new proposal for transporting a video layer to a node crosses 

already occupied links, we still consider these routes temporarily. By accepting 

solution states that are infeasible, we allow the optimization strategy to jump out of 

local minima and perform a natural way to select links to drop video layers from. 

The process of starting a new video stream download is explained in Figure 5.5 and 

starts with selecting a random destination node (i.e. a destination node that is not yet 

receiving all video layers) (D.02). The next video layer that the destination currently 

is not receiving is requested from a random node, can_source, that acts as a 

candidate source (i.e. injector or one of the peering nodes) (D.04). Next, the 

shortest-path (i.e. measured in network hops) between the final destination and 

candidate source node is constructed using Dijkstra’s algorithm. In the situation that 

the candidate source is not yet part of the list of available sources (i.e. the list 

containing the injector and peering nodes that are already receiving the video layer, 

gained by the clean-up method) (D.07), a random node is selected from the list of 

already active source nodes (D.08) and the shortest-path between the actual source 

node and the candidate source node is prepended to the video stream path (D.10). 

Next, the decision to accept or reject the proposed path is based on the number of 

full links it uses, which is provided to the Metropolis algorithm (D.15). When 

accepting the new route, line D.17 marks the download of the video layer in the 

network topology (i.e. by setting he,x,l = 1 on each link e on the constructed path for 

the specific video layer l, where x is the randomly chosen actual or candidate source 

node, or destination node x that is closest to e). 
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D.01 createNewRoute(sources, T) { 

D.02  (destination, layer) =  

D.03  selectRandomDestinationAndLayer(); 

D.04  can_source = selectRandomNode(  { }); 
D.05  path = shortestPath(can_source, 

D.06      destination); 

D.07  if(!sources.contains(can_source)) { 

D.08   source =  

D.09   selectRandomNode(sources); 

D.10   path.prepend( 

D.11  shortestPath(source, can_source)); 

D.12  } 

D.13  full_links =  

D.14   countNumberOfFullLinks(path); 

D.15  if(accept(full_links, avg_full_links,  

D.16        T)) { 

D.17   insertStream(path, layer); 

D.18  } 

D.19 } 

 

Figure 5.5: Process of creating a new route from a source node (i.e. injector or 

peering node) to a destination. The Metropolis algorithm is used to decide 

whether or not to accept the proposal, based on the number of already occupied 

links on the shortest-path. 

5.3.2.6 Accepting or rejecting the new solution state 

Figure 5.6 introduces the process for accepting or rejecting a new solution state. 

First, the objective value is calculated on line E.02 by using the algorithm specified 

in equation (1). When the new solution state produces a better objective value, the 

proposed state is accepted instantly and the current objective value is adjusted 

(E.06), else the inferior solution state is accepted according to the Metropolis 

criterion of Figure 5.3. Note that we adjust the objective values to a logarithmic 

scale to handle the exponential nature of parameter bi. 

5.3.2.7 Finalizing the temperature steps and the Markov chain 

Finally, we determine in line C.11 whether to accept or reject the new solution state 

(i.e. according to the dropped video layers and the newly created route). In case the 

proposed state is accepted, the new solution is marked as the best solution (C.14) 

when the objective value of the new state is better (i.e. larger) than the objective 

value of the best solution found yet, given that the current (i.e. new) proposed 

solution state has no congested links (i.e. the proposed solution is practically 

feasible). When the solution state is rejected, the transaction mechanism is used to 

roll-back to the situation before the proposal (C.17). After performing the 

predetermined number of iterations of the Markov chain, the temperature parameter 
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E.01 acceptNewSolution(T) { 

E.02  new = solution value, equation (1); 

E.03  if(new >= cur || 

E.04     accept(log|D|(cur-new),  

E.05   log|D|(avg_difference), T)) { 

E.06   cur = new; 

E.07   return true; 

E.08  } else { 

E.09   return false; 

E.10  } 

E.11 } 

 

Figure 5.6: Accepting a solution state for the P2P underlay-overlay-routing 

problem of streaming videos is based on the numeric value of the new state 

compared to the current solution. When the new proposal is inferior to the 

current one, the Metropolis criterion is used in the decision to accept the new 

state. 

T is updated for the next iteration process using an exponential cooling schedule 

(C.20). Logically, the optimization strategy selects the best found solution as the 

final result (C.22).  

5.3.3 Evaluation of the heuristic approach for multi-layer P2P 

video streaming 

To benchmark the optimization heuristic, we compare the output results with 

measurements of an Integer Linear Programming (ILP) model implemented with 

IBM ILOG Cplex solver. In earlier work we have developed an ILP model, that was 

used to compare our optimization strategy (i.e. maximizing the minimum number of 

received video layers per destination) with the methodology implemented by current 

P2P video streaming networks (i.e. maximizing the number of received video layers 

at each destination).  Each topology used in this experiment is the GÉANT network 

containing ten <peering, destination> node pairs that all are connected to a randomly 

chosen country forwarding node. We assume that the video feed exists out of four 

distinct layers. In total we have generated ten network topologies and Figure 5.7 

compares over all destination nodes, the minimum, average and maximum received 

number of video layers for the ILP solver and our optimization strategy. The 

parameters for our strategy are set according to the values of Table 5.2. The network 

topologies are ranked according to the average number of video layers a destination 

node receives. Figure 5.7 validates our heuristic for the proposed topologies by 

showing identical results compared to the ILP solver. 
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Figure 5.7: Comparing the number of received video layers of using our 

optimization heuristic with the exact results measured by the ILP model. Ten 

distinct topologies are generated, with each ten randomly chosen destination 

nodes on the GÉANT topology. The topologies are ordered on ascending 

average received number of video layers, each having a constant bandwidth unit 

cl = 1. 

5.4 Combining video layer routing and optimal peering 

node allocation 

Now that we have a heuristic method that is capable to produce (almost) optimal 

solutions for small topologies, we can scale up the network size (i.e. the number of 

<peering, destination> node couples in the topology). An interesting question that 

arises when examining larger network topologies is where to install peering node 

functionality. Offering peering application intelligence in the network introduces 

extra costs for network providers, therefore, knowing ideal positions to place the 

peering nodes can be crucial. To accomplish finding optimal peering node locations, 

section 5.4.1 provides the extension of our optimization strategy. An evaluation of 

our proposed optimization method is given in section 5.4.2. 

5.4.1 Extending the optimization strategy to locate ideal positions 

to place peering nodes 

An extra parameter is added to our model to represent the number of allowed 

peering nodes, allowed_peers. The set P now represents forwarding nodes that can 

be upgraded with peering node functionality. Therefore, the initialization phase 

(C.02) randomly selects allowed_peers peering nodes and marks them as the initial 

peering nodes (i.e. the remainder of the nodes in P are marked as a forwarding 

node). An extra Markov chain level is introduced that starts with invoking a method 
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Figure 5.8: Transition strategy for upgrading a forwarding node (i.e. a peer 

previously marked as forwarding node) to have peering application functionality 

is shown from a to b. Downgrading a peering node to a forwarding node is 

illustrated from c to d. In both situations the binary variable h on an incoming 

link has to be altered for node x, to represent the new situation correctly. 
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that downgrades a random peering node to a forwarding node and upgrades a 

random node in P to have peering functionality. The parameter MCL2 (= 200) 

represents the number of times a down- and upgrade swap is performed per 

temperature step. The original (i.e. inner) Markov chain stays untouched and 

delivers the best objective value that can be reached when using the selected 

locations for peering nodes. The result of the original Markov chain is then used in 

the decision to accept or reject the performed swap, similar to algorithm in Figure 

5.6 and using the algorithm in Figure 5.3. An extra transaction mechanism layer is 

required to set back the best solution in case of a rejection.  

Figure 5.8 illustrates the transition strategy per distinct video layer for swapping 

a forwarding node into a peering node (from a to b) and downgrading a peering node 

into a forwarding node (from c to d). By gracefully changing the node’s behavior, 

we are able to keep most of the previously calculated routes. When a forwarding 

node is upgraded to exhibit peering functionality, per video layer only one incoming 

stream is kept. The binary variable he,x,l is changed to one for the particular video 

layer l and all links e on the path of the incoming stream, where x is the id of the 

new peering node. Limiting a peering node to a forwarding node means for each 

video layer replacing variable he,x,l on the path of the incoming stream, where x is 

changed into an id of one of the outgoing streams and still satisfying the shortest-

path routing principle. All other outgoing streams are removed and to prevent 

occurring cycles in a route, the chosen outgoing stream is not allowed to be on the 

link connecting to the node of the incoming link. 

5.4.2 Evaluating peering node placement in a P2P video streaming 

framework 

The network topology that we use is depicted in Figure 5.1, with the injector node 

located in France (FR). Each country’s forwarding node connects to a destination 

node via a peering node. The peering node’s upload capacity is limited to the 

average of the maximum incoming bandwidths on the country’s forwarding node. In 

total the network topology represents 31 countries, which means 1 injector, 30 

destination and at most 31 peering nodes. In order to cancel out noise due to random 
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Figure 5.10: Average number of video layers transported per link in relation to 

the number of allowed peering nodes. Increasing the number of peering nodes 

means that the average number of received video layers is increased (see Figure 

5.9), causing on average more layers to be transported per link. 

 
Figure 5.9: Maximum, average and minimum number of received video layers as 

a function of the number of allowed peering nodes in the network. Intuitively, 

the result of increasing the number of peering nodes is a higher average number 

of video layers per destination node. 

fluctuations, the results presented in this section are average over ten independent 

simulation runs. The values for the parameters are chosen as listed in Table 5.2, 

where MCL2 = 500.  

Figure 5.9 shows the minimum, average and maximum number of received video 

layers as a function of the number of allowed_peers (i.e. the number of peering 
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Figure 5.11: Average number of links transporting a video layer divided by the 

number of destination nodes receiving the layer, in relation with the number of 

allowed peers. 

nodes exhibiting peering application functionality). As expected, increasing the 

number of peering nodes in the network increases the average received number of 

video layers at a destination. Note that the overall network minimum number of 

received layers is limited by the nodes that only have a download bandwidth of two 

layers (e.g. Malta: MT). Figure 5.9 clearly illustrates our proposed objective 

strategy, nodes are only allowed to receive a higher video layer when all other nodes 

are accommodating the lower layers (if possible). Due to the combination of a large 

number of possibilities to place peering nodes and the relatively small benefit the top 

layer contributes in the optimization process, fluctuations in the distinct simulation 

results are observed when the number of allowed peers ranges between 20 and 25. 

The bandwidth usage per link in the network is expressed in Figure 5.10 by 

measuring the average number of video layers transported by a network link. As a 

consequence of the results in Figure 5.9, increasing the number of peering nodes 

results in an increase in the average bandwidth usage per link. Figure 5.11 depicts 

the average number of links transferring a layer, divided by the number of 

destinations receiving the layer. As Figure 5.11 illustrates, an increase in the number 

of peering nodes results in more efficient usage of the link bandwidths since the 

average number of links transporting a layer gradually decreases. For our proposed 

network topology, only 5 peering nodes are necessary to provide all endpoints the 

base video layer and 12 peers are required to provide all destinations layer 1. When 

31 peering nodes are available, the average number of links to a destination 

decreases with 9% for the base layer and 5% for layer 1, although no extra endpoints 

are receiving these video layers. Again, the combination of large possibilities to 

position the peering nodes and the relatively small benefit layer 3 provides causes 

small fluctuations in the distinct simulation results when the number of allowed 

peers is between 20 and 25. 
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5.5 Conclusion and future work 

Due to increasing bandwidth capacities in the Internet (especially in access 

networks), next generation P2P video streaming frameworks using multi-layer video 

coding solution provide a good alternative to distribute video feeds. Advantages of 

using P2P techniques in combination with multi-layered video are the ability to 

easily adapt to heterogeneous end-devices, providing a cost-efficient, robust and 

scalable solution that naturally exhibits load balancing and reduces server load. 

From a video service provider’s perspective the objective could be to maximize each 

destination’s minimum video quality (expressed in number of received video layers). 

The challenge is to optimally use the network infrastructure to transport the video 

layers to their destinations. To accomplish this, we propose to integrate an 

orchestrating engine that directs the routing process in the overlay network, 

assuming that this unit has a precise view on the (physical) underlay topology. In 

this chapter we propose a stochastic heuristic that is used to find a (close to) optimal 

solution that can be used by the orchestrating unit. We benchmark the heuristic by 

comparing the results with the results of an exact solver for our evaluation scenario. 

Since small hardware investments, by upgrading nodes with peering 

functionality, can result in major increases in the system’s performance (e.g. the 

number of received layers is increased), an interesting question that arises is which 

nodes to upgrade. Therefore, we have extended our proposed optimization strategy 

to compute along with the video layer routing the best locations to place peering 

application functionality. The simulation results show that increasing the number of 

peering nodes in a P2P video streaming network results in an increase in the average 

received number of video layers at a destination. Consequently, the average 

bandwidth usage per network link increases due to the increase of the average 

number of layers an endpoint receives. However, extra peering nodes results in more 

efficient usage of the network links since the average number of links needed to 

transfer one layer to one destination decreases gradually. This decrease continues 

even when the number of destinations receiving the layer stays the same, i.e. a 9% 

and 5% decrease is seen for respectively layer 0 and 1 when no extra endpoints are 

accommodating these layers. 

Since our work focusses on steady-state situations where a video layer is fully 

obtained from one source peer, interesting future work is to expand our model to 

allow multiple peering nodes to deliver segments of a video layer to a node and 

study the effects of nodes (suddenly) leaving or joining the P2P network. Interesting 

future work involves studying different mechanisms to (further) increase the number 

of nodes and destinations in the network topology. For instance, we can already 

lower the number of Markov steps and the stopping temperature to reduce the 

computation time, however the effects on the solution quality is not studied yet. 

Another approach to solve the problem for larger network topologies is 

incorporating a multi-step mechanism, where destinations are divided into groups 

and first the routing between groups is computed. In the next step the video layer 

routing between nodes in each (sub)group can be computed by our heuristic method. 
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6 
6Conclusions and research perspectives 

In this dissertation we have presented our research results carried out in the context 

of sharing personal content. We focused on two key concepts: locating and 

transferring personal content items to the end-users. Current solutions are still using 

traditional client-server models. However, due to increasing heterogeneous 

circumstances and growing personal content collections, advanced mechanisms are 

necessary to fulfill all expectations of end-users. 

6.1 Main research results 

Chapter 2 addresses our findings on distributed locating of personal content items. 

We have extended a structured P2P network technology (i.e. a DHT) with a 

cooperative caching framework to reduce lookup delays. Our proposed cooperative 

caching strategy reacts on the location dependent request patterns that characterize 

personal content items. Through an update protocol neighbors in the DHT ring are 

informed of local cache changes. In this way nodes can avoid storing the same 

copies that can be retrieved in only one (overlay) hop and thereby virtually increases 

a local node’s cache size. The cooperative caching framework is compared with a 

state-of-the-art proactive replication strategy (i.e. Beehive). In the situation of 

uniformly distributed lookup request, the analytical model of Beehive provides a 

larger performance increase compared to the cooperative caching solution. However, 

since lookup requests for personal content items exhibit location dependent request 

patterns (i.e. popularity of objects are different for each node), our cooperative 

caching strategy outperforms Beehive significantly. Besides a direct comparison 

between our advanced caching mechanism and Beehive, Chapter 2 presents a 

detailed study of the inner working of our proposed solution. We show that the 

message overhead introduced by the update protocol to enable cooperation between 

peers is acceptable, since the performance increase (i.e. reduction of the average 

number of hops per lookup request) is higher than the cost the update protocol 
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introduces. Additionally, the results show that on average more than 20% of the 

peers store their top ten most popular items in the local cache. When a node is not 

caching a top ten item locally, the chances are relatively high that one (or both) of 

the neighbors has the particular personal content item. A disadvantage of using a 

DHT to locate personal items is the limitation of the deterministic lookup property; 

objects can only be found when the exact lookup key is known. However, since 

frameworks that are offering multiple keyword and range queries still (have to) use 

the basic key-based routing mechanism of the DHT, our proposed mechanisms are 

able to increase the performance of such frameworks already. 

As pointed out earlier, reducing lookup time does not imply that content itself 

can be accessed more quickly. Therefore Chapter 3 proposes a multi-level caching 

architecture to enable storing personal content items closer to end-users that are 

frequently accessing them. By adopting a multi-level caching solution in a PCSS, 

significant parts of the network can be alleviated and access times are reduced. We 

have dimensioned the capacities of the caches for a tree network (by using analytical 

calculations), so that each level serves an equal share of the requests. The simulation 

results agree to the designed analytical model by showing that the cache hit ratios 

converge closely to the same (i.e. calculated) values. Additionally we analyze the 

time it takes to store a particular file on as many level one caches as possible (i.e. 

expressed in the number of individual downloads for the file). Again, the 

measurements obtained through simulations confirm the analytical results of the 

number of level one caches storing (on average) a particular file. 

Due to an ongoing increase of bandwidth capacities, the Internet has become an 

interesting medium to transport streaming media. In contrast to traditional files, 

streaming media are useful from the moment the first data segment arrives. Since 

classic client-server models are limited in scalability, P2P overlay technologies seem 

the right candidate to transfer video streams to end-users. Due to the heterogeneous 

circumstances in both bandwidth capacities and rendering devices, next generation 

P2P (live) video streaming networks are incorporating multi-layered video. To 

optimally transfer video streams to end-users we propose an orchestrating engine 

that is topology-aware and manages the transport of each video layer in the network. 

To study the advantages of directing video streams in a P2P network, Chapter 4 

presents a mathematical formulation that models both the underlay and overlay 

routing of the distinct video layers. Since video service providers are mainly 

interested in the minimum quality they can offer to their end-users, for a given 

topology the objective for our orchestrating unit is to maximize the minimum 

number of video layers received at each destination. On the other hand, current P2P 

video streaming networks objectives is to maximize greedily the local peer’s video 

quality. Both objective strategies are studied using our mathematical model and the 

main results in Chapter 4 show a significant reduction in the fraction of destinations 

only receiving the base layer and an increase in the fraction of nodes downloading 

more layers, when comparing our optimization strategy with the traditional 

objective. 

Since exact solvers are only feasible to calculate the underlay-overlay-routing 

problem on relatively small network topologies, Chapter 5 continues our research by 

presenting a heuristic optimization method that is able to compute the routing 

process for multi-layer video on larger network topologies. Moreover, we extend the 

heuristic strategy to calculate ideal positions to upgrade existing nodes with peering 

application functionality. In this way ISPs are able to investigate the benefits extra 
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peers deliver to the network at the expense of installation costs. Intuitively, our 

results show an increase in the average number of received video layers when the 

number of peering nodes in the network increases. As a side effect, by increasing the 

number of peering nodes the bandwidth capacities are more efficiently used, since 

the average number of links needed to transfer one layer to one destination decreases 

gradually (even when all nodes already receive the particular layer). 

6.2 Future application and research areas 

Current upcoming technologies change the main way software is provided to end-

users. Instead of building complete solutions, a more modular approach is taken 

where each application fulfills a single service. The underlying middleware is 

responsible for complete interworking between the set of different software modules 

and, thereby, forms a whole new range of applications. Current examples are often 

found for mobile devices, where for instance one module provides transparent 

synchronized storage space (such as Dropbox), another module allows performing 

image manipulations (such as Instagram) and the user’s social network module (such 

as Facebook) is used to share the results with the rest of the world. Although 

virtualization and modularization is a concept existing for a long time, the explosive 

growth of end-users, increasing (computing, storage and bandwidth) capacities and 

growing numbers of heterogeneous devices, make these concepts more important by 

the day. 

In our perspective a PCSS is not a solution offered by one instance or 

technology, but is operated and offered by a whole set of hardware and software 

providers. Therefore, the research study performed in this dissertation concentrates 

on increasing the performance and efficiency of back-end systems and technologies 

that are necessary to offer such a service. 

Although our use case focuses on locating and delivering personal content items 

to end-users, there are many other usage scenarios where our designed techniques 

are applicable. Advantages can be provided in e.g. the medical sector, where 

information of patients is shared transparently between different instances. When for 

instance a surgeon has immediate access to a full medical dossier of a patient’s 

history at good quality, it is assumable that this can lead to faster and more accurate 

diagnosis. 

Although the usage scenarios and designed optimization techniques are 

promising, future research is still necessary. We assume that current limiting factors 

will hold for the (near) future: 

 Storage and computation capacities for indexing of all digital items cannot 

be performed cost-efficiently from one single location. 

 Bandwidth capacities (even without asymmetrical properties) are not able 

to transfer all data (streams) in full quality without the end-user 

experiencing (startup) delays. 

Therefore, research is needed that combines our proposed cooperative 

framework with advanced multi-keyword lookup and range query mechanisms, so 

they can be fine-tuned together. Although different solutions exists that make 

physical neighbors also logical neighbors in a DHT, no study is performed that 



98 Conclusions and research perspectives 

 

shows the consequences of these strategies on the cooperative caching performance. 

Additionally, interesting future work is to see what the effects are on using neighbor 

groups instead of only using the predecessor and successor of a node as the 

neighbors. 

Since caching architectures benefit especially from location dependent request 

patterns, detailed studies are needed that provide accurate models for different kinds 

of media. For our multi-level caching framework, realistic file size distributions and 

time dependent request patterns (especially flash-crowds) also have a major impact 

on the performance of the proposed architecture. Cache replacement strategies that 

react on a combination of location, time and size dependent patterns are a 

challenging task to design. 

The results of routing multiple video layers and positioning peering nodes are 

based on steady-state situations, where one source (injector or peering node) delivers 

a complete video layer to a destination. Therefore, interesting future work is to 

expand the proposed model where multiple sources deliver segments of video layers 

to destinations. Moreover, destination/peering nodes that (suddenly) join or leave the 

overlay network can have major impacts on the performance of the network. 

Altering our proposed solution to optimally deal with these situations is necessary to 

optimize the robustness of the framework. Since multiple overlay services 

(centrally) route their traffic in the Internet, optimized protocols to enable 

cooperation between orchestrating engines is essential for ISPs to maximize the 

throughput to their end-users. 

As a common denominator, all our presented mechanisms use cooperation to 

provide a better service than one single instance is able to. Deploying these 

mechanisms is a great challenge and therefore we are interested to see what the 

future brings by integrating the advanced algorithms and protocols that are designed 

today by all researchers. 
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This appendix complements Chapter 2 by extending the RTDc caching 

algorithm with a sliding window (Section A.4.4), which allows the framework 

to react on (sudden) changes in content popularity. The simulation results in 

Section A.5.3 show that a larger sliding window size increases the efficiency 

of the algorithm when the popularity distribution of the requests is stable. 

However, when content popularity changes frequently (or new content is 

introduced often), a smaller size of the sliding window can provide a more 

robust solution, since the changes are noticed more quickly. Additionally, 

Section A.5.4 shows that introducing by using the caching framework the 

request load is spread more efficiently over the nodes in the DHT, decreasing 

the hotspot problem. 

A.1 Introduction 

An important trend today is to create and share personal content, such as text 

documents, digital photos, music files and personal movies, with others. End-users 

can share their personal content using websites such as YouTube
11

 and Flickr
12

, for 

personal movies and digital photos respectively. Since the number of personal files 
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grows enormously, managing a personal archive has become a complex and time 

consuming task. Nevertheless, end-users expect they can locate, control, access and 

share their personal content from any device, anywhere and at any time. However, 

current systems that provide storage for personal content, such as YouTube and 

Flickr, set limitations in order to cope with the workload. In many cases the file size 

is limited, restrictions are set on file formats or no possibility is provided to access 

personal content from different types of devices, such as desktop computers, laptops, 

PDAs (Personal Digital Agent) and mobile phones. This implies that these systems 

are not able to offer a real quality-aware and scalable solution for transparent 

storage of personal content. 

A networked solution that offers storage space to end-users in a transparent 

manner, from different types of devices and is able to cope with the expected 

workload is a Personal Content Storage Service (PCSS) [1]. In order to come to a 

successful deployment of a PCSS, research is needed for each different aspect, such 

as user centric security, content presence, content replica management and content 

indexing. An essential feature of a PCSS is the ability to search worldwide through 

the dataset of personal files, therefore this chapter presents the research on content 

indexing. 

A data structure that allows searching through extreme large datasets is a 

Distributed Hash Table (DHT). A DHT is a (structured) peer-to-peer network that 

offers scalable lookup, similar to a hash table. A <key, value>-pair is stored into the 

DHT and every node participating in the DHT is able to efficiently locate values that 

correspond to a certain key. In the case of a PCSS, the key is for instance a file name 

or represents tags/keywords that describe the personal file. A value in a PCSS is a 

link to the location the file is stored, for instance YouTube or Flickr. Different 

implementations of a DHT already exists, such as Chord [2] and Pastry [3]. 

A disadvantage of a DHT is that it only offers content lookup when the exact 

keyword is known. However, users want to be able to search through content using 

multiple keywords and range queries. In order to provide end-users the ability to 

search through the dataset of personal content, DHT architectures and algorithms 

have to be improved first. In this chapter we focus on improving the performance of 

lookup requests in DHTs. An important aspect is that some keywords are more 

popular than others. Nodes responsible for popular keywords need to handle more 

requests than others, which results in so-called hotspots in the DHT. To reduce the 

hotspot problem and optimize the lookup performance we introduce a caching layer 

on top of a DHT. 

This chapter continues in Section A.2 with an overview of related work, Section 

A.3 provides an overview of the caching architecture and Section A.4 introduces the 

caching algorithm, the validation and evaluation of the caching algorithm is 

provided in Section A.5, and finally, we conclude this chapter in Section A.6. 

A.2 Related work 

In unstructured Peer-to-Peer (P2P) networks query search is done using a query 

flooding model. The TTL (Time-To-Live) limit is used to prevent overloading the 

network. In order to improve the efficiency of the query flooding model, Wang et al 

describe a distributed caching mechanism for search results in [4]. However, using 

the TTL limit implies that personal content stored in such a network has no 
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guarantees to be found, which makes this type of search mechanism less suitable for 

a PCSS. 

The Beehive [5] framework enables DHTs to provide an average lookup 

performance of O(1) through proactive replication. According to the evaluation 

made in [5], Beehive outperforms the passive caching technique used by Pastry [6] 

in average latency, storage requirement, network load and bandwidth consumption. 

With passive caching, objects are cached along all nodes on a query path [5], while 

Beehive’s replication strategy is to find the minimal replication level for each object 

such that the average lookup performance for the system is a constant C number of 

hops [5].  Beehive assumes that there is a global power law (or Zipf-like) popularity 

distribution and requests are uniformly distributed over the network. However, in the 

scenario of the PCSS it is conceivable that locality exists in request patterns, which 

has a major influence on the performance of a caching algorithm and requires a less 

expensive solution than Beehive. 

In [7] the concept of view trees is introduced, that uses result-caching in order to 

avoid unnecessary duplication of work and data movement. Results of (conjunctive) 

attribute queries are cached in the view tree and are later on used to resolve queries 

that contain (parts of) the cached query results. Although the view tree tries to avoid 

duplication of work and data movement, each search query is issued on the root 

(node) of the view tree. This aspect prevents successful deployment of a view tree in 

a PCSS system. 

Previous studies on caching techniques [8] or distributed replica placement 

strategies for Content Distribution Networks (CDN) [9,10] show that by taking 

distance metrics and content popularity into account, a performance increase is 

obtained compared to more straightforward heuristics such as Least Recently Used 

(LRU) or Least Frequently Used (LFU). By using cooperative caching [11] a 

performance increase, compared to independent caching, can be achieved through 

load balancing and an improved system scalability. In this case it is important to 

continuously keep track of cache states. Our caching strategy uses the distance 

metrics and content popularity, as well as cooperative caching to increase the PCSS 

lookup performance. 

A.3 Caching architecture for DHT performance 

optimization 

To increase the performance of the lookup process for the PCSS, we introduce a 

caching layer between the application and DHT layer. Figure A.1 shows the caching 

architecture for the PCSS and illustrates the generic idea of a (Chord) DHT. In the 

example of Figure A.1, eight nodes span the DHT network for storing references to 

locations of personal content. By using a hash function both content references and 

nodes can be mapped to a numeric identifier space. In Figure A.1 we assume that 

nodes depicted with a higher number have a higher numeric identifier. Each node is 

responsible for storing values belonging to keys, which numeric identifier is between 

the numeric identifier of the preceding DHT-node (excluding) and the numeric 

identifier of the current node (including). 

In order to efficiently route message in a DHT, every node keeps a finger table. 

This finger table maps numeric identifiers to nodes, where the distance between the 

numeric identifier of the current node and the numeric identifiers in the finger table 
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Figure A.1: To increase the lookup performance and reduce hotspots, the 

Personal Content Storage Service uses a caching layer between the application 

layer and the Distributed Hash Table. 
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increases exponentially. In this way, messages are sent to a node minimal half the 

distance of the key space closer to the destination node. When using the same 

numeric identifier space as the node numbers in Figure A.1, the finger table of, e.g., 

node 0 contains mappings to node 1, 2 and node 4. In this way the average (and 

worst case) number of hops for a lookup has a complexity of O(log N), where N is 

the number of nodes in the DHT network.  

When a user requests a personal content object in the PCSS, the DHT is used to 

lookup the link to the location the object is stored. At the bottom of Figure A.1 an 

example is depicted of a traditional lookup request, initiated by a user connected to 

node 0. Node 0 forwards the request to the node in its finger table with the numeric 

identifier closest to the hash value (i.e. node 4), this process is repeated until the 

target node is reached (i.e. node 6). Finally, the target node replies directly to the 

requesting node (i.e. node 0) the result. Not depicted in Figure A.1, storing 

references to object locations into a DHT is performed in a similar way, except no 

reply message is returned. 

Since the value-part of <key, value>-pairs are typically locations where (the 

latest version of) personal content items are stored, no synchronizations need to take 

place in the caching architecture introduced in this chapter. 

To improve the lookup performance, each DHT node contains a relatively small 

amount of storage space (the cache) to temporarily duplicate <key, value>-pairs. 

This implies that <key, value>-pairs are stored on average closer to end-users and 

therefore the average time (measured in number of hops) needed for a lookup 

decreases. Another benefit of the caching architecture is that multiple nodes are able 
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to handle lookup request of popular content, which alleviates the hotspot problem 

enormously. 

A.4 Cooperative caching algorithm 

In order to efficiently utilize the available cache space on each node, a caching 

algorithm decides which cache entry is removed in order to store a more valuable 

lookup result. The caching algorithm designed for a PCSS is introduced in this 

section. The Request Times Distance (RTD) caching algorithm uses an update 

protocol to enable cooperation between caches and a sliding window algorithm to be 

able to react efficiently on sudden changes in the popularity distribution of the 

personal content. 

The popularity of personal content is best described by a power law (Zipf-like) 

distribution. This distribution states that some personal content is highly popular and 

the rest has more or less the same low popularity. In (1) the Zipf-like probability 

mass function [12] is provided, where C denotes the number of personal content 

items and  is the exponent characterizing the distribution. 

          ( )  
   

∑     
   

 (1) 

PZipf-like(x) determines the probability that a personal content object having rank x 

is requested, where x  {1, …, C}. This implies that a personal content object 

having a lower rank (i.e. a greater value for x) is less popular,  > 0. In [13] Backx 

et al show, with a number of practical experiments using popular P2P file sharing 

applications, that  is usually between 0.6 and 0.8. 

We assume that locality exists in the request patterns of nodes requesting 

personal content. This idea is supported by the research performed by Duarte et al in 

[14], where geographical characterizations of requests patterns are studied for 

YouTube content. However, until now no concrete and generalized probability mass 

function is extracted that describes the locality based request distribution. Therefore, 

we model the distribution of requests using the Normal probability mass function. In 

(2) the Normal probability mass function is provided, where the mean is  and  the 

standard deviation. 

       ( )  ∫
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PNormal(y) is the probability that a personal content item is requested from node y. 

Assuming that the node that uploads the personal object has the highest probability 

to request it, the (y-)
th

 neighbor of the uploading node  will request the personal 

content object. The value  is used to increase or decrease the spreading of requests 

over the network. A higher value of  makes the distribution more uniform, since 

more neighboring nodes will request the personal content item. 
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Figure A.2: Relation between the network size N and the average number of 

hops per lookup; for the situation no caching is used and when LFU is used for 

the uniform and Normal request distribution. 

Basic DHTs use hash functions to map nodes onto the numeric identifier space, 

which means that nodes are more likely to have different neighbors in the DHT than 

in the actual network topology. Different research studies are already performed that 

address the issue of including neighboring nodes as neighbors in DHTs [15,16]. For 

instance, by assigning a locality-aware identifier to each node, the network topology 

is embedded into the DHT [15]. In our use case, we assume that the DHT is locality-

aware. Neighbors in the PCSS are also neighboring nodes in the actual network. 

A.4.1 Standard caching algorithms 

Standard caching algorithms exist, such as Least Recently Used (LRU), Least 

Frequently Used (LFU) and Most Distant Lookup (MDL). LRU stores the r recent, 

distinct lookup results in a cache of size r, LFU stores the results of the most 

frequently requested lookups, and MDL caches results that require most hops to 

perform the lookup.  

In Figure A.2 we illustrate the importance of the power law distribution for the 

popularity of personal content and the Normal distribution to model locality of 

lookup requests, for the performance of a caching algorithm. The caching algorithm 

used in Figure A.2 is LFU, with cache size S is 10, each of the N nodes uploads 50 

distinct personal content objects and is in non-equilibrium steady state. For the 

Normal request distribution  is equal to 2.0 and for the power law (Zipf-like) 

content popularity distribution  is set to 0.6 and C is equal to 50  N. Figure A.2 

depicts that for a relatively smaller network size the average number of hops needed 

for a lookup is comparable for both the uniform and Normal request distribution, 

when using a standard caching algorithm (i.e. LFU). Due to those relatively small 

network sizes, both the request distributions let all nodes perform requests to each 
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Figure A.3: Two scenarios for a lookup using cooperative caching. Scenario (a) 

describes the case where local copies of neighbor cache entries do not contain 

the search key. In scenario (b), one of the local copies of the neighbor’s cache 

(should) contain(s) the search key. 
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personal content item. However, for a relatively larger network the average number 

of hops for a lookup becomes significantly smaller when the Normal request 

distribution (i.e. locality exists in the distribution of requests) and the Zipf popularity 

distribution are used. 

A.4.2 Request Times Distance caching algorithm 

Although standard caching algorithms increase the efficiency of the system, for a 

PCSS a more optimal increase in efficiency can be obtained by a dedicated caching 

algorithm. Since we want to tackle the hotspot problem and reduce the average 

number of hops needed for a lookup, the caching algorithm we propose reacts on 

both popularity and distance of lookups. Intuitively, the popularity pn,i is measured 

by the total number of requests to a file i, initiated by node n. The distance dn,i of a 

personal file i is measured by the number of hops needed to obtain the lookup result 

from the requesting node n and the responsible node storing the file. In (3) the 

expression of the Request Times Distance (RTD) caching algorithm is provided. 

               (3) 

The references to personal content objects with the highest importance values for 

In,i in (3), will be stored in the local cache of node n. 

By using cooperative caching, introduced in Section A.4.3, we increase the 

performance of the caching algorithm. In order to make the algorithm more robust 

on sudden changes in personal content popularity, we extend it with a sliding 

window. The sliding window algorithm is explained in Section A.4.4. 

A.4.3 Update protocol for cooperative caching 

In order to be able to update finger tables when nodes suddenly join or leave the 

(Chord) DHT, the predecessor and successor nodes have to be known by every node. 

We can increase the performance of the caching algorithm by keeping a local copy 
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of both neighbor’s cached keys. This cooperative caching strategy utilizes the 

neighbor’s caches to virtually increase the size of the local cache and allows to avoid 

storing the same copies of <key, value>-pairs that can be retrieved in only one hop. 

Figure A.3 visualizes the update protocol of two possible scenarios for 

performing a lookup using cooperative caching. In both scenarios the destination 

node for the lookup is node 6 (i.e. the node responsible for storing the values 

belonging to the search key), the request is initiated from node 0 and the node 

numbers are used as the numeric identifier space. Figure A.3a considers the case that 

the local copies of the cache entries of the neighbor nodes do not contain the search 

key of file i. The scenario in Figure A.3b describes the case that the local copy of the 

cache entry of the neighbor node, in this case node 1, contains the search key. 

When the local copy of the neighbor’s cache does not contain the search key 

(Figure A.3a), the lookup is performed as usual. A request message (a) is routed via 

node 4 to node 6. Node 6 will respond the requested value using a reply message (b). 

In the case that node 0 decides to cache the lookup value, it updates the local cache 

table of both its neighbor nodes with the cache update message (c). These nodes then 

re-compute their values of the importance I1,i and I7,i of file i, as the distances d1,i and 

d7,i are now equal to one hop. No extra lookup delay is introduced by this update 

mechanism. 

In the case that one (or both) of the local copies of the neighbor’s caches contain 

the search key, the lookup request is routed to that neighbor node. In Figure A.3b the 

local copy in node 0 of the cache entries of node 1 has the search key, so the request 

message (d) is forwarded to node 1. When node 1 still has the value of the search 

key in its cache, it updates the popularity p1,i and responds the value using the reply 

message (e). In the situation that node 1 no longer caches the value of the search 

key, i.e. it very recently released the value and still has to send the corresponding 

cache update to its neighbors, the lookup is forwarded by node 1 as usual using the 

request message (f) via node 5 to node 6. Node 6 responds with the value of the 

search key, using the reply message (g). Similar to the scenario in Figure A.3a, node 

0 decides whether or not to store the result in its cache by computing the importance 

I0,i of file i (with distance d0,i = 1 if the entry is stored in its neighbor’s cache). Only 

in the case when a neighbor is contacted erroneously because it very recently 

released the requested value, one extra hop is added to the lookup delay. In all other 

cases, no extra delay is introduced. 

A.4.4 Sliding window 

Changes in content popularity have a big influence on the performance of caching 

algorithms. By adding a sliding window, only the last T requests that arrived in a 

node are used to determine the popularity of the requested content. A larger value 

for T, the sliding window size, implies that more information is available to 

determine popularity relations, which increases the efficiency of the algorithm when 

the popularity distribution of the requests is stable. When content popularity changes 

frequently or new content is introduced often, using a relatively smaller value for T 

makes the caching algorithm more robust since changes are noticed more quickly. 
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Figure A.4: Average number of hops in relation to the network size N, 

comparing RTD to the caching strategies LFU, LRU and MDL. 

A.5 Validation and evaluation 

For the validation and evaluation we use the discrete-event simulator PlanetSim 

[17], which offers a framework to simulate large scale overlay services and 

networks, and is used in research projects all over the world in order to analyze 

overlay services, such as DHTs. The PlanetSim framework consists of three main 

extension layers, namely the network, overlay and application layer. In order to 

analyze the caching algorithms, we have extended PlanetSim at the application layer 

with a lookup service that uses a caching strategy. An advantage of PlanetSim is that 

it already has an implementation of the DHT lookup protocol Chord [2]. 

Each simulation run is initialized by inserting <key, value>-pairs into the DHT 

network, which implies that every object is initially stored on only one node. Then 

search queries enter the simulation according to the popularity distribution (1) and 

are distributed over the nodes using the Normal distribution (3). For all figures we 

take averages based on ten independent simulation runs and each simulation run 

stops when the network reaches a so-called non-equilibrium steady state. 

We make a comparison between the basic versions of the caching algorithms (i.e. 

without cooperative caching and sliding windows) in Section A.5.1. In Section A.5.2 

an evaluation of the caching algorithms is made when using cooperative caching. 

The results of the algorithms when using a sliding window are provided in Section 

A.5.3, and finally, we present the alleviation of the hotspot problem in Section 

A.5.4. 

A.5.1 Comparison of RTD to standard caching algorithms 

In Figure A.4 and Figure A.5, results are shown for different caching algorithms for 

the average number of hops for a lookup in relation with network and cache size. 

For the simulations of both figures we use the same parameters as for Figure A.2 



108 Caching strategy for scalable lookup of personal content 

 

 
Figure A.5: Average number of hops per lookup (a) and cache hit ratio (b) in 

relation to the cache size for the basic algorithms. 

(i.e. cache size S is 10, network size N is 200,  is 2.0,  is 0.6 and C is 50  N). The 

results compare the RTD algorithm to the standard caching algorithms. 

For each of the caching strategies shown in Figure A.4, the O(log N) complexity 

with the network size N for a lookup still holds. The best optimization is provided by 

the RTD caching algorithm, with LFU showing comparable results. RTD only 

requires 78% of the average number of hops per lookup in the situation no caching is 

used (depicted with the solid line, not shown in the legend), when the personal 

content references are replicated for 20% in the network. 

In Figure A.5 the average number of hops for a lookup (a) and the cache hit ratio 

(b) is plotted in relation to the cache size, for each of the caching algorithms. The 

best performance measured is provided by the RTD caching algorithm. When the 

cache size increases, the average number of hops needed for a lookup is lower and 

the cache hit ratio is higher. 

For a larger cache size, the improvement of RTD compared to a standard caching 

algorithm becomes more noticeable in Figure A.5. The improvement of RTD 

compared to LFU for a cache size S of 70 entries, for the average number of hops 

per lookup and for the cache hit ratio, is 2%. Although this is not a huge 

improvement, it shows that the RTD algorithm is able to use extra cache space more 

efficiently than the standard caching algorithms, even without cooperation.  

A.5.2 Comparison of RTD to standard caching algorithms, with 

cooperative caching 

In order to increase the performance of the caching algorithms, we enable 

cooperation between nodes. By exchanging the cache entries with both neighbor 

nodes (i.e. successor and predecessor node), utilization of the limited cache space 

can be optimized. In this way the caching algorithm can avoid storing the same 

copies, which can be retrieved in only one hop. Figure A.6 illustrates the average 

number of hops needed for a lookup (a) and the cache hit ratio (b) in relation to the 

cache size for each algorithm using cooperative caching.  

The cooperative caching algorithms in Figure A.6 show the same behavior and 

relationships as the basic caching algorithms (see Figure A.5). However, the 

performance surplus of the RTDc algorithm is clearly noticeable, especially when 

the cache size increases. For the average number of hops per lookup and the cache 
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Figure A.6: Average number of hops per lookup (a) and cache hit ratio (b) in 

relation to the cache size for the cooperative algorithms. 

 
Figure A.7: Number of cache duplicates between neighbors is expressed against 

the fraction of nodes in the DHT network, for both the non-cooperative as the 

cooperative version of the LFU and RTD caching algorithm. 

 

hit ratio the performance increase is up to 16% and 13% respectively, compared 

with the results of LFUc. 

To illustrate that the cooperative RTD caching algorithm uses the extra 

(neighbor’s) cache space more efficiently, Figure A.7 depicts the number of cache 

duplicates D between neighboring nodes against the fraction of nodes having D 

duplicates. The cache size S used in this simulation is 10. 

In Figure A.7 the scenarios of non-cooperative caching and cooperative caching 

for the LFU and RTD algorithm are shown. The LFU, RTD and the LFUc caching 

algorithm show roughly the same distribution for the number of cache duplicates. 

This means that enabling cooperative caching does not improve the way cache space 

is used for the LFU caching algorithm. However, the RTD and RTDc caching 

algorithm show a significant change of the distribution for the number of cache 

duplicates. The cooperative RTD caching algorithm uses the available cache space 

more efficiently, since it avoids storing the same copies that can be retrieved in one 
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Figure A.8: Cache hit ratio over the last 1,000 lookup requests is plotted in 

relation with the total number of lookup requests. The sliding window is set to 

50, 200 and 1,000 requests and after 100,000 requests (i.e. on average 500 per 

node) the popularity of the personal content objects is reshuffled. 

hop.  

A.5.3 Sliding window 

By using a sliding window in the caching algorithm, the system is able to efficiently 

react on changes in content popularity. This effect is made visible in Figure A.8, for 

different sliding window sizes. Again, we use the same simulation setup as in Figure 

A.2 (i.e. S = 10, N = 200,  = 2.0,  = 0.6 and C = 50  N). After 100,000 lookup 

requests (i.e. on average 500 per node), each personal content item receives a new 

random popularity rank, while keeping the same value of  for the overall popularity 

distribution. In Figure A.8 the results of one simulation run, with the cooperative 

RTD caching algorithm, are presented for a sliding window size T of 50, 200 and 

1,000 requests. The cache hit ratio over the last 1,000 requests is plotted against the 

total number of lookup requests. 

Figure A.8 clearly shows that a larger sliding window size provides a higher 

cache hit ratio, when the popularity distribution of the personal content remains 

unchanged. However, the time (measured in total lookup requests) it takes to recover 

from a sudden change of the popularity distribution is significantly lower for a 

relatively small sliding window size. 

A.5.4 Hotspots 

Besides a reduction in average lookup latency (measured in hops), the caching 

algorithm also decreases the hotspot problem. In Figure A.9 the fraction of incoming 

lookup requests at each node is plotted ranked by decreasing load for caches with 

size zero (i.e. no caching is used), ten and fifty entries, where the cooperative RTD 
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Figure A.9: Fraction of incoming lookup requests visualized for each node in the 

DHT. The size S of the cache per node is 0, 10, or 50 entries. 

caching strategy is used. We use the same simulation setup as in Figure A.2 (i.e. N = 

200,  = 2.0,  = 0.6 and C = 50  N) and since no change in popularity of personal 

content occurs, the sliding window size T is set to infinite. 

Since the references of popular personal content are stored on multiple nodes in 

the network, the request load is efficiently spread over multiple nodes, even with 

very low cache sizes. In the optimal situation each node would receive the same 

fraction of incoming lookup requests 1/N (i.e. 0.005), depicted by the horizontal line. 

In the case a cache size of 10 entries per node is used, the load imbalance decreases 

with 4.8 times on the node having the highest number of incoming lookup requests 

(i.e. node 0). The load on this node is 51% higher than in the optimal situation. 

A.6 Conclusion and future work 

In order to successfully deploy a Personal Content Storage Service (PCSS), it has to 

provide storage space to end-users transparently, with small access times, and 

available at any place and at any time. One of the main features of a PCSS is the 

ability to search through the dataset of personal files. To optimize searching times in 

a PCSS, we introduced a caching solution on a Distributed Hash Table (DHT). The 

scalability of a DHT is increased by using the Requests Times Distance (RTD) 

caching algorithm. 

We show that the RTD caching algorithm is more efficient than standard caching 

algorithms, such as Least Frequently Used (LFU), Least Recently Used and Most 

Distant Lookup (MDL), especially for relatively high cache sizes. To further 

increase the performance of the caching algorithm we use cooperative caching. 

When neighboring nodes on the DHT work together, the RTD algorithm is able to 

utilize neighbor’s caches efficiently and show a performance increase of up to 16% 

and 13% compared to LFU for respectively the cache hit ratio and average number 

of hops per lookup. In this way the RTD caching algorithm avoids storing the same 
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copies on nodes, if it can be retrieved in only one hop. In order to quickly react to 

sudden changes in content popularity, we extend the caching algorithm with a 

sliding window, where a size of a few hundred requests is sufficient. Besides a 

reduction in access times (measured in number of hops) to the references of personal 

content, the RTD caching algorithm also reduces the hotspot problem. The fraction 

of incoming lookup requests per node is balanced more evenly and even for a cache 

size of 10 entries per node, the number of incoming lookup requests is reduced 4.8 

times. 

Although the proposed solution optimizes the scalable lookup in a DHT, it can 

only be used for lookup when the exact name of the key is known. This deterministic 

search property possesses limitations on the suitability of using a DHT for a PCSS. 

However, the performance of any existing DHT-based framework offering multiple 

keyword and range queries can already be increased by the proposed framework. 

Nevertheless, we plan for further research to focus on optimizing DHTs by enabling 

multiple keywords and range query searches, since currently no solution exists that 

fulfills all needs for a PCSS. 

An issue not addressed in this chapter is that by reducing the time it takes to 

obtain content locations does not imply that the actual content itself can be accessed 

quickly. Therefore, we plan to investigate caching/replication algorithms for 

personal content itself, in order to allow fast access of personal content by using a 

PCSS. 

In this chapter we use synthetic models to generate the workload, however real 

workload traces are more preferable to evaluate the caching algorithm. Therefore we 

plan to set up a more realistic content popularity and workload distribution in 

collaboration with Netlog
13

, a popular European community website located in 

Belgium. 

                                                           
13

 http://www.netlog.com/ 

http://www.netlog.com/
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