5 research outputs found

    Age-Acknowledging Reliable Multiplier Design with Adaptive Hold Logic

    Full text link
    Digital multipliers are among the most critical arithmetic functional units. The overall performance of these systems depends on the throughput of the multiplier. Meanwhile, the negative bias temperature instability effect occurs when a pMOS transistor is under negative bias (Vgs = −Vdd), increasing the threshold voltage of the pMOS transistor, and reducing multiplier speed. A similar phenomenon, positive bias temperature instability, occurs when an nMOS transistor is under positive bias. Both effects degrade transistor speed, and in the long term, the system may fail due to timing violations. Therefore, it is important to design reliable high performance multipliers. In this paper, we propose an aging-aware multiplier design with novel adaptive hold logic (AHL) circuit. The multiplier is able to provide higher throughput through the variable latency and can adjust the AHL circuit to mitigate performance degradation that is due to the aging effect. Moreover, the proposed architecture can be applied to a column- or row-bypassing multiplier. The experimental results show that our proposed architecture with 16 ×16 and 32 ×32 column-bypassing multipliers can attain up to 62.88% and 76.28% performance improvement, respectively, compared with 16×16 and 32×32 fixed-latency column-bypassing multipliers. Furthermore, our proposed architecture with 16 × 16 and 32 × 32 row-bypassing multipliers can achieve up to 80.17% and 69.40% performance improvement as compared with 16×16 and 32 × 32 fixed-latency row-bypassing multipliers

    DESIGN OF AGING –AWARE EFFICIENT BOOTH MULTIPLIER USING ADAPTIVE HOLD LOGIC

    Get PDF
    High speed and low consumption is one of the most important design objectives in integrated circuits. As multipliers are the most widely used components in such circuits, the multiplier must be designed efficiently. In this project the simple and efficient approach to reduce the maximum power consumption and delay, area in proposed. In this Existing system, negative bias temperature instability effect occurs when a Pmos transistor is under negative bias which increase the threshold voltage of the Pmos transistor and reduce the multiplier speed. Positive bias temperature in stability effect occers when an Nmos transistor is under positive bias .both effects degrade transistor and in long term the system may fail due to the timing violations. New technique implements serial multiplier architecture with booth algorithm .In proposed system, design of aging –aware efficient booth multiplier using adaptive hold logic circuit is introduced. The AHL circuit achieves reliable operation under the influence of NBTI and PBTI effects with this  proposed architecture 4x4 booth multiplier will developed and compare with contemporary architecture

    Joint Logic Restructuring and Pin Reordering against NBTI-Induced Performance Degradation*

    No full text
    Negative Bias Temperature Instability (NBTI), a PMOS aging phenomenon causing significant loss on circuit performance and lifetime, has become a critical challenge for temporal reliability concerns in nanoscale designs. Aggressive technology scaling trends, such as thinner gate oxide without proportional downscaling of supply voltage, necessitate a design optimization flow considering NBTI effects at the early stages. In this paper, we present a novel framework using joint logic restructuring and pin reordering to mitigate NBTI-induced performance degradation. Based on detecting functional symmetries and transistor stacking effects, the proposed methodology involves only wire perturbation and introduces no gate area overhead at all. Experimental results reveal that, by using this approach, on average 56 % of performance loss due to NBTI can be recovered. Moreover, our methodology reduces the number of critical transistors remaining under severe NBTI and thus, transistor resizing can be applied to further mitigate NBTI effects with low area overhead. 1

    Cross-Layer Resiliency Modeling and Optimization: A Device to Circuit Approach

    Get PDF
    The never ending demand for higher performance and lower power consumption pushes the VLSI industry to further scale the technology down. However, further downscaling of technology at nano-scale leads to major challenges. Reduced reliability is one of them, arising from multiple sources e.g. runtime variations, process variation, and transient errors. The objective of this thesis is to tackle unreliability with a cross layer approach from device up to circuit level
    corecore