463 research outputs found

    Joint Estimation of the Time Delay and the Clock Drift and Offset Using UWB signals

    Full text link
    We consider two transceivers, the first with perfect clock and the second with imperfect clock. We investigate the joint estimation of the delay between the transceivers and the offset and the drift of the imperfect clock. We propose a protocol for the synchronization of the clocks. We derive some empirical estimators for the delay, the offset and the drift, and compute the Cramer-Rao lower bounds and the joint maximum likelihood estimator of the delay and the drift. We study the impact of the protocol parameters and the time-of-arrival estimation variance on the achieved performances. We validate some theoretical results by simulation.Comment: Accepted and published in the IEEE ICC 2014 conferenc

    Development and Experimental Analysis of Wireless High Accuracy Ultra-Wideband Localization Systems for Indoor Medical Applications

    Get PDF
    This dissertation addresses several interesting and relevant problems in the field of wireless technologies applied to medical applications and specifically problems related to ultra-wideband high accuracy localization for use in the operating room. This research is cross disciplinary in nature and fundamentally builds upon microwave engineering, software engineering, systems engineering, and biomedical engineering. A good portion of this work has been published in peer reviewed microwave engineering and biomedical engineering conferences and journals. Wireless technologies in medicine are discussed with focus on ultra-wideband positioning in orthopedic surgical navigation. Characterization of the operating room as a medium for ultra-wideband signal transmission helps define system design requirements. A discussion of the first generation positioning system provides a context for understanding the overall system architecture of the second generation ultra-wideband positioning system outlined in this dissertation. A system-level simulation framework provides a method for rapid prototyping of ultra-wideband positioning systems which takes into account all facets of the system (analog, digital, channel, experimental setup). This provides a robust framework for optimizing overall system design in realistic propagation environments. A practical approach is taken to outline the development of the second generation ultra-wideband positioning system which includes an integrated tag design and real-time dynamic tracking of multiple tags. The tag and receiver designs are outlined as well as receiver-side digital signal processing, system-level design support for multi-tag tracking, and potential error sources observed in dynamic experiments including phase center error, clock jitter and drift, and geometric position dilution of precision. An experimental analysis of the multi-tag positioning system provides insight into overall system performance including the main sources of error. A five base station experiment shows the potential of redundant base stations in improving overall dynamic accuracy. Finally, the system performance in low signal-to-noise ratio and non-line-of-sight environments is analyzed by focusing on receiver-side digitally-implemented ranging algorithms including leading-edge detection and peak detection. These technologies are aimed at use in next-generation medical systems with many applications including surgical navigation, wireless telemetry, medical asset tracking, and in vivo wireless sensors

    The Future of the Operating Room: Surgical Preplanning and Navigation using High Accuracy Ultra-Wideband Positioning and Advanced Bone Measurement

    Get PDF
    This dissertation embodies the diversity and creativity of my research, of which much has been peer-reviewed, published in archival quality journals, and presented nationally and internationally. Portions of the work described herein have been published in the fields of image processing, forensic anthropology, physical anthropology, biomedical engineering, clinical orthopedics, and microwave engineering. The problem studied is primarily that of developing the tools and technologies for a next-generation surgical navigation system. The discussion focuses on the underlying technologies of a novel microwave positioning subsystem and a bone analysis subsystem. The methodologies behind each of these technologies are presented in the context of the overall system with the salient results helping to elucidate the difficult facets of the problem. The microwave positioning system is currently the highest accuracy wireless ultra-wideband positioning system that can be found in the literature. The challenges in producing a system with these capabilities are many, and the research and development in solving these problems should further the art of high accuracy pulse-based positioning

    Method for joint flexion angle estimation using UWB ranging with clock model compensation

    Get PDF
    This paper presents a wearable system for measurement and monitoring human body joint angles based on UWB ranging. The DW1000 chip was used with standard deviation of distance measurement within 10 cm with range up to 70 m. We propose a method for enhancing range measurement accuracy based on an estimator which compensates clock imperfections and relative pairwise movement of nodes. Since the estimator is valid only for small slices of time, we propose continuous motion estimation algorithm based on segment-by-segment data processing and stitching results into a final solution. The pairwise distances are approximated with Taylor series of a given order L in short measurement windows while timestamps are compensated with clock parameters of a first-order clock model. The main contribution of the proposed method is the ability to implement joint angle estimation by using low-cost off-the-shelf UWB components, without high-precision clock sources or a need for wired or wireless time synchronization. In order to determine an optimum order L and time slice length, Sprague and Geers\u27 metric was used. The method was experimentally evaluated in static and dynamic conditions. The results show that the accuracy of the proposed system is comparable to similar solutions based on laboratory equipment
    corecore