
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: 0005-1144 (Print) 1848-3380 (Online) Journal homepage: https://www.tandfonline.com/loi/taut20

Method for joint flexion angle estimation using
UWB ranging with clock model compensation

Hrvoje Mihaldinec & Hrvoje Dzapo

To cite this article: Hrvoje Mihaldinec & Hrvoje Dzapo (2020) Method for joint flexion angle
estimation using UWB ranging with clock model compensation, Automatika, 61:1, 132-140, DOI:
10.1080/00051144.2019.1690290

To link to this article:  https://doi.org/10.1080/00051144.2019.1690290

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 18 Nov 2019.

Submit your article to this journal 

Article views: 286

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/loi/taut20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2019.1690290
https://doi.org/10.1080/00051144.2019.1690290
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1690290
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1690290
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1690290&domain=pdf&date_stamp=2019-11-18
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1690290&domain=pdf&date_stamp=2019-11-18


AUTOMATIKA
2020, VOL. 61, NO. 1, 132–140
https://doi.org/10.1080/00051144.2019.1690290

REGULAR PAPER

Method for joint flexion angle estimation using UWB ranging with clock model
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ABSTRACT
This paper presents a wearable system for measurement and monitoring human body joint
angles based on UWB ranging. The DW1000 chip was used with standard deviation of distance
measurement within 10 cm with range up to 70m. We propose a method for enhancing range
measurement accuracy based on an estimator which compensates clock imperfections and rel-
ative pairwise movement of nodes. Since the estimator is valid only for small slices of time, we
propose continuous motion estimation algorithm based on segment-by-segment data process-
ing and stitching results into a final solution. Thepairwisedistances are approximatedwith Taylor
series of a given order L in shortmeasurementwindowswhile timestamps are compensatedwith
clock parameters of a first-order clock model. The main contribution of the proposed method
is the ability to implement joint angle estimation by using low-cost off-the-shelf UWB compo-
nents, without high-precision clock sources or a need for wired or wireless time synchronization.
In order to determine an optimum order L and time slice length, Sprague and Geers’ metric was
used. The method was experimentally evaluated in static and dynamic conditions. The results
show that the accuracy of the proposed system is comparable to similar solutions based on
laboratory equipment.
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1. Introduction

Human motion tracking (HMT) has gained a lot of
attention in the last decade. Studying kinematics, or
more simply motion of human body, is of interest in
various areas of research. It is particularly important
in medicine, but also in other fields, such as sports,
entertainment industry, etc. Taking into account accu-
rate biomechanical models, data collected by human
motion capture systems can be used for diagnosis, reha-
bilitation and even in sports injury prevention. Sim-
ilarly, HMT systems can be combined with virtually
reality (VR) and visualization technologies giving it rise
in numerous applications such are film and gaming
industries.

Motion capture, of specific body parts or human
body as a whole, can be accomplished by various
approaches and technologies, yielding different lev-
els of accuracy and dynamic characteristics. Typical
sensor types used for human motion tracking are
inertial, optical, magnetic, mechanical, ultrasound and
radio frequency based. Regarding the application on
tracked human subject, there are two basic categories
of HMT systems: computer vision and wearable sensor
based [1].

Vision-based systems typically require reflective
markers to be placed on a subject. Solutions without
markers, which are less intrusive and easier to setup,

such as Leap Motion,1 do exist, but they are either
limited in the field of view or in their estimation accu-
racy. Their robustness is inferior in comparison with
conventional marker-based computer vision systems
[2]. Commercially available systems such as Optotrak2

and Vicon,3 provide high accuracy when operated in
controlled environments. Multiple cameras are used
to track predetermined points on a body but in a
limited volume. Main drawbacks of these pure-image-
based systems are their price, occlusion problem and
requirement for fixed static infrastructure where shoot-
ing cameras orientations and positions of light sources
are fixed.

On the other hand, wearable HMT systems do not
suffer from some of the previously mentioned draw-
backs but they have their own shortcomings. In gen-
eral, they are not suitable for large-scale deployment
and excessively dynamic applications. Considering that
the most of this type of systems are based on inertial
measurement units (IMU) they share common source
of error due to accumulated drift errors caused by
accelerometer and gyroscope imperfections. The prob-
lem can be solved with implementation of higher accu-
racymodules such as XSens4 or Invensense5 or by using
methods such asmulti-sensor data fusion or zero veloc-
ity update algorithm. Both approaches have their own
drawbacks. Precision hardware is very expensive which
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limits the number of nodes that can be used. In the latter
approach, although filtering processes, such as Kalman
filters, can slow down error influences, they cannot
eliminate them completely. In many cases magnetome-
ters are used as stabilizing factor to IMUmeasurements.

However, the use of magnetometers for compen-
sation of the inherent IMU drawbacks may lead to
unsatisfactory results due to the presence of magnetic
disturbances in the environment, since the weak Earth’s
magnetic field can easily be disturbed by the presence of
various ferromagnetic material in the immediate sur-
roundings. Although these effects can be removed by
re-calibration, the method is valid only for a short peri-
ods of time and it is confined to a specific locationwhere
the calibration was done. On the other hand, by using
the zero velocity update algorithm with the IMU sen-
sor mounted on a shoe, a drift error can be eliminated
[3]. Nevertheless, the accuracy of these measurements
still degrade over time, especially in situations of rapid
movements and unsteady ground contact [4]. The drift
problem limits the usage of such systems in a prolonged
usage time and larger space environments. There are
alternative systems based on pure mechanical solutions
that use potentiometers and pulleys attached to tracked
limb so that joint angles can be determined [5]. Those
kind of systems are accurate but suffer from alignment
issues which cause lower dynamic response. Therefore,
miniaturized systems such as IMUs are preferred.

Due to the recent advances in radio-frequency (RF)
technologies, especially in the field of ultrawideband
(UWB) technology, such approach is viable to be used
for HMT systems in chip form for measurements in
dynamic conditions [6]. UWB is used for means of
absolute localization of transciever nodes. Nowadays,
with UWB technology it is possible to determine dis-
tances in centimetre range and this method does not
suffer from some drawbacks inherent both to com-
puter vision and IMU-based methods. Due to absolute
accuracy localization, UWB systems are immune to the
most serious IMU sensors drawback such as accumu-
lated drift error. They also do not suffer from occlusion
problem since radio signals can penetrate human body
and most of occlusions. Another advantage of UWB
technology is high immunity on multipath reflection
errors, whatmakes it a better candidate than some other
competing RF localization technologies. Unfortunately,
this approach has some specific drawbacks on its own
such as slow rate of measurements (in range of 10Hz
[1,3,7]), positional errors due to reflections and NLOS
(non-line of sight) outliers which can degrade the local-
ization accuracy. Nevertheless, with help of UWB local-
ization data magnetometer-free design was developed
in [3]. The proposed algorithm used UWB data not
only for position tracking but also in yaw estimation
with a loosely coupled filter. Completely UWB-based
human motion tracking is achievable with estimation
techniques [8]. Without sensor fusion and UWB in [4]

system for 3D trajectory tracking of the foot for a long
duration during treadmill walks was developed. Simi-
larly, in [9] UWB was used for measuring joint angles
with sufficient accuracy.

In this paper we propose a system based on wearable
UWB modules built with DW1000 chip to deter-
mine joint angles. Since DW1000 chip provides dis-
tance measurements with standard deviation in range
of 10 cm different approach is necessary to enhance
the accuracy. We propose usage of an estimator that
takes clock imperfection and relative pairwise move-
ment into account. This approachwas chosen to analyse
viability of the solution in static and dynamic scenar-
ios. Additionally, since estimator solution is valid for
small slices of time we propose to estimate motion seg-
ment by segment in other to obtain the full picture of
the motion. To determine the best combination of the
input variable we propose usage of Sprague and Geers’
metric. Our solution was validated on JACO Robotic
Arm in various scenarios.

2. Problem formulation

As stated in [9] it is possible to use UWB as a distance
measuring technique for determination of human joint
angles. Angles can be determined by measuring dis-
tance between two modules placed around pivot point
as it shown in Figure 1. Similarly, angle of the knee
can also be measured. By determining values d1 and
d2 before hand, we can use cosine law to calculate joint
angle from the d:

cosα = d21 + d22 − d2

2d1d2
. (1)

Generally, when using UWB, Time Of Arrival (TOA)
method is mostly used for distance estimation. With
differences of timestamps on two different nodes, the
method cancels out clock offsets and unknown process-
ing time delays. This method is used to avoid the need

Figure 1. Two-Way ranging (TWR) ranging method used for
determining elbow joint angle.
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Figure 2. TWR ranging method in idealized and realistic scenario. (a) shows the method in case where clock imperfections are
disregarded while (b) symbolizes time varying distance and clock imperfections with curved lines.

for wired or wireless high accuracy time synchroniza-
tion between two independent nodes. During message
exchange four timestamps from T1 to T4 are acquired,
as it it shown in Figure 2. Distance estimation can then
be expressed with:

d̂ = c× τij = c× (T4 − T1)− (T3 − T2)

2
, (2)

where τij is propagation time from one to another
node and c is speed of the electromagnetic wave in the
medium. Equation (2) is also known as single-sided
TWR method. Additional variations of TWR exist in
form of symmetric double-sided TWR (SDS-TWR),
alternative double-sided TWR (AltDS-TWR), asym-
metric double-sided TWR (ADS-TWR), etc. In all of
these variations clock drifts are dominant error sources
that are analysed and modelled [10]. Nodes are pre-
sumed to be static in time with unvarying oscillator
parameters. This is valid only in ideal conditions, where
oscillators from these two independent nodes would be
stable and synchronized to the global reference time.
In reality, due to various causes, such are changes in
temperature, imperfections in design ormanufacturing
methods, this is not true as it is demonstrated sym-
bolically in Figure 2(b). Inherently these influences are
nonlinear in nature and are cause of systematic error in
ranging. Nevertheless, TWR methods are used under
the assumption that measurement are performed in a
necessarily small time window (minimal reply times)
where deviations of the respective clock sources would
be negligible. This approach is adequate either in sen-
sor fusion approaches where UWB measurements are
used to complement other drift prone sensors such as
IMUs [1,11,12] or in cases where laboratory equip-
ment is used for generating and receiving UWB sig-
nals [8,9]. For mobile nodes with their independent
clock sources, a different approach is needed. Twomain
sources of angle measurement errors are stated in [9],
misalignment of attached antennas to human joints and

ranging measurement error between nodes. Because of
this, error of estimated angle increases exponentially.
By placing the arm in fixed angle position, with help of
Equation (1) we can calculate error of estimated angle
by introducing measurement error into term d. For
instance, if arm was placed at 90◦ angle, with DW1000,
which has 10 cm standard measurement range devia-
tion, estimated angle error would be almost 60◦. There-
fore, it is not possible to use only TWR schemes.
To provide necessary accuracy for determining joint
angle, valid clock model for distance estimation is a
must.

Starting point is to model local time ti at node i as:

ti = ωt + φi ⇔ Ci(ti) � t = αiti + βi, (3)

where t is true time. Clock skew is denoted as ωi ∈ R+
and clock offset as φi ∈ R. Ci(ti) relates local time ti to
the true time t and represents affine clock model t �
Ci(ti). For two nodes with simple TWR, as it is shown
with Equation (2), there are five unknown parameters,
two clock skews and offsets of each separate node and
pairwise distance. It is impossible to estimate all five
parameters through any number of packet exchange
without some additional constraints [13]. In general,
this means that one of the node needs to be declared
as reference one with constraints αi = 1 and βi = 0.
Even in this situation there are different approaches for
estimation of each parameter. As previously stated one
solution is to entirely disregard clock changes, but as it
is shown this is not applicable in our case due to the
exponential influence of ranging error.

There are different approaches available in literature
to estimate unknown parameters [8,14,15]. From using
maximum likelihood (ML) estimatorwhich jointly esti-
mates the positions and their respective range mea-
surement offsets to the weighted least-squares (LS)
solution which estimate behaviour of clock model
described with Equation (3) and additional additional
second-order frequency drift term. Clock skew can
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Algorithm 1 Segmented estimation of unknown
motion
1: procedure Segmented Estimation
2: define max order of Taylor series L
3: generate Tij Tji timestamp vectors
4: for i← 1, len(Tij) do
5: (sij, sji)← slice (Tij,Tji) to i equal lengths
6: for j← 2, max(L) do
7: for (sliceij, sliceji) in (sij, sji) do
8: d̂ij = cV ijγ̂ ij

9: dij← [slice1 · · · slicen], n = i ∗ len(sij)
10: eij← (dij − d̂ij)
11: (seg length, L)← min(eij)

be even be taken into account in TWR by means of
linear interpolation of timestamps with a promise of
1 cm accuracy [16]. All of previously mentioned meth-
ods estimate clock skew or clock offset separately or
jointly but fail to incorporate movement of the nodes
themself.

In this paper we propose joint estimation of pairwise
range and clock parameters as it is proposed in [17].
Originally estimator was used for distributed wireless
network synchronization in static and dynamic condi-
tions with attention to pairwise delays. These pairwise
delays or rather distance are approximated with Tay-
lor series of given order in small measurement window
while timestamps are compensated with clock param-
eters of first-order clock model as it was shown in
Equation (3). By using proposed estimator we can sub-
stantially increase accuracy of measured distance in
environment of unknown clock parameters. Addition-
ally, we propose algorithmic extension of [17] estimator
so that it can be applied in dynamic environments with
continuous motion. For it be applicable in a real time
we also propose offline comparison metric to reference
measurements with the goal of estimator parameter
optimization.

3. Algorithm

In this paper we use estimator explained in [17]
which will be elaborated in this chapter in short.
Estimator is based on linear clock model described
with Equation (3) which determines translation of
clock parameters from local time ti to true time t
where [αi,βi] � [ω−1i ,−φω−1i ] are calibration param-
eters needed for clock correction.

Usually, the distance dij between two nodes i and j
is expressed as constant and it can be determined by
measuring the propagation delay τij. Relation can be
expressed as τij = c−1dij. In our case nodes are pre-
sumed to be in relative motion to each other. Since
we do not have any information concerning the nature
of this nonlinear motion we can approximate it with

Taylor series in a small measurement window �T =
Tij,K − Tij,1:

τij(ti) ≈ c−1(γ (0)
ij + γ

(1)
ij t + γ

(2)
ij t2 + · · ·

+ γ (L−1)t(L−1)), (4)

where coefficients γij = [γ (0)
ij , γ (1)

ij , γ (2)
ij , . . . , γ (L−1)

ij ]T

∈ R
L×1 are translated range parameters in terms of

time, which incorporate clock discrepancy of node i.
The order of the Taylor series L can be determined
experimentally or estimated on basis of the measure-
ment data.

To estimate clock parameters and Taylor series
parameters θ = [α,β , γ ]T , we have to employ TWR
measurements where all timestamps can be expressed
in true clock time as:

Tji,k = Tij,k + c−1Eij,kdij,k for i � j (5)

Tij,k corresponds to kth time when node i is commu-
nicated with node j, while similarly Tji,k denotes time
when node j sends message to node i in time k. The
direction of message is indicated with Eij,k where pos-
itive value +1 corresponds to direction from node i
to j and negative value of −1 direction from node j
to i. Since all timestamps are measured in each of the
nodes local time they need to be expressed with corre-
sponding time translations to the true time. Therefore
Equation (5) transforms into:

ηij,k = αiTij,k − αiTij,k + βi − βj+
Eij

(
γ

(0)
ij + γ

(1)
ij t+ γ

(2)
ij t2+ · · · + γ (L−1)t(L−1)

)
,

(6)

where corresponding influences of local clock oscil-
lators were taken into account. Additionally, we have
to account for joint measurement noise ηij,k since the
sum of the timestamps is zero only in ideal condition.
Finally, we can establish generalized joint clock and
(L− 1)th order range model for pair of nodes in matrix
form as:

[
Aij,1 Aij,2

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αi
αj
βi
βj

γ
(0)
ij

γ
(1)
ij

γ
(2)
ij
...

γ (L−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ηij, (7)

where

Aij,1 =
[
tij tji 1K −1K

]
, (8a)
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Aij,2 = EijVij (8b)

V ij =
[
t�0ij t�1ij · · · t�L−1ij

]
, (8c)

while

tij =
[
Tij,1 Tij,2 · · · Tij,K

]T ∈ R
K×1, (9a)

Eij = diag (eij) ∈ R
K×K (9b)

eij =
[
Eij,1 Eij,2 · · · Eij,K

]T ∈ R
K×1. (9c)

(·)� denotes element-wise matrix exponent. In other
words, tij and tji are timestamps from node i and j
respectively, while eji is a known vector that contains
information of transmission direction. Noise vector is
defined as:

ηij =
[
ηij,1 ηij,2 · · · ηij,K

]T ∈ R
K×1, (10)

Since matrix Aij,1 is rank deficient by 2, a unique solu-
tion of Equation (7) can be obtained by defining one of
the node as reference as previously described in 2. In
this case Equation (7) transforms into:

Aijθ ij = bij + ηij, (11)

where

Aij,1 =
[−tji −1K Aij,2

] ∈ R
K×(L+2), (12a)

θ ij =
[
αj βj γ T

ij

]T ∈ R
(L+2)×1, (12b)

bij = −tij. (12c)

To obtain solution of Equation (11) we can use LS
method by minimizing l2 norm:

θ̂ ij = arg min||Aijθ ij − bij||22 =
(
AT
ijAij

)−1
AT
ijbij,

(13)
where θ̂ ij = [α̂jβ̂ijγ̂

T
ij ]T is the estimate of θ . Parameters

[ω̂jφ̂ijr̂Tij ]T can be then obtained with relations given by
Equation (3). Distance for all points of k is then given
with solution:

d̂ij = cV ijγ̂ ij. (14)

Ideally, model described with Equation (11) could be
applied on the whole recorded motion. This would be
unrealistic because model works on a small measure-
ment window �T and to describe even moderately
complex motion we should have large L order which
would significantly increase computation and memory
costs. Additionally, large order of Taylor series increases
possibility for unstable behaviour of the estimator. Our
proposed solution is to estimate the motion segment by

segment in other to obtain full picture of it. Method
was is inspired by segmented least-squares problem.
Unfortunately, dynamic programming solution which
is typically used for this sort of problem cannot be
directly applied because for a given set of points P =
{x1, y1}, {x2, y2} · · · {xn, yn} the requirement that x1 ≤
x2 ≤ · · · ≤ xn is not fulfilled in thewhole data space. To
solve this problem we propose that Tij and Tji are sliced
in equal lengths, their values normalized corresponding
to last distance measurement of previous slice and then
estimated with Equation (13) separately. Afterwards,
each estimation is stitched to form continuous solution.
Algorithm 1 needs to be executed offline on already col-
lected movement data since it has high computational
cost and depends on reference data dij to calculate error
term of the stitched estimation.

4. Measurement setup

4.1. Hardware platform

The developed hardware node used for measuring the
distance is based on the DW1000 UWB chip capable of
determining time of arrival (TOA) timestamps in res-
olution of 15.6 ps. Decawave DW1000 is a single chip
wireless transceiver compliant with the IEEE802.15.4-
2011 standard. Some of the main characteristics of the
previously mentioned chip are high data rate commu-
nications (up to 6.8Mbps), immunity to the multipath
fading and low power consumption. Chip supports 6
frequency bands with central frequencies ranging from
3.5GHz up to 6.5GHz. In our measurement setup,
only channel 7 was used since it was experimentally
shown that communication is most reliable on it in
the environmentwheremeasurementswere performed.
In order to make logging of measured data as fast as
possible, special care to system architecture and pro-
gram structure was given. To simplify read out of the
collected logs, FatFS was implemented on the micro-
controller side. Additionally, logging and communi-
cation were handled with the help of the FreeRTOS
operating system. Two major operations, data acqui-
sition and logging were decoupled by means of cir-
cular FIFO buffers. By using FIFO circular buffers,
data can be acquired continuously and held until it is
ready to be logged. The platform used for data acquisi-
tion is based on STM32F4 microcontroller with 64 kB
of RAM which was pre-allocated and used for before
mentioned buffers. Data is collected immediately after
interrupt occurs. Time spent in interrupts was minimal
since their only purpose was to notify corresponding
data acquisition tasks that new data is available. After-
wards, collected data was transferred to FIFO buffers
and logging task was notified. All collected data in one
acquisition was prepended with a timestamp gener-
ated by pre-synchronized internal RTC. To additionally
increase logging speed, data was written in binary form
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to pre-allocated files on the SD card. In this way, exe-
cution time that may be lost because of data formatting
or sector allocations was minimized. After each mea-
surement, logs were flushed, truncated and SD card was
unmounted so that consistency of data was preserved.
The size of the developed prototype hardware plat-
form is 60 x 25mm, what makes it suitable for on-body
placement and measurements.

4.2. JACO robotic arm

As a reference system JACO Robotic Arm6 was used.
The KINOVA JACO Assitive robot is a light-weight
robotic arm with six inter-linked segments. It can be
controlled with a separated controller or with computer
with provided API support. User has freedom to oper-
ate the robot in three-dimensional space and grasp or
release objects with the gripper. Reference measure-
ments were done with Actuator 3 which is based on
K-75+ actuator from the same company. Actuator has
absolute position precision at start-up of 1.5◦.7 Pro-
grammatically, angular speed of the actuator can be set
in range 0–60◦ per second. Small PC software support
waswrittenwith the help of the provided SDK. Program
tasks were to setup the arm, program the trajectories
and sample out reported actuators positions every 5ms.
Each sample was prepended with local timestamp in
Unix format with millisecond accuracy. This was also
done on mobile nodes side so that measurements can
be synchronized in time.

4.3. Measurementmethod

Developed mobile nodes where placed on the robotic
arm as far as possible from Actuator 3 as it was
recommended in [9] per their error analysis. Place-
ment of the nodes and their battery packs are shown
in Figure 3. Nodes were and securely mounted with
masking tape. To test plausibility of the proposed
method, armwas firstly placed to static positions where
Actuator 3 assumed values of 30◦ to 180◦ with 30◦
steps. These values were chosen for easier calibra-
tion and measurement of values d1 and d2 which
were approximately 30 cm. UWB nodes were calibrated
beforehand with regards to the manufacturer recom-
mendations. The distance between nodes was deter-
mined with 20Hz refresh rate by using TWR method.
Arm was kept in these positions for approximately
30 seconds.

To test dynamic behaviour of our proposed solution,
arm was programmed to execute simple movement
from 30◦ to 180◦ and back. Movement was recorded
in three separate speeds, 10◦/s, 30◦/s and 60◦/s. All
measured values from JACO arm were converted into
distance valueswith help of Equation (1)measurements
so that effects of the proposed solution can be closely
analysed. Since all measurements are synchronized in

Figure 3. Measurement setup with JACO Robotic arm and
DW1000 modules.

timewithUnix epoch timestamp, they can be compared
qualitatively with Sprague and Geers’ metric. This
metric was chosen because effects of phase and mag-
nitude differences between two waves can be combined
into one value and expressed as eij term in Algorithm 1.
With this metric of comparison Algorithm 1 can be
used to determine best case scenario for combination of
Taylor series order L and lengths of each segments used
in estimation. Magnitude error can be calculated as:

MS&G =
√√√√

∑N
i=1 p2i∑N
i=1m2

i
− 1, (15)

where m represents whole previously stitched sample
space of estimated movement and p reference move-
ment acquired by JACO Robotic Arm while N is the
number of samples. Similarly, phase error can be calcu-
lated as:

PS&G = 1
π
cos−1

∑N
i=1 pimi√∑N

i=1m2
i
∑N

i=1 p2i
. (16)

Finally, complete error term between two waveforms
can be expressed as:

CS&G =
√
M2

S&G + P2S&G. (17)

5. Results

We first show the effect of Equation (13) estimator on
measured angles values in static condition. It can be
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Figure 4. Static reference anglemeasurements comparedwith
TWRmethod.

noticed on Figure 4 that estimated values follow ref-
erence values more closely than those that were mea-
sured with TWR method. Additionally, we can notice
larger error between estimation and reference for angles
larger than 100◦. Probable cause of this is inaccurate
measurements of d1 and d2 values or the fact that cali-
bration was done with TWRmethod per manufacturer
instructions. In further research we will test applicabil-
ity of Equation (13) in the calibration process. In angle
ranges between 30◦ and 90◦, max error rate between
estimate and reference is 6.67◦ which is comparable
to the results mentioned and achieved in [9]. TWR
method in 100 measurement between nodes achieved
standard deviation of 45.8mm. The worst case stan-
dard deviation in case of estimated values was 8.7mm.
This means that with help of Equation (13) standard
range measurements deviation was decreased by fac-
tor of 5, in worst case. In case of dynamic conditions
Figure 5 demonstrates best cases per Algorithm 1. For
Figure 5(a) values of 264 slice points and third order
of Taylor series were chosen ( L = 3 ), for Figure 5(b)
values of 288 slice points and second order ( L = 2)
and lastly for Figure 5(c) values of 288 slice points
and fourth order ( L = 4 ). It should be noted here
that slice points are always divisible by two since Tij
and Tji are generated from TWR timestamps as it is
shown in Figure 2. For instance, if we say that estima-
tor used 264 slice point, that means that we need to
use 132 TWRmeasurements. In all three figures spuri-
ous discontinuities can be noticed. Some of maximum
values of estimate overshoot defined range of angle
measurement. In other words, arccos function is unde-
fined in this region. This will be addressed in future
research with additional data processing. Nevertheless,
error based on Sprague and Geers’ metric has shown
to be a good choice. It is interesting to notice that for
faster movement of 60◦/s higher order of Taylor series
was chosen while slice points remained the same as
in 30◦/s.

If we ignore measurements that generated unde-
fined values for Figure 5(a) the mean error difference
between reference signal and estimated one is 1.2◦, with

Figure 5. Dynamic reference angle measurements at different
speeds compared with estimations.

standard deviation of 6.3◦. Similarly, for Figure 5(b)
mean error is 0.8◦ with standard deviation of 9.1◦.
Lastly for Figure 5(c) mean error is 7◦ and standard
deviation 15.7◦. Again, these values are comparable to
ones demonstrated in [9]. Bigger standard deviation in
the last case could be solved with higher refresh rate
of TWR measurements which should lower estimation
order of Taylor series. This in turnwouldminimize spu-
rious discontinuities that are evident in estimation. This
approach brings its own limitations since higher refresh
rate leads to higher temperatures in chip which can lead
to systematic offsets in timestamp measurements. For
this problem to be solved temperature compensation is
needed. Another approach is to enhance procedure of
stitching separated estimated segments.
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6. Conclusion

In this paper a wearable measurement system for static
and dynamic monitoring of human body joint angles
based on UWB ranging approach was developed and
tested. Sensor nodes are based on the DW1000 inte-
grated circuit, which provides timestamps with 15.6 ps
accuracy, what translates in approximately 10 cm of
standard deviation of ranging error. Range measure-
ment is used to estimate a joint angle, what can have
numerous practical application, especially in the fields
of rehabilitation medicine and athlete performance
monitoring.

The UWB ranging approach is able to success-
fully address some shortcomings of IMU solutions
traditionally used in HMT, especially regarding drift
errors due to accelerometer and gyroscope imperfec-
tions. Although the UWB ranging technology is a
promising solution for elimination of inherent IMUs
shortcomings, it brings another set of challenges to
be solved. The most important limitation of UWB
ranging approach is related to quality and accuracy
of clock source. Other existing UWB solutions for
HMT are either used with IMUs only to compen-
sate their drift error instead of magnetometers, or are
used as a standalone UWB solution, but with high
precision laboratory equipment. Clock imperfections
in these cases can be entirely neglected or general-
ized as range measurement noise, since high-precision
clock sources of laboratory equipment are used. How-
ever, in practical applications where battery powered
mobile nodes are placed on body, it is necessary to
provide a solution that can be applied for everyday
use cases. Such solutions can have clock sources with
much lower accuracy than laboratory equipment and
moreover each clock source is independent and not
synchronized with other nodes’ clocks. These clock
imperfections translate into unacceptably large ranging
errors.

Therefore, we proposed the clock parameters and
range estimation technique which is valid for unsyn-
chronized mobile UWB nodes where their clock
parameters and pairwise distance motions are un
known. Our research was focused on extending TOA
method to increase the ranging accuracy of low-cost
UWB nodes to be applicable for HMT, specifically
for the joint angle estimation use case, in static and
dynamic conditions. The main contribution of the pro-
posedmethod is the ability to achieve acceptable results
without need for high-precision clock source or wired
or wireless time synchronization among nodes.

The experimental evaluation in static and dynamic
conditions was performed on JACO Robotic Arm. The
robotic arm enables precise control of angles and can be
used as a reference without a need for additional exter-
nal measurement devices, such as goniometers. More-
over, unlike tests on human subjects, experimental

conditions can have high repeatability and very pre-
cise control of test parameters in static and dynamic
conditions. In static conditions, standard deviation of
range measurements was decreased by a factor of 5
(from 45.8mm for case of simple TWR to 8.7mm for
case of application of the proposed estimator). Our
results showed very small discrepancies between ref-
erence and estimated angles, not more than 6.7◦ of
maximum error in the range from 30◦ to 90◦ for
static conditions. Dynamic measurements are even
more challenging because relative motion between
nodes also must be taken into account, along with
clock imperfections. The results for dynamic mea-
surements exhibited mean error of 1.2◦ with stan-
dard deviation 6.3◦ for reference angle speed of 10◦/s,
mean error of 0.8◦ with standard deviation 9.1◦ for
reference angle speed of 30◦/s, and mean error of
7.0◦ with standard deviation 15.7◦ for reference angle
speed of 60◦/s. Larger errors were observed for case
of the highest angle speed of 60◦/s. Probable source
of larger error is insufficient speed of TWR ranging
measurement.

The future research will be focused on usage of esti-
mator for improved calibration between UWB nodes,
higher frequency refresh rate of TWRrangingmeasure-
ments, and corresponding temperature compensation.
There is also space for improvement of the proposed
algorithm in the part of stitching separately estimated
segments in reconstruction of the wholemovement tra-
jectory. This research will serve as a base for future
development of algorithm implementation running in
a real-time since currently all calculation and post pro-
cessing was done offline.

Notes

1. Leap Motion www.leapmotion.com/.
2. Optotrak www.ndigital.com/msci/products/.
3. Vicon www.vicon.com.
4. Xsens www.xsens.com.
5. InvenSense www.invensense.com/technology/motion/.
6. KINOVA JACOArmGuide https://www.kinovarobotics.

com/sites/default/files/UG-007_KINOVA_Jaco_Assis
tive_robot_User_guide_EN_R02.pdf.

7. KINOVA Actuator Guide https://www.kinovarobotics.
com/.
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