16,921 research outputs found

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Inference via low-dimensional couplings

    Full text link
    We investigate the low-dimensional structure of deterministic transformations between random variables, i.e., transport maps between probability measures. In the context of statistics and machine learning, these transformations can be used to couple a tractable "reference" measure (e.g., a standard Gaussian) with a target measure of interest. Direct simulation from the desired measure can then be achieved by pushing forward reference samples through the map. Yet characterizing such a map---e.g., representing and evaluating it---grows challenging in high dimensions. The central contribution of this paper is to establish a link between the Markov properties of the target measure and the existence of low-dimensional couplings, induced by transport maps that are sparse and/or decomposable. Our analysis not only facilitates the construction of transformations in high-dimensional settings, but also suggests new inference methodologies for continuous non-Gaussian graphical models. For instance, in the context of nonlinear state-space models, we describe new variational algorithms for filtering, smoothing, and sequential parameter inference. These algorithms can be understood as the natural generalization---to the non-Gaussian case---of the square-root Rauch-Tung-Striebel Gaussian smoother.Comment: 78 pages, 25 figure

    A Bayesian Consistent Dual Ensemble Kalman Filter for State-Parameter Estimation in Subsurface Hydrology

    Full text link
    Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The Joint-EnKF directly updates the augmented state-parameter vector while the Dual-EnKF employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. In this paper, we reverse the order of the forecast-update steps following the one-step-ahead (OSA) smoothing formulation of the Bayesian filtering problem, based on which we propose a new dual EnKF scheme, the Dual-EnKFOSA_{\rm OSA}. Compared to the Dual-EnKF, this introduces a new update step to the state in a fully consistent Bayesian framework, which is shown to enhance the performance of the dual filtering approach without any significant increase in the computational cost. Numerical experiments are conducted with a two-dimensional synthetic groundwater aquifer model to assess the performance and robustness of the proposed Dual-EnKFOSA_{\rm OSA}, and to evaluate its results against those of the Joint- and Dual-EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, further providing reliable estimates of their uncertainties. Compared with the standard Joint- and Dual-EnKFs, the proposed scheme is found more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25% more accurate state and parameters estimates

    Magnetic-Visual Sensor Fusion-based Dense 3D Reconstruction and Localization for Endoscopic Capsule Robots

    Full text link
    Reliable and real-time 3D reconstruction and localization functionality is a crucial prerequisite for the navigation of actively controlled capsule endoscopic robots as an emerging, minimally invasive diagnostic and therapeutic technology for use in the gastrointestinal (GI) tract. In this study, we propose a fully dense, non-rigidly deformable, strictly real-time, intraoperative map fusion approach for actively controlled endoscopic capsule robot applications which combines magnetic and vision-based localization, with non-rigid deformations based frame-to-model map fusion. The performance of the proposed method is demonstrated using four different ex-vivo porcine stomach models. Across different trajectories of varying speed and complexity, and four different endoscopic cameras, the root mean square surface reconstruction errors 1.58 to 2.17 cm.Comment: submitted to IROS 201

    Realtime State Estimation with Tactile and Visual sensing. Application to Planar Manipulation

    Full text link
    Accurate and robust object state estimation enables successful object manipulation. Visual sensing is widely used to estimate object poses. However, in a cluttered scene or in a tight workspace, the robot's end-effector often occludes the object from the visual sensor. The robot then loses visual feedback and must fall back on open-loop execution. In this paper, we integrate both tactile and visual input using a framework for solving the SLAM problem, incremental smoothing and mapping (iSAM), to provide a fast and flexible solution. Visual sensing provides global pose information but is noisy in general, whereas contact sensing is local, but its measurements are more accurate relative to the end-effector. By combining them, we aim to exploit their advantages and overcome their limitations. We explore the technique in the context of a pusher-slider system. We adapt iSAM's measurement cost and motion cost to the pushing scenario, and use an instrumented setup to evaluate the estimation quality with different object shapes, on different surface materials, and under different contact modes

    Localisation of mobile nodes in wireless networks with correlated in time measurement noise.

    Get PDF
    Wireless sensor networks are an inherent part of decision making, object tracking and location awareness systems. This work is focused on simultaneous localisation of mobile nodes based on received signal strength indicators (RSSIs) with correlated in time measurement noises. Two approaches to deal with the correlated measurement noises are proposed in the framework of auxiliary particle filtering: with a noise augmented state vector and the second approach implements noise decorrelation. The performance of the two proposed multi model auxiliary particle filters (MM AUX-PFs) is validated over simulated and real RSSIs and high localisation accuracy is demonstrated
    • …
    corecore