103 research outputs found

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Energy and Processing Time Efficiency for an Optimal Offloading in a Mobile Edge Computing Node

    Get PDF
    This article describes a processing time, energy and computing resources optimization in a Mobile Edge Computing (MEC). We consider a mobile user MEC system, where a smart mobile device (SMD) demand computation offloading to a MEC server. For that, we consider a SMD contains a set of heavy tasks that can be offloadable. The formulated optimization problem takes into account both the dedicated energy capacity and the processing times. We proposed a heuristic solution schema. To evaluate our solution, we realized a range of simulation experiments. The results obtained in terms of treatment time and energy consumption are very

    VirtFogSim: A parallel toolbox for dynamic energy-delay performance testing and optimization of 5G Mobile-Fog-Cloud virtualized platforms

    Get PDF
    It is expected that the pervasive deployment of multi-tier 5G-supported Mobile-Fog-Cloudtechnological computing platforms will constitute an effective means to support the real-time execution of future Internet applications by resource- and energy-limited mobile devices. Increasing interest in this emerging networking-computing technology demands the optimization and performance evaluation of several parts of the underlying infrastructures. However, field trials are challenging due to their operational costs, and in every case, the obtained results could be difficult to repeat and customize. These emergingMobile-Fog-Cloud ecosystems still lack, indeed, customizable software tools for the performance simulation of their computing-networking building blocks. Motivated by these considerations, in this contribution, we present VirtFogSim. It is aMATLAB-supported software toolbox that allows the dynamic joint optimization and tracking of the energy and delay performance of Mobile-Fog-Cloud systems for the execution of applications described by general Directed Application Graphs (DAGs). In a nutshell, the main peculiar features of the proposed VirtFogSim toolbox are that: (i) it allows the joint dynamic energy-aware optimization of the placement of the application tasks and the allocation of the needed computing-networking resources under hard constraints on acceptable overall execution times, (ii) it allows the repeatable and customizable simulation of the resulting energy-delay performance of the overall system; (iii) it allows the dynamic tracking of the performed resource allocation under time-varying operational environments, as those typically featuring mobile applications; (iv) it is equipped with a user-friendly Graphic User Interface (GUI) that supports a number of graphic formats for data rendering, and (v) itsMATLAB code is optimized for running atop multi-core parallel execution platforms. To check both the actual optimization and scalability capabilities of the VirtFogSim toolbox, a number of experimental setups featuring different use cases and operational environments are simulated, and their performances are compared

    Edge computing infrastructure for 5G networks: a placement optimization solution

    Get PDF
    This thesis focuses on how to optimize the placement of the Edge Computing infrastructure for upcoming 5G networks. To this aim, the core contributions of this research are twofold: 1) a novel heuristic called Hybrid Simulated Annealing to tackle the NP-hard nature of the problem and, 2) a framework called EdgeON providing a practical tool for real-life deployment optimization. In more detail, Edge Computing has grown into a key solution to 5G latency, reliability and scalability requirements. By bringing computing, storage and networking resources to the edge of the network, delay-sensitive applications, location-aware systems and upcoming real-time services leverage the benefits of a reduced physical and logical path between the end-user and the data or service host. Nevertheless, the edge node placement problem raises critical concerns regarding deployment and operational expenditures (i.e., mainly due to the number of nodes to be deployed), current backhaul network capabilities and non-technical placement limitations. Common approaches to the placement of edge nodes are based on: Mobile Edge Computing (MEC), where the processing capabilities are deployed at the Radio Access Network nodes and Facility Location Problem variations, where a simplistic cost function is used to determine where to optimally place the infrastructure. However, these methods typically lack the flexibility to be used for edge node placement under the strict technical requirements identified for 5G networks. They fail to place resources at the network edge for 5G ultra-dense networking environments in a network-aware manner. This doctoral thesis focuses on rigorously defining the Edge Node Placement Problem (ENPP) for 5G use cases and proposes a novel framework called EdgeON aiming at reducing the overall expenses when deploying and operating an Edge Computing network, taking into account the usage and characteristics of the in-place backhaul network and the strict requirements of a 5G-EC ecosystem. The developed framework implements several placement and optimization strategies thoroughly assessing its suitability to solve the network-aware ENPP. The core of the framework is an in-house developed heuristic called Hybrid Simulated Annealing (HSA), seeking to address the high complexity of the ENPP while avoiding the non-convergent behavior of other traditional heuristics (i.e., when applied to similar problems). The findings of this work validate our approach to solve the network-aware ENPP, the effectiveness of the heuristic proposed and the overall applicability of EdgeON. Thorough performance evaluations were conducted on the core placement solutions implemented revealing the superiority of HSA when compared to widely used heuristics and common edge placement approaches (i.e., a MEC-based strategy). Furthermore, the practicality of EdgeON was tested through two main case studies placing services and virtual network functions over the previously optimally placed edge nodes. Overall, our proposal is an easy-to-use, effective and fully extensible tool that can be used by operators seeking to optimize the placement of computing, storage and networking infrastructure at the users’ vicinity. Therefore, our main contributions not only set strong foundations towards a cost-effective deployment and operation of an Edge Computing network, but directly impact the feasibility of upcoming 5G services/use cases and the extensive existing research regarding the placement of services and even network service chains at the edge

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors
    • …
    corecore