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Abstract: This article describes a processing time, energy and 

computing resources optimization in a Mobile Edge Computing 

(MEC). We consider a mobile user MEC system, where a smart 

mobile device (SMD) demands computation offloading to a MEC 

server. For that, we consider a SMD contains a set of heavy tasks 

that can be offloadable. The formulated optimization problem takes 

into account both the dedicated energy capacity and the processing 

times. We proposed a heuristic solution schema. To evaluate our 

solution, we realized a range of simulation experiments. The results 

obtained in terms of treatment time and energy consumption are 

very. 
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1.  Introduction 

MEC represents a key technological and architectural 

concept for enabling 5G evolution as it advances the mobile 

broadband network transformation into a programmable 

world and helps meet the high demands of 5G, terms of 

latency, scalability and automation [1]. It provides services 

to consumers, businesses, mobile operators, and adjacent 

industries that can now deploy critical applications over the 

wireless network. The MEC environment is characterized by 

low latency, proximity, high bandwidth, and real-time 

visibility of radio network information and location. It 

enables massive, low-power devices to handle of 

computation-extensive tasks in real-time, which has 

therefore attracted growing research interests in both 

academia and industry. 

MEC allows mobile terminals to access abundant computing 

and storage resources in the Edge server. This allows a 

mobile terminal to offload resource intensive tasks for 

processing and execution in the Edge, when the local 

capacity is not sufficient. In the literature, several 

"frameworks" which allow offloading in the cloud have been 

proposed such as [2-4]. Among the conditions, which 

favored the offloading approach, we cite: the available 

resources of devices such as the CPU, RAM and the state of 

the network. Partition tasks for execution between servers 

and devices, in order to reduce the combination of network 

bandwidth and CPU consumption [5]. The focus of [6] is to 

review the architectures, infrastructure, and algorithms that 

underpin resource management in fog/edge computing. Fog 

computing is considered a local extension of the cloud, it is a 

complementary technology to cloud computing [7]. Fog 

nodes have been used to provide computing services close to 

endpoint equipment and to minimize the response time of 

these nodes under an energy efficiency constraint [8, 9]. The 

authors [10] have proposed a heuristic solution to solve a 

hard decision problem that jointly optimized the overall 

energy of the system and maximized the satisfaction of 

SMDs while maintaining their priority. The authors [11] 

have built a distributed application that manages 

communication and processing by distributing the load 

between Cloud Computing and peripherals in order to speed 

up processing compared to the Internet of Things (IoT) 

application entirely hosted in the Cloud. 

In this work, we consider a multitasking offloading 

environment with a single user, in order to optimize the 

communication resources, the local frequency of the SMD 

and the frequency of the Edge Node (EN), by introducing 

the available energy of SMD as a constraint. Moreover, we 

introduced the Edge server’s frequency as a decision 

variable in our optimization problem. Therefore, we can 

extend the battery life-time of the SMD and reduce the 

processing time of its tasks. The authors of [12, 13] also 

proposed multitasking offloading by optimizing 

communication resources and local frequency without taking 

into account the amount of local energy available. In 

addition, they considered the frequency of the Edge server 

constant.  

In the following, we present the system model and the 

optimization problem formulation in sections 2 and 3. Then, 

we present the solution of the proposed problem in sections 

4 and 5. Evaluation and result are presented in section 6. 

Finally, section 7 concludes the paper.  
 

2. System Model 

As shown in Figure 1, a SMD containing an offloadable 

multi-task set. This SMD is connected to an EN that is 

equipped with a resource-rich server. Its intends to offload a 

set of independent tasks by the mean of an Edge Access 

Point (EAP). In this paper, we plan to study the behavior of 

the offloading process in an Edge environment, while we 

optimize computing resources available at the SMD as well 

as at the EN. Especially, the available energy at the SMD for 

tasks execution is limited. Besides, in the context of 

offloading, some pieces of a computationally intensive 

application are divided into multiple mutually independent 

offloadable tasks [3]. Therefore, according to the available 

computational and radio resources, some tasks are pick-up 

from the resulting tasks set to be offloaded to the EN for 

computing. The others are performed locally on the SMD 

itself. The execution of the completely set must happen 

within the time limit of the application. Additionally, it is 

assumed that the SMD concurrently performs computation 

and wireless transmission. 

Let note τ ≜ {τ1, τ2, … , τN}  a set of N independent tasks, 

these tasks are assumed to be computationally intensive and 
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delay sensitive and have to be executed by the SMD or at the 

EN. In addition, the processing time of the whole tasks set 

cannot exceed a required maximum latency 𝑇𝑚𝑎𝑥  and the 

total local execution energy must not exceed the tolerated 

given amount 𝐸𝑚𝑎𝑥x. Every task is mainly characterized by 

two parameters  τi ≜ 〈λi, di〉. Also, it represents an atomic 

input data that cannot be divided into sub-tasks. The first one 

denoted λi [cycles] specifies the workload referring to the 

computation amount needed to accomplish the processing of 

this task. The second one denoted di [bits] identifies the 

amount of the input parameters and program codes to 

transfer from the user’s local device to the Edge server. In 

addition, In line with Shannon equation, the transmission 

rate (bits/s) can be expressed in the following formula as 

equation ( 1). 

 r = W log (1 +
𝒑𝑇𝑔

W N0
) (1) 

Where W stands for upstream bandwidth, pTis the transmit 

power of transmission rate required by SMD to offload the 

input data to Edge server, g is its channel gain, and N0 is the 

noise power spectral density. 

 
Figure 1. System model illustration 

The execution nature decision for a task τi either by SMD or 

by offloading to the EN is denoted xi where xi ∈ {0; 1}. xi =
1 indicates that the SMD has to offload τi to the EN, and 

xi = 0  indicates that τi  is locally processed. If the SMD 

locally executes task τi , the completion time of its local 

execution is: 

ti
L =

λi

fL
 (2) 

And for all tasks, we have: 

tL = ∑
(1−xi)λi

fL

N
i=1  (3) 

Additionally, the corresponding energy consumption is 

given by: 

ei
L = kLfL

2λi (4) 

Hence, the total energy consumption while executing all 

tasks that were decided to be locally executed in the SMD is 

given by:  

eL = ∑ ei
L(1 − xi)

N
i=1 = kLfL

2 ∑ λi(1 − xi)
N
i=1  (5) 

If task τi  is offloaded to the Edge Node, the offloading 

process completion time is: 

ti
O = ti

Com + ti
Exec + ti

Res (6) 

Where ti
Com is the time to transmit the task to the EAP, and 

it is given by: 

ti
Com =

di

r
 (7) 

𝑡𝑖
𝐸𝑥𝑒𝑐  is the time to execute the task 𝜏𝑖 at the EN, and it can 

be formulated as:  

ti
Exec =

λi

fS
+ti

Res (8) 

ti
Res is the time to receive the result out from the Edge Node. 

Because the data size of the result is usually ignored 

compared to the input data size, we ignore this relay time 

and its energy consumption as adopted by [14]. Hence, for 

the τi task: 

ti
O = xi (

di

r
+

λi

fS
) (9) 

And for all tasks, we have: 

 tO = ∑ xi (
di

r
+

λi

fS
)N

i=1  (10) 

So, the energy consumption of the communication process 

can be obtained by multiplying the resulting transmission 

period by the transmission undertaken power pT. Thus, the 

energy is: 

 eC =
pT ∑ xidi

N
i=1

r
 (11) 

Similarly, energy consumption at the Edge server [9] while 

executing τi is given by:  

ei
S = kS. fS

2. λi  (12) 

The execution energy for all the offloaded tasks is: 

eS = kS. fS
2. ∑ λixi

N
i=1  (13) 

Finally, given the offloading decision vector 𝕏 ≜
{x1, x2, … , xN} for all tasks, the local execution frequency 𝒇𝑳 

of the SMD, and the server execution frequency 𝒇𝑺  at the 

Edge, the total execution time for the SMD is composed of 

its local execution time, the communication time as well as 

the execution time at the EN, and it is composed as: 

T(𝕏, fL, fS) =  t
L + tO (14) 

Then, according to equations (3) and (10), the total 

execution time can be formulated as: 

T(𝕏, fL, fS) = {
∑ λi
N
i=1 −∑ λixi

N
i=1

fL
+

∑ dixi
N
i=1

r
+ 

∑ λixi
N
i=1

fS
} (15) 

Similarly, the total energy consumption for the SMD is 

composed of its local energy consumption, the 

communication energy as well as the execution energy at the 

EN, and it is composed as: 

E(𝕏, fL, fS) = e
L + eC + eS (16) 

Then, according to equations (5), (11) and (13), the total 

execution time can be formulated as: 

 

 E(𝕏, fL, fS) = (kSfS
2 − kLfL

2) ∑ λixi
N
i=1 + 

pT

r
∑ dixi
N
i=1 +

                               kLfL
2∑ λi

N
i=1   (17) 

 

3. Problem Formulation 
 

In this section, we present our optimization problem 

formulation that aims to minimize the overall energy 

consumption and overall processing time in the offloading 
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process, while maintaining the battery lifetime. The obtained 

problem is formulated as:  

CTE(𝕏, fL, fS) =
α

Tmax
T(𝕏, fL, fS) +

β

Emax
E(𝕏, fL, fS)  (18) 

Where α and β are the weights given to the two objectives, 

respectively, with α + β = 1. The role of Emax and Tmax is to 

normalize the energy and processing time for the objective 

function, and to eliminate their units. 

𝓟𝟏: 𝑚𝑖𝑛
{𝑥,𝑓𝐿,𝑓𝑆}

{𝐶𝑇𝐸(𝕏, 𝑓𝐿 , 𝑓𝑆)} 

s.t.  (𝐶1.1) 𝑥𝑖 ∈  {0; 1};      𝑖 ∈  ⟦1; 𝑁⟧; 

       (𝐶1.2)     𝐹𝐿
𝑚𝑖𝑛 ≤ 𝑓𝐿 ≤ 𝐹𝐿

𝑚𝑎𝑥 ; 

      (𝐶1.3)     0 < 𝑓𝑆 ≤ 𝐹𝑆 ; 

      (𝐶1.4) 𝑡
𝐿 =∑

𝜆𝑖
𝑓𝐿
(1 − 𝑥𝑖)

𝑁

𝑖=1

≤ 𝑇𝑚𝑎𝑥  ; 

      (𝐶1.5)  𝑡𝑖
𝑂 = 𝑥𝑖∑𝑥𝑖 (

𝑑𝑖
𝑟
+
𝜆𝑖
𝑓𝑆
)

𝑖

𝑘=1

≤ 𝑇𝑚𝑎𝑥  ;  

     (𝐶1.6)  𝑒
𝐿 + 𝑒𝐶 =   𝑘𝐿𝑓𝐿

2∑ 𝜆𝑖(1 − 𝑥𝑖) +
𝑁
𝑖=1

                                       
𝑝𝑇

𝑟
∑ 𝑑𝑖𝑥𝑖
𝑁
𝑖=1 ≤ 𝐸𝑚𝑎𝑥 . 

 

In this work, each one of the available tasks can be either 

executed locally or offloaded to the Edge Node. Thus, every 

feasible offloading decision solution has to satisfy the above 

constraints: 

Table 1. Problem constraints  

Constraints Signification 

(𝐶1.1) 
Refers to the offloading decision variable  𝒙𝒊 for task 𝝉𝒊 
which equals 0 or 1 

(𝐶1.2) 
Indicates that the allocated variable local frequency f_L 

belongs to a priori fix interval given by [𝑭𝑳
𝒎𝒊𝒏, 𝑭𝑳

𝒎𝒂𝒙] 

(𝐶1.3) 
Indicates that the allocated variable remote Edge server 

frequencyf_Sbelongs to the interval ]𝟎, 𝑭𝑺
𝒎𝒂𝒙] 

(𝐶1.4) 
Shows that the execution time of all decided local tasks 

must be less than the given latency requirement 𝑻𝒎𝒂𝒙 

(𝐶1.5) 
The offloading time of all decided remote tasks must 

satisfy the same latency requirement 𝑻𝒎𝒂𝒙 

(𝐶1.6) 
Is important especially if the SMD’s battery power is 

critical. It imposes that the total local execution energy 

must not exceed the tolerated given amount 𝑬𝒎𝒂𝒙 

 

4. Problem Resolution 
 

In this section, we will introduce how we derive our solution 

from the obtained optimization problem. 

4.1. Problem Decomposition 

In our proposed model, the offloading decision vector for all 

the tasks is denoted 𝕏. Let define the vector that contains the 

offloadable tasks’ identifiers: 

𝕏1 = {i ∈ 𝕏   /    xi = 1 } (19) 

𝕏0 = {i ∈ 𝕏   /    xi = 0 } (20) 

For ease of use, let note:  

Λi = ∑ λi
i
k=1 , 

Λ1 = ∑  xiλi
N
i=1  , (21) 

D1 = ∑  xidi
N
i=1   , (22) 

 Where Λ1 is the total CPU cycles of all offloadable 
tasks and D1 is the total data of all offloadable tasks. 

Λ0 = Λ − Λ1 (23) 

fL
− =

Λ0

Tmax
 (24) 

fL
+ = √Emax− 

pT D1
r

kLΛ0
 (25) 

fS
− =

Λ1

Tmax− 
 D1
r

. (26) 

In addition, constraint (𝐶1.4) can be reformulated as 
Λ0

Tmax
≤

𝑓𝐿  and constraint (𝐶1.5)  can be similarly reformulated as: 
Λ1

Tmax− 
 D1
r

≤ 𝑓𝑆. Thus, for a given offloading decision vector 

𝕏, Considering the continuous variables 𝑓𝐿 and 𝑓𝑆, problem 

P1 is a continuous multi-variable optimization problem. The 

objective function 𝐶𝑇𝐸(𝕏, 𝑓𝐿 , 𝑓𝑆)  can be decomposed into 

the following two independent functions 𝐶𝑇𝐸1(𝑓𝐿)  and 

𝐶𝑇𝐸2(𝑓𝑆) where: 

CTE1(fL) = Λ0 (
α

TmaxfL
+

βkLfL
2

Emax
) (27) 

𝐶𝑇𝐸2(𝑓𝑆) = Λ1 (
α

Tmax𝑓𝑆
+

βkSfS
2

Emax
) +

D1

r
(

α

Tmax
+

βpT

Emax
) (28) 

This last can be equivalently decomposed into the following 

two independent optimization sub-problems. 

𝓟𝟏. 𝟏(𝕏):   min
{fL}

{𝐶𝑇𝐸1(𝑓𝐿)} 

         s.t.    (C1.1.1)            FL
min ≤ fL ≤ FL

max; 

                  (C1.1.2)           fL
− ≤ fL ≤ fL

+. 

𝓟𝟏. 𝟐(𝕏):   min
{fS}

{𝐶𝑇𝐸2(𝑓𝑆)} 

         s.t.    (C1.2.1)            fS
− ≤ fS ≤ FS. 

4.2. Problems Resolution 

For the 𝓟𝟏. 𝟏 problem, the objective function CTE1(fL) is a 

continuous function according to its variable fLwith a first 

order derivate: 
∂𝐶𝑇𝐸1(𝑓𝐿)

∂fL
= 𝛬0 ( 

2𝛽𝑘𝐿𝑓𝐿

𝐸𝑚𝑎𝑥
−

𝛼

𝑇𝑚𝑎𝑥fL
2).  

Consequently, 𝐶𝑇𝐸1 (fL)  decreases on ]0, √
𝛼𝐸𝑚𝑎𝑥

2𝛽𝑘𝐿𝑇
𝑚𝑎𝑥

3
 ]  and 

increases on [√
𝛼𝐸𝑚𝑎𝑥

2𝛽𝑘𝐿𝑇
𝑚𝑎𝑥

3
, +∞[ . Then, 𝐶𝑇𝐸1  has an optimal 

minimum value at the point√
𝛼𝐸𝑚𝑎𝑥

2𝛽𝑘𝐿𝑇
𝑚𝑎𝑥

3
 without considering 

constraint (C1.2.1). Therefore, with (C1.2.1) , we can derive 

the following function’s optimum fL
∗ given by:      
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fL
∗ =

{
 
 
 
 
 

 
 
 
 
 

0 if    𝕏 = 𝕏1

∅ if    Emax ≤
pT D1

r
  or fL

− > FL
max  

 or fL
+ < FL

min or fL
− > fL

+

fL
− if √

αEmax

2βkLT
max

3
< fL

− 

fL
+

√
αEmax

2βkLT
max

3
   

if √
αEmax

2βkLT
max

3
> fL

+

otherwise
         

    (29) 

For the 𝓟𝟏. 𝟐 problem, the objective function 𝐶𝑇𝐸2(𝑓𝑆) is a 

continuous function according to its variable fS with a first 

order derivate: 
∂𝐶𝑇𝐸2(𝑓𝐿)

∂fS
= 𝛬0 ( 

2𝛽𝑘𝑆𝑓𝑆

𝐸𝑚𝑎𝑥
−

𝛼

𝑇𝑚𝑎𝑥fS
2). 

Consequently, 𝔼𝐶𝑇𝐸2(fS) decreases on ]0, √
𝛼𝐸𝑚𝑎𝑥

2𝛽𝑘𝑆𝑇
𝑚𝑎𝑥

3
 ] and 

increases on [√
𝛼𝐸𝑚𝑎𝑥

2𝛽𝑘𝑆𝑇
𝑚𝑎𝑥

3
, +∞[ . Then, 𝐶𝑇𝐸2 has an optimal 

minimum value at the point√
𝛼𝐸𝑚𝑎𝑥

2𝛽𝑘𝑆𝑇
𝑚𝑎𝑥

3
 without considering 

constraint (C3.2.1). Therefore, with (C3.2.1), we can derive 

the following function’s optimum fS
∗ given by: 

fS
∗ =

{
 
 
 
 
 

 
 
 
 
 

0 if    𝕏 = 𝕏0

∅ if   fS
− > FS or 

D1

r
> Tmax

fS
− if √

αEmax

2βkST
max

3
< fS

− 

FS

√
αEmax

2βkST
max

3
   

if √
αEmax

2βkST
max

3
> FS

otherwise
         

    (30) 

5. Proposed Solutions 
 

Next, the problem relies on determining the optimal 

offloading decision vector 𝕏 that gives the optimal energy 

consumption and the optimal processing time. However, to 

iterate over all possible combinations of a set of N binary 

variables, the time complexity is exponential. That is not 

practical for large values of N. In the following, we propose 

a low complexity approximate algorithm to solve this 

question.   

5.1  Exhaustive Search Solution 

For comparison purpose, we introduce the Exhaustive 

Search method for feasible small values of N. This method 

explores all cases of offloading decisions and saves the one 

with the minimum trade-off the energy and processing time 

as well as its completion time.  

5.2  Simulated Annealing based Solution 

For our proposed solution, we use a Simulated Annealing 

based method [15, 16]. We start by a random offloading 

decision state X. Then, at every step, some neighboring state 

𝕏∗  of the current state 𝕏  and probabilistically decides 

between moving the system to state 𝕏∗ or staying in state 𝕏. 

Practical, a state’s variation consists of changing the 

offloading decision of some tasks among the set. These 

probabilistic transitions ultimately lead the system to move 

to states of lower energy. Generally, this step is repeated 

until getting a good trade-off for energy and processing time 

is reached, or until a given number of iterations is reached.  

6. Results and Discussion  
 

In this section, we carried out a serie of experiments to 

evaluate the performance of our proposed solution. First, we 

present simulation setup parameters. Then, several 

performance analysis are detailed to prove the efficiency of 

our approach. 

6.1.  Simulation Setup 

The presented results in this work are averaged for 100 time 

executions. All developed C++ simulation programs were 

built with GCC version 6.4.0 and run using a 2.7GHz Intel 

Core i7-2620M processor in a PC with a maximum 8GB of 

RAM. Moreover, the basic parameters of the simulation 

experiments are listed in Table 2.  

Table 2. Simulations’ parameters  

Parameters Values 

𝐹𝐿
𝑚𝑖𝑛 1 

𝐹𝐿
𝑚𝑎𝑥 60MHz 

𝐹𝑆 6GHz 

𝐹𝐿 10−26 

𝐾𝐿 10−29 

𝑇𝑚𝑎𝑥 [0.5, 2] 

𝐸𝑚𝑎𝑥 [0.6,0.8] Λ 𝐾𝐿 (𝐹𝐿
𝑚𝑎𝑥)2 

𝑝𝑡 0.1Watt 

𝑟 100Kb/s 

𝑑𝑖 [30, 300]Kb 

𝜆𝑖 [60, 600]MCycles 

𝛼 0.5 

6.2.  Evaluation 

We start by studying the Trade-off between Energy 

Efficiency and Processing Time for each method. Thus, we 

carried an experiment where we vary the number of tasks 

parameter between 3 and 26. The experiment's results are 

depicted in the following tow figures. Figure 2 represents the 

obtained results for both Exhaustive Search Offloading 

based solution (ESO) and Simulated Annealing Offloading 

based solution (SAO). It shows a small distance between the 

curves representing the realized averaged tasks' energy 

consumption and processing time. Accordingly, the 

differences between the optimal ESO method and the SAO 

method vary from 0.00% to 0.63%. 

Now, Figure 3 depicts the average of the execution time in 

ms to get the offloading decisions for both schemes. While 

the tasks count N is between 2 and 26, it clearly shows the 

exponential variation of the ESO execution time w.r.t. N. 

Additionally, The SAO solution gives a stable execution 

time that reached only 0.05ms for N=26. 
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Figure 2. Trade-off energy-time w.r.t. N. 

 
Figure 3. Decision time w.r.t. N. 

This experiment shows that our proposed heuristic scheme 

achieves a good trade-off between the solution's execution 

time and the accomplished processing delays of the 

offloaded tasks within the EN. 

7. Conclusion 
 

In this paper, we propose a heuristic solution to solve a hard 

decision problem that jointly optimizes the computing 

resources, as well as trade-off between both the energy 

consumption and the processing time in a MEC node. A 

calculation task is authorized to be offloaded when the 

offloading consumes less time and energy than the local 

execution. The obtained results in terms of processing time 

and energy consumption are very encouraging. In addition, 

the proposed solution performs the offloading decisions 

within an acceptable and feasible timeframes.  
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