14,054 research outputs found

    Joint Word Representation Learning Using a Corpus and a Semantic Lexicon.

    Get PDF
    Methods for learning word representations using large text corpora have received much attention lately due to their impressive performancein numerous natural language processing (NLP) tasks such as, semantic similarity measurement, and word analogy detection.Despite their success, these data-driven word representation learning methods do not considerthe rich semantic relational structure between words in a co-occurring context. On the other hand, already much manual effort has gone into the construction of semantic lexicons such as the WordNetthat represent the meanings of words by defining the various relationships that exist among the words in a language.We consider the question, can we improve the word representations learnt using a corpora by integrating theknowledge from semantic lexicons?. For this purpose, we propose a joint word representation learning method that simultaneously predictsthe co-occurrences of two words in a sentence subject to the relational constrains given by the semantic lexicon.We use relations that exist between words in the lexicon to regularize the word representations learnt from the corpus.Our proposed method statistically significantly outperforms previously proposed methods for incorporating semantic lexicons into wordrepresentations on several benchmark datasets for semantic similarity and word analogy

    Acquiring Word-Meaning Mappings for Natural Language Interfaces

    Full text link
    This paper focuses on a system, WOLFIE (WOrd Learning From Interpreted Examples), that acquires a semantic lexicon from a corpus of sentences paired with semantic representations. The lexicon learned consists of phrases paired with meaning representations. WOLFIE is part of an integrated system that learns to transform sentences into representations such as logical database queries. Experimental results are presented demonstrating WOLFIE's ability to learn useful lexicons for a database interface in four different natural languages. The usefulness of the lexicons learned by WOLFIE are compared to those acquired by a similar system, with results favorable to WOLFIE. A second set of experiments demonstrates WOLFIE's ability to scale to larger and more difficult, albeit artificially generated, corpora. In natural language acquisition, it is difficult to gather the annotated data needed for supervised learning; however, unannotated data is fairly plentiful. Active learning methods attempt to select for annotation and training only the most informative examples, and therefore are potentially very useful in natural language applications. However, most results to date for active learning have only considered standard classification tasks. To reduce annotation effort while maintaining accuracy, we apply active learning to semantic lexicons. We show that active learning can significantly reduce the number of annotated examples required to achieve a given level of performance

    Natural language understanding: instructions for (Present and Future) use

    Get PDF
    In this paper I look at Natural Language Understanding, an area of Natural Language Processing aimed at making sense of text, through the lens of a visionary future: what do we expect a machine should be able to understand? and what are the key dimensions that require the attention of researchers to make this dream come true

    Joint morphological-lexical language modeling for processing morphologically rich languages with application to dialectal Arabic

    Get PDF
    Language modeling for an inflected language such as Arabic poses new challenges for speech recognition and machine translation due to its rich morphology. Rich morphology results in large increases in out-of-vocabulary (OOV) rate and poor language model parameter estimation in the absence of large quantities of data. In this study, we present a joint morphological-lexical language model (JMLLM) that takes advantage of Arabic morphology. JMLLM combines morphological segments with the underlying lexical items and additional available information sources with regards to morphological segments and lexical items in a single joint model. Joint representation and modeling of morphological and lexical items reduces the OOV rate and provides smooth probability estimates while keeping the predictive power of whole words. Speech recognition and machine translation experiments in dialectal-Arabic show improvements over word and morpheme based trigram language models. We also show that as the tightness of integration between different information sources increases, both speech recognition and machine translation performances improve
    corecore