166 research outputs found

    General Framework and Novel Transceiver Architecture based on Hybrid Beamforming for NOMA in Massive MIMO Channels

    Full text link
    Massive MIMO and non-orthogonal multiple access (NOMA) are crucial methods for future wireless systems as they provide many advantages over conventional systems. Power domain NOMA methods are investigated in massive MIMO systems, whereas there is little work on integration of code domain NOMA and massive MIMO which is the subject of this study. We propose a general framework employing user-grouping based hybrid beamforming architecture for mm-wave massive MIMO systems where NOMA is considered as an intra-group process. It is shown that classical receivers of sparse code multiple access (SCMA) and multi-user shared access (MUSA) can be directly adapted. Additionally, a novel receiver architecture which is an improvement over classical one is proposed for uplink MUSA. This receiver makes MUSA preferable over SCMA for uplink transmission with lower complexity. We provide a lower bound on achievable information rate (AIR) as a performance measure. We show that code domain NOMA schemes outperform conventional methods with very limited number of radio frequency (RF) chains where users are spatially close to each other. Furthermore, we provide an analysis in terms of bit-error rate and AIR under different code length and overloading scenarios for uplink transmission where flexible structure of MUSA is exploited.Comment: Partially presented at IEEE ICC 2020 Workshop on NOMA for 5G and Beyond and to be submitted to IEEE Transactions on Communication

    Non-orthogonal multiple access for machine-type communications toward 6G

    Get PDF
    Abstract. Massive machine-type communications (mMTC) is one of the main focus areas in the fifth generation of wireless communications. It is also the fastest-growing field in terms of the number of devices. The massive increase in devices connected to the internet and global data traffic creates unprecedented requirements for future generations of wireless communications. One of the key technologies for the performance of the system is the utilized multiple access (MA) scheme. The conventional orthogonal MA (OMA) schemes from the earlier generations fail to satisfy the increasing demands for connectivity and spectral efficiency. On the contrary, non-orthogonal MA (NOMA) schemes offer the connectivity and spectral efficiency needed to enable mMTC. NOMA does this by allowing multiple users to transmit their data through the same resource blocks (RBs) simultaneously. NOMA is generally divided into two categories, namely power domain (PD-) NOMA and code domain (CD-) NOMA. PD-NOMA utilizes the power domain for the multiplexing, whereas CD-NOMA uses the code domain. This thesis focuses on the fundamentals of NOMA, MTC, and what NOMA can offer to MTC. We will also discuss the challenges and open problems that need to be solved. Finally, the thesis includes some simulations that demonstrate NOMA in practice.Ei-ortogonaalinen monikäyttö kone-tyyppisessä kommunikaatiossa kohti 6G:tä. Tiivistelmä. Massiivinen kone-tyyppinen kommunikaatio (mMTC) on yksi viidennen sukupolven langattoman viestinnän pääpainopisteistä. Se on myös nopeimmin kasvava osa-alue, kun katsotaan laitteiden lukumäärää. Internetiin yhdistettyjen laitteiden ja globaalin tietoliikenteen valtava kasvu luo ennennäkemättömiä vaatimuksia tuleville langattoman viestinnän sukupolville. Yksi avainteknologioista järjestelmän suorituskyvyn kannalta on käytetty monikäyttömenetelmä (MA). Tavanomaiset ortogonaaliset MA (OMA) -järjestelmät eivät saavuta yhdistettävyyden ja spektritehokkuuden kasvavia vaatimuksia. Sitä vastoin ei-ortogonaaliset MA (NOMA) -järjestelmät tarjoavat mMTC:n mahdollistamiseen tarvitun yhdistettävyyden ja spektritehokkuuden. NOMA saavuttaa tämän sallimalla usean käyttäjän lähettää dataa saman resurssilohkon kautta samanaikaisesti. NOMA voidaan yleisesti jakaa kahteen kategoriaan, tehoalueen NOMA:an ja koodialueen NOMA:an. Tämä työ keskittyy NOMA:n ja MTC:n perusteisiin ja siihen, mitä NOMA voi tarjota MTC-käyttökohteille. Työssä käydään myös läpi ratkaisuja vaativat haasteet ja avoimet ongelmat. Lopuksi työ sisältää simulaatioita, jotka mallintavat NOMA:n toimintaa käytännössä

    Low-Density Code-Domain NOMA: Better Be Regular

    Full text link
    A closed-form analytical expression is derived for the limiting empirical squared singular value density of a spreading (signature) matrix corresponding to sparse low-density code-domain (LDCD) non-orthogonal multiple-access (NOMA) with regular random user-resource allocation. The derivation relies on associating the spreading matrix with the adjacency matrix of a large semiregular bipartite graph. For a simple repetition-based sparse spreading scheme, the result directly follows from a rigorous analysis of spectral measures of infinite graphs. Turning to random (sparse) binary spreading, we harness the cavity method from statistical physics, and show that the limiting spectral density coincides in both cases. Next, we use this density to compute the normalized input-output mutual information of the underlying vector channel in the large-system limit. The latter may be interpreted as the achievable total throughput per dimension with optimum processing in a corresponding multiple-access channel setting or, alternatively, in a fully-symmetric broadcast channel setting with full decoding capabilities at each receiver. Surprisingly, the total throughput of regular LDCD-NOMA is found to be not only superior to that achieved with irregular user-resource allocation, but also to the total throughput of dense randomly-spread NOMA, for which optimum processing is computationally intractable. In contrast, the superior performance of regular LDCD-NOMA can be potentially achieved with a feasible message-passing algorithm. This observation may advocate employing regular, rather than irregular, LDCD-NOMA in 5G cellular physical layer design.Comment: Accepted for publication in the IEEE International Symposium on Information Theory (ISIT), June 201

    Metric-Based Random Iteration Algorithm For Resource Management In Non-Orthogonal Multiple Access Of Wireless Networks

    Get PDF
    In this paper, we focus on joint subcarrier and power allocation in the uplink of an NOMA system. The main taxonomy of NOMA is presented by focusing on the following categories: power-domain and code-domain NOMA. Then a novel radio resource management framework is presented metric-based random iteration Algorithm (MRIA) for uplink and downlink transmissions. This method determine target subject that it is Number of scheduled users.  
    corecore