A closed-form analytical expression is derived for the limiting empirical
squared singular value density of a spreading (signature) matrix corresponding
to sparse low-density code-domain (LDCD) non-orthogonal multiple-access (NOMA)
with regular random user-resource allocation. The derivation relies on
associating the spreading matrix with the adjacency matrix of a large
semiregular bipartite graph. For a simple repetition-based sparse spreading
scheme, the result directly follows from a rigorous analysis of spectral
measures of infinite graphs. Turning to random (sparse) binary spreading, we
harness the cavity method from statistical physics, and show that the limiting
spectral density coincides in both cases. Next, we use this density to compute
the normalized input-output mutual information of the underlying vector channel
in the large-system limit. The latter may be interpreted as the achievable
total throughput per dimension with optimum processing in a corresponding
multiple-access channel setting or, alternatively, in a fully-symmetric
broadcast channel setting with full decoding capabilities at each receiver.
Surprisingly, the total throughput of regular LDCD-NOMA is found to be not only
superior to that achieved with irregular user-resource allocation, but also to
the total throughput of dense randomly-spread NOMA, for which optimum
processing is computationally intractable. In contrast, the superior
performance of regular LDCD-NOMA can be potentially achieved with a feasible
message-passing algorithm. This observation may advocate employing regular,
rather than irregular, LDCD-NOMA in 5G cellular physical layer design.Comment: Accepted for publication in the IEEE International Symposium on
Information Theory (ISIT), June 201