202 research outputs found

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    Joint Power Control and Fronthaul Rate Allocation for Throughput Maximization in OFDMA-based Cloud Radio Access Network

    Full text link
    The performance of cloud radio access network (C-RAN) is constrained by the limited fronthaul link capacity under future heavy data traffic. To tackle this problem, extensive efforts have been devoted to design efficient signal quantization/compression techniques in the fronthaul to maximize the network throughput. However, most of the previous results are based on information-theoretical quantization methods, which are hard to implement due to the extremely high complexity. In this paper, we consider using practical uniform scalar quantization in the uplink communication of an orthogonal frequency division multiple access (OFDMA) based C-RAN system, where the mobile users are assigned with orthogonal sub-carriers for multiple access. In particular, we consider joint wireless power control and fronthaul quantization design over the sub-carriers to maximize the system end-to-end throughput. Efficient algorithms are proposed to solve the joint optimization problem when either information-theoretical or practical fronthaul quantization method is applied. Interestingly, we find that the fronthaul capacity constraints have significant impact to the optimal wireless power control policy. As a result, the joint optimization shows significant performance gain compared with either optimizing wireless power control or fronthaul quantization alone. Besides, we also show that the proposed simple uniform quantization scheme performs very close to the throughput performance upper bound, and in fact overlaps with the upper bound when the fronthaul capacity is sufficiently large. Overall, our results would help reveal practically achievable throughput performance of C-RAN, and lead to more efficient deployment of C-RAN in the next-generation wireless communication systems.Comment: submitted for possible publicatio

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author

    Resource Management in Converged Optical and Millimeter Wave Radio Networks: A Review

    Get PDF
    Three convergent processes are likely to shape the future of the internet beyond-5G: The convergence of optical and millimeter wave radio networks to boost mobile internet capacity, the convergence of machine learning solutions and communication technologies, and the convergence of virtualized and programmable network management mechanisms towards fully integrated autonomic network resource management. The integration of network virtualization technologies creates the incentive to customize and dynamically manage the resources of a network, making network functions, and storage capabilities at the edge key resources similar to the available bandwidth in network communication channels. Aiming to understand the relationship between resource management, virtualization, and the dense 5G access and fronthaul with an emphasis on converged radio and optical communications, this article presents a review of how resource management solutions have dealt with optimizing millimeter wave radio and optical resources from an autonomic network management perspective. A research agenda is also proposed by identifying current state-of-the-art solutions and the need to shift all the convergent issues towards building an advanced resource management mechanism for beyond-5G

    Energy Efficient Resource Allocation Optimization in Fog Radio Access Networks with Outdated Channel Knowledge

    Full text link
    Fog Radio Access Networks (F-RAN) are gaining worldwide interests for enabling mobile edge computing for Beyond 5G. However, to realize the future real-time and delay-sensitive applications, F-RAN tailored radio resource allocation and interference management become necessary. This work investigates user association and beamforming issues for providing energy efficient F-RANs. We formulate the energy efficiency maximization problem, where the F-RAN specific constraint to guarantee local edge processing is explicitly considered. To solve this intricate problem, we design an algorithm based on the Augmented Lagrangian (AL) method. Then, to alleviate the computational complexity, a heuristic low-complexity strategy is developed, where the tasks are split in two parts: one solving for user association and Fog Access Points (F-AP) activation in a centralized manner at the cloud, based on global but outdated user Channel State Information (CSI) to account for fronthaul delays, and the second solving for beamforming in a distributed manner at each active F-AP based on perfect but local CSIs. Simulation results show that the proposed heuristic method achieves an appreciable performance level as compared to the AL-based method, while largely outperforming the energy efficiency of the baseline F-RAN scheme and limiting the sum-rate degradation compared to the optimized sum-rate maximization algorithm

    Joint access-backhaul mechanisms in 5G cell-less architectures

    Get PDF
    Older generations of wireless networks, such as 1G and 2G were deployed using leased line, copper or fibre line as backhaul. Later, in 3G and 4G, microwave wireless links have also worked as backhaul links while the backbone of the network was still wireline-based. However, due to multiple different use cases and deployment scenarios of 5G, solo wireline based backhaul network is not a cost-efficient option for the operators anymore. For cost-efficient and fast deployment, wireless backhaul options are very attractive. As drawbacks, wireless backhaul links have capacity and distance limitations. To take the advantages of both the solutions, i.e., wired and wireless, 5G transport networks are anticipated to be a heterogeneous, complex, and with stringent performance requirements. To address the aforementioned challenges, wireless backhaul options are providing more attractive solutions, and hence, technologies using the same resources (e.g., frequency channels) may be used by both access and backhaul networks. In this scenario, blurring the separation line between access and backhaul networks allows resource sharing and cooperation between both the networks and minimizes the network deployment and maintenance cost significantly. Therefore, in 5G, the access and backhaul networks cannot be seen as separate entities; rather, we seek to integrate them together to ensure the best use of resources. In this thesis, firstly, we investigate the challenges and potential technologies of 5G transport network. Later, to address these challenges, we identify and present different approaches to perform joint access-backhaul mechanism. An initial performance evaluation of access-aware backhaul optimization is presented, where backhaul network is dynamically assigned with the required resources to serve the dynamic requirements of a 5G access network. The evaluation results and discussions manifest the resource efficiency of joint access-backhaul mechanisms. Functional splits in different layers of the access network comes as an intelligent solution to reduce the enormous capacity requirements of the transport network in a centralized radio access network approach, which tends to centralize almost all the functionalities into a central unit, leaving only radio frequency functions at the access points. From the joint access-backhaul mechanism perspective, we propose a novel technique, which takes the benefit of functional splits at physical layer, to design a heterogeneous transport network in an economical budget-limited and capacity-limited scenario. Till today, the limited capacity of the wireless backhaul links remains a challenge, and hence, frequency spectrum becomes scarce, and requires efficient utilization. To address this challenge, a joint spectrum sharing technique to implement joint accessbackhaul mechanism is presented. Evaluation results show that our proposed joint spectrum sharing technique, where spectrum allocation in the backhaul network follows the access network's traffic load, is fair and efficient in terms of spectrum utilization. We also propose a machine learning technique, which analyses data from a real network and estimates access network's traffic pattern, and subsequently, assigns bandwidth in the access network according to the traffic estimations. Presented evaluation results show that a well-trained machine learning model can be very efficient to obtain an efficient utilization of frequency spectrum.Las primeras generaciones de redes móviles, se implementaron utilizando líneas de cobre o fibra para la conexión entre la red de acceso y el núcleo de la red (conexión backhaul). Más tarde, los enlaces inalámbricos también han funcionado como backhaul mientras que la columna vertebral de la red seguía basada en cable. Sin embargo, debido a los múltiples escenarios de implementación de 5G, una red de backhaul basada solamente en cable ya no es una opción rentable para los operadores. Para una implementación rentable y rápida, las opciones de backhaul inalámbrico son muy atractivas. Como inconvenientes, los enlaces backhaul inalámbricos tienen limitaciones de capacidad y distancia. Para aprovechar las ventajas de ambas soluciones, es decir, cableadas e inalámbricas, se prevé que las redes de transporte 5G sean heterogéneas, complejas y con estrictos requisitos de rendimiento. Para abordar los desafíos antes mencionados, las opciones de backhaul inalámbrico brindan soluciones más atractivas y, por lo tanto, las tecnologías que usan los mismos recursos (por ejemplo, canales de frecuencia) pueden usarse tanto en las redes de acceso como en las de backhaul. En este escenario, desdibujar la línea de separación entre las redes de acceso y backhaul permite el intercambio de recursos y la cooperación entre ambas redes, y minimiza significativamente los costes de implementación y mantenimiento de la red. Por lo tanto, en 5G las redes de acceso y backhaul no pueden verse como entidades separadas; más bien consideraremos su integración para asegurar el mejor uso de los recursos. En esta tesis, en primer lugar, investigamos los desafíos y las tecnologías potenciales para la implementación de la red de backhaul 5G. Más tarde, para abordar dichos desafíos, identificamos diferentes enfoques para un mecanismo conjunto de gestión de la red de acceso y backhaul. Se presenta una evaluación de rendimiento inicial para la optimización de backhaul que tiene en cuenta el estado de la red de acceso, donde la red de backhaul se equipa dinámicamente con los recursos necesarios para cumplir con los requisitos de la red de acceso 5G. Los resultados de la evaluación manifiestan la mayor eficiencia de los mecanismos de gestión de recursos que consideran redes de acceso y backhaul conjuntamente. Las divisiones funcionales en diferentes capas de la red de acceso (functional splits) se presentan como una solución inteligente para reducir los enormes requisitos de capacidad de la red de transporte en un enfoque de red de acceso, que tiende a centralizar casi todas las funcionalidades en una unidad central, dejando solo las funciones más relacionadas con la transmisión/recepción de señales en los puntos de acceso. Desde la perspectiva del mecanismo conjunto de red de acceso y backhaul, proponemos una técnica novedosa, que aprovecha las divisiones funcionales en la capa física para diseñar una red de transporte heterogénea con un presupuesto económico y un escenario de capacidad limitada. Hasta el día de hoy, la capacidad limitada de los enlaces inalámbricos sigue siendo un desafío, dado que el espectro de frecuencias es escaso y requiere una utilización eficiente. Para hacer frente a este desafío, se presenta una técnica de gestión de recursos espectrales compartidos entre red de acceso y backhaul. Los resultados de la evaluación muestran que nuestra propuesta, donde la asignación de espectro en la red de backhaul se hace de acuerdo a la carga de tráfico de la red de acceso, es justa y eficiente. También proponemos una técnica de aprendizaje automático, que analiza datos de una red real y estima el patrón de tráfico de la red de acceso para, posteriormente, asignar ancho de banda en la red de acceso de acuerdo con dichas estimaciones. Los resultados de la evaluación presentados muestran que un modelo de aprendizaje automático bien entrenado puede ser una herramienta muy útil a la hora de obtener una utilización eficiente del espectro de frecuencias.Postprint (published version
    corecore