20,863 research outputs found

    A Semantic Grid Oriented to E-Tourism

    Full text link
    With increasing complexity of tourism business models and tasks, there is a clear need of the next generation e-Tourism infrastructure to support flexible automation, integration, computation, storage, and collaboration. Currently several enabling technologies such as semantic Web, Web service, agent and grid computing have been applied in the different e-Tourism applications, however there is no a unified framework to be able to integrate all of them. So this paper presents a promising e-Tourism framework based on emerging semantic grid, in which a number of key design issues are discussed including architecture, ontologies structure, semantic reconciliation, service and resource discovery, role based authorization and intelligent agent. The paper finally provides the implementation of the framework.Comment: 12 PAGES, 7 Figure

    DyVOSE project: experiences in applying privilege management infrastructures

    Get PDF
    Privilege Management Infrastructures (PMI) are emerging as a necessary alternative to authorization through Access Control Lists (ACL) as the need for finer grained security on the Grid increases in numerous domains. The 2-year JISC funded DyVOSE Project has investigated applying PMIs within an e-Science education context. This has involved establishing a Grid Computing module as part of Glasgow University’s Advanced MSc degree in Computing Science. A laboratory infrastructure was built for the students realising a PMI with the PERMIS software, to protect Grid Services they created. The first year of the course centered on building a static PMI at Glasgow. The second year extended this to allow dynamic attribute delegation between Glasgow and Edinburgh to support dynamic establishment of fine grained authorization based virtual organizations across multiple institutions. This dynamic delegation was implemented using the DIS (Delegation Issuing) Web Service supplied by the University of Kent. This paper describes the experiences and lessons learned from setting up and applying the advanced Grid authorization infrastructure within the Grid Computing course, focusing primarily on the second year and the dynamic virtual organisation setup between Glasgow and Edinburgh

    Online Project Management for Dynamic e-Collaboration

    Get PDF
    Today’s collaborative projects demand efficient and productive software application tools for the workplace that will bring remote teams together to get the work done. Dynamic e-collaboration is a necessity for virtual relations and business agreements. It depends on two distinct factors: trust and need. This paper presents a way to manage remote teams using a web application developed with ColMap model of project management in an IT company. The information exposed and shared applications with partners in collaborative projects are based on RBAC. Group collaboration and management software has been proven to successfully manage and coordinate projects.Dynamic E-collaboration, Collaboration Model, Web Application

    Shibboleth-based access to and usage of grid resources

    Get PDF
    Security underpins grids and e-research. Without a robust, reliable and simple grid security infrastructure combined with commonly accepted security practices, large portions of the research community and wider industry will not engage. The predominant way in which security is currently addressed in the grid community is through public key infrastructures (PKI) based upon X.509 certificates to support authentication. Whilst PKIs address user identity issues, authentication does not provide fine grained control over what users are allowed to do on remote resources (authorization). In this paper we outline how we have successfully combined Shibboleth and advanced authorization technologies to provide simplified (from the user perspective) but fine grained security for access to and usage of grid resources. We demonstrate this approach through different security focused e-science projects being conducted at the National e-Science Centre (NeSC) at the University of Glasgow. We believe that this model is widely applicable and encourage the further uptake of e-science by non-IT specialists in the research communitie

    Integrating security solutions to support nanoCMOS electronics research

    Get PDF
    The UK Engineering and Physical Sciences Research Council (EPSRC) funded Meeting the Design Challenges of nanoCMOS Electronics (nanoCMOS) is developing a research infrastructure for collaborative electronics research across multiple institutions in the UK with especially strong industrial and commercial involvement. Unlike other domains, the electronics industry is driven by the necessity of protecting the intellectual property of the data, designs and software associated with next generation electronics devices and therefore requires fine-grained security. Similarly, the project also demands seamless access to large scale high performance compute resources for atomic scale device simulations and the capability to manage the hundreds of thousands of files and the metadata associated with these simulations. Within this context, the project has explored a wide range of authentication and authorization infrastructures facilitating compute resource access and providing fine-grained security over numerous distributed file stores and files. We conclude that no single security solution meets the needs of the project. This paper describes the experiences of applying X.509-based certificates and public key infrastructures, VOMS, PERMIS, Kerberos and the Internet2 Shibboleth technologies for nanoCMOS security. We outline how we are integrating these solutions to provide a complete end-end security framework meeting the demands of the nanoCMOS electronics domain

    A Mediated Definite Delegation Model allowing for Certified Grid Job Submission

    Full text link
    Grid computing infrastructures need to provide traceability and accounting of their users" activity and protection against misuse and privilege escalation. A central aspect of multi-user Grid job environments is the necessary delegation of privileges in the course of a job submission. With respect to these generic requirements this document describes an improved handling of multi-user Grid jobs in the ALICE ("A Large Ion Collider Experiment") Grid Services. A security analysis of the ALICE Grid job model is presented with derived security objectives, followed by a discussion of existing approaches of unrestricted delegation based on X.509 proxy certificates and the Grid middleware gLExec. Unrestricted delegation has severe security consequences and limitations, most importantly allowing for identity theft and forgery of delegated assignments. These limitations are discussed and formulated, both in general and with respect to an adoption in line with multi-user Grid jobs. Based on the architecture of the ALICE Grid Services, a new general model of mediated definite delegation is developed and formulated, allowing a broker to assign context-sensitive user privileges to agents. The model provides strong accountability and long- term traceability. A prototype implementation allowing for certified Grid jobs is presented including a potential interaction with gLExec. The achieved improvements regarding system security, malicious job exploitation, identity protection, and accountability are emphasized, followed by a discussion of non- repudiation in the face of malicious Grid jobs

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Cloud-like Management of Grid Sites 1.0 Software

    No full text
    This document presents the features implemented for the automatic deployment and dynamic provision of grid services, and for the scalable cloud-like management of grid site resources. These features, developed largely in Work Package 6 (WP6) are integrated into the StratusLab Toolkit by Work Package 4 (WP4). They involve cloud-like APIs, a service definition language, contextualization, scalable cloud frameworks, monitoring and accounting solutions. Some functionalities developed include TCloud and OCCI implementations, a library to process OVF, the Claudia framework and integration with Ganglia monitoring information
    • 

    corecore