Grid computing infrastructures need to provide traceability and accounting of
their users" activity and protection against misuse and privilege escalation. A
central aspect of multi-user Grid job environments is the necessary delegation
of privileges in the course of a job submission. With respect to these generic
requirements this document describes an improved handling of multi-user Grid
jobs in the ALICE ("A Large Ion Collider Experiment") Grid Services. A security
analysis of the ALICE Grid job model is presented with derived security
objectives, followed by a discussion of existing approaches of unrestricted
delegation based on X.509 proxy certificates and the Grid middleware gLExec.
Unrestricted delegation has severe security consequences and limitations, most
importantly allowing for identity theft and forgery of delegated assignments.
These limitations are discussed and formulated, both in general and with
respect to an adoption in line with multi-user Grid jobs. Based on the
architecture of the ALICE Grid Services, a new general model of mediated
definite delegation is developed and formulated, allowing a broker to assign
context-sensitive user privileges to agents. The model provides strong
accountability and long- term traceability. A prototype implementation allowing
for certified Grid jobs is presented including a potential interaction with
gLExec. The achieved improvements regarding system security, malicious job
exploitation, identity protection, and accountability are emphasized, followed
by a discussion of non- repudiation in the face of malicious Grid jobs