6 research outputs found

    Robust Intent Classification using Bayesian LSTM for Clinical Conversational Agents (CAs)

    Get PDF
    Conversational Agents (CAs) are software programs that replicate hu-man conversations using machine learning (ML) and natural language processing (NLP). CAs are currently being utilised for diverse clinical applications such as symptom checking, health monitoring, medical triage and diagnosis. Intent clas-sification (IC) is an essential task of understanding user utterance in CAs which makes use of modern deep learning (DL) methods. Because of the inherent model uncertainty associated with those methods, accuracy alone cannot be relied upon in clinical applications where certain errors may compromise patient safety. In this work, we employ Bayesian Long Short-Term Memory Networks (LSTMs) to calculate model uncertainty for IC, with a specific emphasis on symptom checker CAs. This method provides a certainty measure with IC prediction that can be utilised in assuring safe response from CAs. We evaluated our method on in-distribution (ID) and out-of-distribution (OOD) data and found mean uncer-tainty to be much higher for OOD data. These findings suggest that our method is robust to OOD utterances and can detect non-understanding errors in CAs

    Out-of-domain Detection for Natural Language Understanding in Dialog Systems

    Full text link
    Natural Language Understanding (NLU) is a vital component of dialogue systems, and its ability to detect Out-of-Domain (OOD) inputs is critical in practical applications, since the acceptance of the OOD input that is unsupported by the current system may lead to catastrophic failure. However, most existing OOD detection methods rely heavily on manually labeled OOD samples and cannot take full advantage of unlabeled data. This limits the feasibility of these models in practical applications. In this paper, we propose a novel model to generate high-quality pseudo OOD samples that are akin to IN-Domain (IND) input utterances, and thereby improves the performance of OOD detection. To this end, an autoencoder is trained to map an input utterance into a latent code. and the codes of IND and OOD samples are trained to be indistinguishable by utilizing a generative adversarial network. To provide more supervision signals, an auxiliary classifier is introduced to regularize the generated OOD samples to have indistinguishable intent labels. Experiments show that these pseudo OOD samples generated by our model can be used to effectively improve OOD detection in NLU. Besides, we also demonstrate that the effectiveness of these pseudo OOD data can be further improved by efficiently utilizing unlabeled data.Comment: Accepted by TALS

    Ami-deu : un cadre sémantique pour des applications adaptables dans des environnements intelligents

    Get PDF
    Cette thèse vise à étendre l’utilisation de l'Internet des objets (IdO) en facilitant le développement d’applications par des personnes non experts en développement logiciel. La thèse propose une nouvelle approche pour augmenter la sémantique des applications d’IdO et l’implication des experts du domaine dans le développement d’applications sensibles au contexte. Notre approche permet de gérer le contexte changeant de l’environnement et de générer des applications qui s’exécutent dans plusieurs environnements intelligents pour fournir des actions requises dans divers contextes. Notre approche est mise en œuvre dans un cadriciel (AmI-DEU) qui inclut les composants pour le développement d’applications IdO. AmI-DEU intègre les services d’environnement, favorise l’interaction de l’utilisateur et fournit les moyens de représenter le domaine d’application, le profil de l’utilisateur et les intentions de l’utilisateur. Le cadriciel permet la définition d’applications IoT avec une intention d’activité autodécrite qui contient les connaissances requises pour réaliser l’activité. Ensuite, le cadriciel génère Intention as a Context (IaaC), qui comprend une intention d’activité autodécrite avec des connaissances colligées à évaluer pour une meilleure adaptation dans des environnements intelligents. La sémantique de l’AmI-DEU est basée sur celle du ContextAA (Context-Aware Agents) – une plateforme pour fournir une connaissance du contexte dans plusieurs environnements. Le cadriciel effectue une compilation des connaissances par des règles et l'appariement sémantique pour produire des applications IdO autonomes capables de s’exécuter en ContextAA. AmI- DEU inclut également un outil de développement visuel pour le développement et le déploiement rapide d'applications sur ContextAA. L'interface graphique d’AmI-DEU adopte la métaphore du flux avec des aides visuelles pour simplifier le développement d'applications en permettant des définitions de règles étape par étape. Dans le cadre de l’expérimentation, AmI-DEU comprend un banc d’essai pour le développement d’applications IdO. Les résultats expérimentaux montrent une optimisation sémantique potentielle des ressources pour les applications IoT dynamiques dans les maisons intelligentes et les villes intelligentes. Notre approche favorise l'adoption de la technologie pour améliorer le bienêtre et la qualité de vie des personnes. Cette thèse se termine par des orientations de recherche que le cadriciel AmI-DEU dévoile pour réaliser des environnements intelligents omniprésents fournissant des adaptations appropriées pour soutenir les intentions des personnes.Abstract: This thesis aims at expanding the use of the Internet of Things (IoT) by facilitating the development of applications by people who are not experts in software development. The thesis proposes a new approach to augment IoT applications’ semantics and domain expert involvement in context-aware application development. Our approach enables us to manage the changing environment context and generate applications that run in multiple smart environments to provide required actions in diverse settings. Our approach is implemented in a framework (AmI-DEU) that includes the components for IoT application development. AmI- DEU integrates environment services, promotes end-user interaction, and provides the means to represent the application domain, end-user profile, and end-user intentions. The framework enables the definition of IoT applications with a self-described activity intention that contains the required knowledge to achieve the activity. Then, the framework generates Intention as a Context (IaaC), which includes a self-described activity intention with compiled knowledge to be assessed for augmented adaptations in smart environments. AmI-DEU framework semantics adopts ContextAA (Context-Aware Agents) – a platform to provide context-awareness in multiple environments. The framework performs a knowledge compilation by rules and semantic matching to produce autonomic IoT applications to run in ContextAA. AmI-DEU also includes a visual tool for quick application development and deployment to ContextAA. The AmI-DEU GUI adopts the flow metaphor with visual aids to simplify developing applications by allowing step-by-step rule definitions. As part of the experimentation, AmI-DEU includes a testbed for IoT application development. Experimental results show a potential semantic optimization for dynamic IoT applications in smart homes and smart cities. Our approach promotes technology adoption to improve people’s well-being and quality of life. This thesis concludes with research directions that the AmI-DEU framework uncovers to achieve pervasive smart environments providing suitable adaptations to support people’s intentions
    corecore