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Abstract. Conversational Agents (CAs) are software programs that replicate hu-

man conversations using machine learning (ML) and natural language processing 

(NLP). CAs are currently being utilised for diverse clinical applications such as 

symptom checking, health monitoring, medical triage and diagnosis. Intent clas-

sification (IC) is an essential task of understanding user utterance in CAs which 

makes use of modern deep learning (DL) methods. Because of the inherent model 

uncertainty associated with those methods, accuracy alone cannot be relied upon 

in clinical applications where certain errors may compromise patient safety. In 

this work, we employ Bayesian Long Short-Term Memory Networks (LSTMs) 

to calculate model uncertainty for IC, with a specific emphasis on symptom 

checker CAs. This method provides a certainty measure with IC prediction that 

can be utilised in assuring safe response from CAs. We evaluated our method on 

in-distribution (ID) and out-of-distribution (OOD) data and found mean uncer-

tainty to be much higher for OOD data. These findings suggest that our method 

is robust to OOD utterances and can detect non-understanding errors in CAs.  

Keywords: Conversational Agents (CAs), Machine Learning, Model Uncer-

tainty, Out-of-Distribution (OOD), Healthcare, Patient Safety. 

1 Introduction 

Conversational Agents (CAs) such as Google Home and Amazon Alexa are interactive 

conversational systems that use Machine Learning (ML) to respond to the user in nat-

ural language via voice or text [1]. They can be categorised into two types: task-oriented 

CAs [2] and chatbots [3]. In healthcare studies, task-oriented CAs are often utilised as 

they are focused on achieving a task such as booking a consultation or finding a hospi-

tal. Chatbots are systems designed for open-ended conversations and mimic unstruc-

tured conversations or chats. Common applications of CAs in healthcare include symp-

tom checking [4], chronic disease management [5], health monitoring and medication 

adherence [6].  

CAs employ a pipeline architecture [7] as shown in Figure 1. The fundamental com-

ponents in this architecture are Natural Language Understanding (NLU) and Dialog 

Manager (DM) which enable their understanding and decision making. The user then 
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receives the response proposed by DM via the Natural Language Generation (NLG) 

module. In this pipeline architecture, the NLU maps user utterances to intents and slots 

and has a significant impact on downstream processing. NLU errors may lead to erro-

neous decision making [8], which can be costly in healthcare because of the risk to 

human life and ethical issues [9]. Specifically, the NLU in CAs is concerned with the 

IC and slot-filling (SF) [7]. IC predicts a user’s intent from a given utterance, and it is 
a classification problem of identifying the correct intent label. SF in NLU extracts ad-

ditional information needed to accomplish the user’s task. For example, a user asking 
a CA “show me nearby hospitals” could have ‘show_hospital’ as intent and the current 

user location as the slot value. 

 

 

Figure 1: Conversational Agent (CA) Architecture 

DL have allowed significant performance enhancements in computer vision and Nat-

ural Language Processing (NLP) tasks and their variants such as Recurrent Neural Net-

works (RNNs) [10, 11] and Long Short-Term Memory Networks (LSTMs) [12] are 

commonly used for IC in CAs. These networks are able to attain higher accuracy on 

text classification tasks as they are better suited to model time series data.  

Existing state-of-the-art Deep learning (DL) methods are prone to data and model 

uncertainties [13]. Model uncertainty, also known as epistemic uncertainty, occurs be-

cause of the reliance of the model on training data for their prediction. This uncertainty 

can be reduced by providing enough training data. Estimating model uncertainty is ex-

tremely crucial also because of the difficulty to obtain high-quality datasets in 

healthcare [14]. In addition, it is almost impossible to provide complete data as DL 

models will always reflect an imperfect representation of the real world [15].  

In general, for classification problems, the softmax function is utilised by DL models 

at the output, resulting in a probability distribution over class labels. The label with the 

highest probability is then chosen as the prediction. The softmax function calculates 

relative probabilities between classes but does not provide a measure of the model’s 
uncertainty [16]. The probabilistic nature of softmax output is one of the reasons this 

score cannot be used as a confidence measure of the model in its prediction. DL models 

on unseen data tend to make predictions with the high softmax values and thus it is 

undesirable to use them in safety-critical systems [17]. 
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CAs are vulnerable to failures in understanding user utterance, and non-understand-

ing errors are one of those failures [18]. Non-understanding errors arise when the sys-

tem is unable to understand user input due to the system's inability to support the re-

quested feature or poorly formatted input. For example, a user asking a COVID symp-

tom checking CA about diabetes symptoms would result in a non-understanding error. 

Similarly, any unknown or incorrect input would also cause a non-understanding error. 

A common source of non-understanding errors is out-of-distribution (OOD) data [19]. 

Non-understanding errors usually result in poor user experience and may not be desir-

able to have them in safety-critical applications. As described earlier, the way DL mod-

els make predictions and are inherently uncertain, the need to detect non-understanding 

errors is significant in CAs that utilise DL methods. 

Bayesian modelling techniques provide a probabilistic representation of model un-

certainty but these usually are computationally expensive [16]. It is however possible 

to interpret DL methods as Bayesian models without modifying the model to reduce 

this computational complexity [20]. DL methods suffer from overfitting with limited 

training examples and dropouts are utilised during training time to prevent it. Addition-

ally, these dropouts can be used at test time to generate random predictions which are 

sampled out to interpret in a probabilistic manner. This technique is known as Monte-

Carlo (MC) dropout [16]. In this work, we apply Bayesian method to model LSTM for 

IC which enables us to quantify model uncertainty, thus enhancing confidence in 

model’s decisions during IC.  

The key contributions of this paper are: 

1. We utilise Bayesian LSTM with MC dropout for computing uncertainty in IC for 

CAs.  

2. A symptom checking prototype CA is designed to demonstrate the importance of 

robust IC in CAs and how our method can be utilised for assuring safe response. 

3. We evaluate our approach using an OOD evaluation dataset and compare the results 

to ID data.   

2 Related Work 

IC methods in CAs range from rule-based to ML approaches, but the state-of-art in 

IC use DL methods which include RNNs and LSTMs [10, 21]. Westhuizen et al. [22] 

show the utility of Bayesian LSTMs on medical time series data using MC dropout and 

concluded their performance enhancements over standard LSTMs. They utilised MC 

dropout for 100 Bayesian LSTM samples and found that using it during test time en-

hanced performance on all datasets and provided the added benefit of having a confi-

dence measure alongside the predicted class. Dusenberry et al. [9] investigated several 

strategies to analyse model uncertainty for electronic health records. In comparison to 

ensemble RNNs, Bayesian RNNs performed better while only requiring training a sin-

gle model. These authors concluded that Bayesian RNNs are more efficient, making 

them better suited for use in medical domain.  
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Other studies in healthcare involving deep neural networks (DNNs) have employed 

MC dropout to approximate uncertainty for classification tasks [23, 24]. These, how-

ever, make use of image data to estimate uncertainty. This method is also used in other 

safety-critical domains such as autonomous vehicles (AV), to estimate uncertainty for 

the AV to make safe decisions such as decelerate to speed limit or brake to stop driving 

[25].  

The use of Bayesian approach, in addition to providing confidence in the decision of 

the model, enables us to detect non-understanding errors in CAs. As mentioned already, 

OOD data is one of the sources of these errors. It is critical to correctly identify OOD 

data in NLU to avoid DM taking an incorrect action [26] which could be catastrophic. 

Common approaches used for OOD detection rely on a threshold measure, which is 

subsequently utilised to compute a detection score using various methods. Bayesian 

models [27], and classifier ensembles [28] are two of these approaches. However, these 

approaches are computationally expensive, which limits their utility in industrial set-

tings. 

Another method for determining OOD detection is to use the highest softmax value 

as the detection score. However, as recent research has demonstrated [16], the softmax 

value is not a credible indication of the model’s confidence. Other approaches rely on 
OOD labels with training examples [29], which is not viable since we cannot estimate 

how many OOD samples are necessary for training a model. A few studies [30, 31] 

have relied on OOD data creation to boost detection scores. This necessitates the crea-

tion of OOD samples for detection and reliance on tagged instances, which is an addi-

tional step in OOD detection process. 

In [22],  MC dropout for classification was utilised using medical data for image and 

speech datasets. Unlike the work in [22], we employed text data for our classification 

of medical time series data and analysed the impact of misclassification on patient 

safety by presenting a use case of symptom checking CA. In addition, we validate our 

method on an evaluation dataset designed for OOD data [26] which is also used in other 

studies [31]. We perform a comparison of results of uncertainty estimation between ID 

and OOD data which is discussed in detail in the Results section. 

3  Methods 

We employ Bayesian LSTM as part of our RNN architecture for the IC model of NLU. 

MC dropout [16], which is used at test time is then utilised to evaluate model uncer-

tainty for IC. We designed a use case and implemented a prototype CA that performs 

symptom checking on medical data. In this use case, we are concerned with how un-

certainty estimation in IC in CAs can aid in assuring safe response.   

3.1 Bayesian LSTM 

Bayesian implementation of LSTM allows us to estimate model uncertainty, which in-

dicates our imperfect understanding of the model’s underlying parameters. Dropout at 
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test time allows us to approximate the variational posterior distribution of model pa-

rameters (weights and biases). Using random dropout, we can sample different model 

parameters of this posterior distribution. By introducing a distribution over all model 

parameters, different functions can be induced. Through the realisation of distinct 

model parameter values selected from the posterior distribution, these functions lead to 

varied outcomes. The softmax predictions from each of these sampled parameters are 

averaged for new data. This allows us to have increased confidence in the softmax pre-

diction. The softmax class prediction is then used to estimate model uncertainty in the 

form of Shannon entropy [31]. 

Table 1 shows the architecture of the Bayesian LSTM we utilise for our IC model. 

We implemented a Bayesian LSTM layer referred to as ‘MCLSTM’, which allows us 

to employ the same dropout mask during test time at each time step of recurrent layers 

of LSTM [20]. A dropout rate of 70% was utilised to estimate model uncertainty. The 

hyperparameter, dropout, at this percentage produced the best model accuracy and ro-

bust model uncertainty. We apply MC dropout after the dense layer allowing us to cap-

ture the model uncertainty for the dense layers as well. 

Table 1: Recurrent Neural Network Architecture 

Layer Output Shape Parameters 

Input Layer (None, 30) 0 

Embedding (None, 30, 50) 5000000 

MCLSTM (None, 64) 29440 

Dense Layer (None, 256) 16640 

Activation (None, 256) 0 

Dropout (None, 256) 0 

Dense Layer (None, 25) 6425 

Activation (None, 25) 0 

3.2 Symptom Checker Use Case 

We present a symptom checking CA prototype to highlight the impact of incorrect IC 

on patient safety and how our method can aid in providing a safe response when the 

model is uncertain about its prediction. As an example, during the current COVID-19 

pandemic, many web and mobile-based applications were developed for the general 

public to check if they have COVID symptoms [32]. The reliability of the decisions 

made by these diagnostic systems can not solely rely on their accuracy [9] and this also 
holds for clinicians making their decisions [33]. From the clinical safety perspective, a 

calibration of confidence and accuracy is important. 

The architecture of our prototype CA is shown in Figure 2. The input text utterance 

is provided by the user, which is handled by the NLU and IC is performed using Bayes-

ian LSTM. In the case where the NLU is not certain about the prediction, a safe strategy 

(asking the user to rephrase or connecting the user to a human clinician) can be utilised 

before the NLU result is passed to the DM. 
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Figure 2: Symptom checker use case CA architecture diagram 

We utilise an open-source dataset [34] to train our Bayesian LSTM model for un-

derstanding. The dataset contains 6661 text utterances of common medical symptoms 

like “knee pain”, or “headache”. The dataset contains 25 distinct intents which are 

evenly distributed across the dataset as shown in Figure 3. We pre-process the dataset 

by performing case normalization and removing punctuations and white spaces. After 

the pre-processing step, the utterances are padded to be of equal length. To use the data, 

we then transform the text utterances to numerical data using one-hot encoding scheme. 

We use an 85:15 ratio to split the dataset into training and testing, which turns our 

training size to 5661 and the test size to 1000 utterances. 

 

 

Figure 3: The distribution of medical symptoms in the dataset 
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4 Results 

Our model utilising Bayesian LSTM achieved an accuracy of 99.4% on the test dataset. 

Figure 4 shows the confusion matrix which reflects the model’s high accuracy. The y-

axis lists the actual symptoms, and the x-axis lists the predicted symptoms by the model. 

Due to the higher accuracy, there are very few misclassifications by the model. 

 

 

Figure 4: Confusion matrix of symptoms classification 

Table 2 summarises the average findings for each of the medical symptoms (intents) 

in the dataset by the following evaluation metrics: precision, recall, and F1-score. The 

number of samples for each intent is represented by the “Support” column, which in-

dicates that there is no class imbalance in the test set. Because of their increased accu-

racy, these evaluation metrics appear to indicate near-perfect scores for each of the in-

tents. The precision and recall usually do not provide a good measure of the quality of 

the model as they can be high because of class imbalance. The F1-score provides a 

weighted average of both the precision and recall and in our experiment, it also achieves 

a near 100% score for most of the intents which is an indication of good model perfor-

mance. The average metrics (macro and weighted average) scores indicate that there is 

very little class imbalance which validates the high accuracy on the test set. 

 We sample the softmax value for the same input 100 times to calculate the uncer-

tainty. This yields the output posterior distribution for softmax values, which is then 

averaged, and the entropy for all outputs is calculated. A higher entropy value reflects 

high uncertainty which indicates the possibility of the input from OOD data [31]. Table 

3 lists the ID utterances randomly selected from the test dataset, predictions, and their 

entropy calculations. The model correctly predicts all the utterances which is due to the 

higher model accuracy and ID nature of utterances.  
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Table 2: Average evaluation metrics for medical symptoms 

Medical Symptoms Precision Recall F1-Score Support 

acne 1.000 1.000 1.000 52 

back pain 1.000 1.000 1.000 28 

blurry vision 1.000 1.000 1.000 43 

body feels weak 1.000 1.000 1.000 37 

cough 1.000 1.000 1.000 45 

ear ache 1.000 1.000 1.000 38 
emotional pain 1.000 1.000 1.000 38 

feeling cold 1.000 1.000 1.000 39 

feeling dizzy 1.000 1.000 1.000 42 

foot ache 0.971 1.000 0.986 34 

hair falling out 1.000 1.000 1.000 40 

hard to breath 1.000 1.000 1.000 25 

head ache 1.000 1.000 1.000 48 

heart hurts 0.971 1.000 0.986 34 

infected wound 0.980 1.000 0.990 48 

injury from sports 1.000 1.000 1.000 27 

internal pain 0.921 0.972 0.946 36 

joint pain 1.000 1.000 1.000 52 
knee pain 1.000 1.000 1.000 44 

muscle pain 1.000 0.974 0.987 38 

neck pain 1.000 1.000 1.000 43 

open wound 1.000 1.000 1.000 34 

shoulder pain 1.000 1.000 1.000 51 

skin issue 1.000 0.971 0.985 34 

stomach ache 1.000 0.940 0.969 50 

accuracy 0.994 0.994 0.994 0.994 

macro avg 0.994 0.994 0.994 1000 

weighted avg 0.994 0.994 0.994 1000 

 

Table 3: Uncertainty estimation for in-distribution (ID) utterances 

Test Utterance (ID) Prediction Entropy 

my head is so heavy cant think normally head ache 0.029 

i feel a burning sensation in my shoulder muscle muscle pain 0.055 

i can hardly breathe hard to breath 0.071 

i have internal pain whenever i come down with   a 

cold 

internal pain 0.327 

when i’m awake in the morning i feel strange and 

have vertigo 

feeling dizzy 0.507 
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Table 4: Uncertainty estimation for out of distribution (OOD) utterances 

Test Utterance (OOD) Prediction Entropy 

am i connected to wifi feeling cold 1.057 

how much time do i have left on my 0 apr shoulder pain 1.110 

what casino game has the best odds injury from sports 1.862 

please alert me when my iphone battery 

falls below 30 

neck pain 2.134 

what is the warranty on my microwave skin issue 2.302 

 

Table 4 shows the five random utterances from OOD dataset [26] with model pre-

diction and entropy calculations. This dataset contains 1000 utterances for evaluation 

purpose and differs from the dataset on which the IC model is trained. As shown in 

Figure 5, the mean entropy for this OOD dataset for an identical number of samples is 

2.025 which is substantially higher than the mean entropy of 0.098 for ID utterances. 

This demonstrates that our method can be utilised to detect non-understanding errors 

as well as to help assure the safety of CA response in the wake of uncertainty from DL 

models. 

 

Figure 5: Entropy calculations for ID (top) and OOD (bottom) data 



10 

5 Discussion 

Our model based on Bayesian LSTM yielded high accuracy of 99.4% on the test da-

taset. The training dataset examples contained low class imbalance and we applied 

dropout during training to improve model performance. The use of MC dropout at test 

time enabled us to sample multiple outputs and we calculated entropy by averaging out 

100 samples from this distribution. It is worth noting that the classifier in this case even 

having near 100% accuracy cannot be trusted from their prediction alone which we 

discussed earlier. As seen in Table 4, for all OOD utterances the prediction was incor-

rect with high uncertainty. The average model entropy for ID data (test dataset) was 

much lower than the average entropy for OOD data with the same number (1000) of 

examples. It is yet to be seen if this pattern continues for a very large number of OOD 

data.  

 The state-of-art in CAs rely on DL methods [10] which are prone to uncertainties in 

their decisions [35]. In healthcare, instead of making wrong predictions, these models 

should be able to say “sorry, I don’t know” when they are uncertain.  From our findings 

on OOD of relatively small size (1000 samples), the entropy measure can be utilised to 

know when a model is uncertain in its decision. We present a use case of symptom 

checking where this method during IC can be useful for providing a safe response. A 

safety monitor such as one discussed in [36] may be deployed after NLU output which 

can filter high uncertainty inputs to avoid any incorrect actions by the DM. Alterna-

tively, as mentioned in [37], a user may be asked to provide a rephrase input. In case of 

high uncertainty, another approach of handing over the control to a human clinician 

may also be used [38]. 

6 Conclusion and Future Work 

In this paper, we presented a robust mechanism for IC in clinical CAs by measuring 

model uncertainty using Bayesian LSTMs. A symptom checking prototype CA was 

implemented to illustrate the benefit of certainty measure alongside prediction. This 

method shows that non-understanding errors in CAs can be avoided and a safety 

strategy (safety monitor in CA architecture, or human involvement) can be utilised to 

prevent unsafe responses. We evaluated our approach on a dataset of 1000 samples and 

the results were promising. However, further research may be required to estimate the 
minimum data required for this method. Additionally, data uncertainty [35] which 

occurs due to noise in the data may require to be calculated for the assurance of safe 

response in CAs.  
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