217 research outputs found

    Joint generative model for fMRI/DWI and its application to population

    Get PDF
    Author Manuscript 2011 March 12. 13th International Conference, Beijing, China, September 20-24, 2010, Proceedings, Part IWe propose a novel probabilistic framework to merge information from DWI tractography and resting-state fMRI correlations. In particular, we model the interaction of latent anatomical and functional connectivity templates between brain regions and present an intuitive extension to population studies. We employ a mean-field approximation to fit the new model to the data. The resulting algorithm identifies differences in latent connectivity between the groups. We demonstrate our method on a study of normal controls and schizophrenia patients.National Alliance for Medical Image Computing (U.S.) (NIH NIBIBNAMICU54-EB005149)Neuroimaging Analysis Center (U.S.) (NIH NCRR NAC P41-RR13218)National Institutes of Health (U.S.) (Grant R01MH074794)National Defense Science and Engineering Graduate FellowshipNational Science Foundation (U.S.) (CAREER Grant 0642971

    Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.

    Get PDF
    Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome

    The explanatory power of activity flow models of brain function

    Full text link
    Tremendous neuroscientific progress has recently been made by mapping brain connectivity, complementing extensive knowledge of task-evoked brain activation patterns. However, despite evidence that they are related, these connectivity and activity lines of research have mostly progressed separately. Here I review the notable productivity and future promise of combining connectivity and task-evoked activity estimates into activity flow models. These data-driven computational models simulate the generation of task-evoked activations (including those linked to behavior), producing empirically-supported explanations of the origin of neurocognitive functions based on the flow of task-evoked activity over empirical brain connections. Critically, by incorporating causal principles and extensive empirical constraints from brain data, this approach can provide more mechanistic accounts of neurocognitive phenomena than purely predictive (as opposed to explanatory) models or models optimized primarily for task performance (e.g., standard artificial neural networks). The variety of activity-flow-based explanations reported so far are covered here along with important methodological and theoretical considerations when discovering new activity-flow-based explanations. Together, these considerations illustrate the promise of activity flow modeling for the future of neuroscience and ultimately for the development of novel clinical treatments (e.g., using brain stimulation) for brain disorders

    Generative models of brain connectivity for population studies

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 131-139).Connectivity analysis focuses on the interaction between brain regions. Such relationships inform us about patterns of neural communication and may enhance our understanding of neurological disorders. This thesis proposes a generative framework that uses anatomical and functional connectivity information to find impairments within a clinical population. Anatomical connectivity is measured via Diffusion Weighted Imaging (DWI), and functional connectivity is assessed using resting-state functional Magnetic Resonance Imaging (fMRI). We first develop a probabilistic model to merge information from DWI tractography and resting-state fMRI correlations. Our formulation captures the interaction between hidden templates of anatomical and functional connectivity within the brain. We also present an intuitive extension to population studies and demonstrate that our model learns predictive differences between a control and a schizophrenia population. Furthermore, combining the two modalities yields better results than considering each one in isolation. Although our joint model identifies widespread connectivity patterns influenced by a neurological disorder, the results are difficult to interpret and integrate with our regioncentric knowledge of the brain. To alleviate this problem, we present a novel approach to identify regions associated with the disorder based on connectivity information. Specifically, we assume that impairments of the disorder localize to a small subset of brain regions, which we call disease foci, and affect neural communication to/from these regions. This allows us to aggregate pairwise connectivity changes into a region-based representation of the disease. Once again, we use a probabilistic formulation: latent variables specify a template organization of the brain, which we indirectly observe through resting-state fMRI correlations and DWI tractography. Our inference algorithm simultaneously identifies both the afflicted regions and the network of aberrant functional connectivity. Finally, we extend the region-based model to include multiple collections of foci, which we call disease clusters. Preliminary results suggest that as the number of clusters increases, the refined model explains progressively more of the functional differences between the populations.by Archana Venkataraman.Ph.D

    Decoupling function and anatomy in atlases of functional connectivity patterns: Language mapping in tumor patients

    Get PDF
    In this paper we construct an atlas that summarizes functional connectivity characteristics of a cognitive process from a population of individuals. The atlas encodes functional connectivity structure in a low-dimensional embedding space that is derived from a diffusion process on a graph that represents correlations of fMRI time courses. The functional atlas is decoupled from the anatomical space, and thus can represent functional networks with variable spatial distribution in a population. In practice the atlas is represented by a common prior distribution for the embedded fMRI signals of all subjects. We derive an algorithm for fitting this generative model to the observed data in a population. Our results in a language fMRI study demonstrate that the method identifies coherent and functionally equivalent regions across subjects. The method also successfully maps functional networks from a healthy population used as a training set to individuals whose language networks are affected by tumors.National Science Foundation (U.S.). Division of Information & Intelligent Systems (Collaborative Research in Computational Neuroscience Grant 0904625)National Science Foundation (U.S.) (CAREER Grant 0642971)National Institutes of Health (U.S.) (National Center for Research Resources (U.S.)/Neuroimaging Analysis Center (U.S.) P41-RR13218)National Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.)/Neuroimaging Analysis Center (U.S.) P41-EB-015902)National Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.)/National Alliance for Medical Image Computing (U.S.) U54-EB005149)National Institutes of Health (U.S.) (U41RR019703)National Institutes of Health (U.S.) (Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) R01HD067312)National Institutes of Health (U.S.) (P01CA067165)Brain Science FoundationKlarman Family FoundationEuropean Commission (FP7/2007–2013) n°257528 (KHRESMOI))European Commission (330003 (FABRIC))Austrian Science Fund (P 22578-B19 (PULMARCH)

    Brain Network Modelling

    Get PDF

    The autonomic brain: Multi-dimensional generative hierarchical modelling of the autonomic connectome.

    Get PDF
    The autonomic nervous system governs the body's multifaceted internal adaptation to diverse changes in the external environment, a role more complex than is accessible to the methods-and data scales-hitherto used to illuminate its operation. Here we apply generative graphical modelling to large-scale multimodal neuroimaging data encompassing normal and abnormal states to derive a comprehensive hierarchical representation of the autonomic brain. We demonstrate that whereas conventional structural and functional maps identify regions jointly modulated by parasympathetic and sympathetic systems, only graphical analysis discriminates between them, revealing the cardinal roles of the autonomic system to be mediated by high-level distributed interactions. We provide a novel representation of the autonomic system-a multidimensional, generative network-that renders its richness tractable within future models of its function in health and disease

    The autonomic brain: multi-dimensional generative hierarchical modelling of the autonomic connectome

    Get PDF
    The autonomic nervous system governs the body's multifaceted internal adaptation to diverse changes in the external environment, a role more complex than is accessible to the methods — and data scales — hitherto used to illuminate its operation. Here we apply generative graphical modelling to large-scale multimodal neuroimaging data encompassing normal and abnormal states to derive a comprehensive hierarchical representation of the autonomic brain. We demonstrate that whereas conventional structural and functional maps identify regions jointly modulated by parasympathetic and sympathetic systems, only graphical analysis discriminates between them, revealing the cardinal roles of the autonomic system to be mediated by high-level distributed interactions. We provide a novel representation of the autonomic system — a multidimensional, generative network — that renders its richness tractable within future models of its function in health and disease

    Brain Functional and Structural Networks Underpinning Musical Creativity

    Get PDF
    Musical improvisation is one of the most complex forms of creative behavior, which offers a realistic task paradigm for the investigation of real-time creativity. Despite previous studies on the topics of musical improvisation, brain activations, and creativity, the main questions about the neural mechanisms for musical improvisation in efforts to unlocking the mystery of human creativity remain unanswered. What are the brain regions that are activated during the improvised performances of music? How do these brain areas coordinate activity among themselves and others during such performances? Whether and how does the brain connectivity structure encapsulate such creative skills? In attempts to contribute to answering these questions, this dissertation examines the brain activity dynamics during musical improvisation, explores white matter fiber architecture in advanced jazz improvisers using functional and structural magnetic resonance imaging (MRI) techniques. A group of advanced jazz musicians underwent functional and structural magnetic resonance brain imaging. While the functional MRI (fMRI) of their brains were collected, these expert improvisers performed vocalization and imagery improvisation and pre-learned melody tasks. The activation and connectivity analysis of the fMRI data showed that musical improvisation is characterized by higher brain activity with less functional connectivity compared to pre-learned melody in the brain network consisting of the dorsolateral prefrontal cortex (dlPFC), supplementary motor area (SMA), lateral premotor cortex (lPMC), Cerebellum (Cb) and Broca’s Area (BCA). SMA received a dominant causal information flow from dlPFC during improvisation and prelearned melody tasks. The deterministic fiber tractography analysis also revealed that the underlying white matter structure and fiber pathways in advanced jazz improvisers were enhanced in advanced jazz improvisers compared to the control group of nonmusicians, specifically the dlPFC - SMA network. These results point to the notion that an expert\u27s performance under real-time constraints is an internally directed behavior controlled primarily by a specific brain network, that has enhanced task-supportive structural connectivity. Overall, these findings suggest that a creative act of an expert is functionally controlled by a specific cortical network as in any internally directed attention and is encapsulated by the long-timescale brain structural network changes in support of the related cognitive underpinnings
    • …
    corecore