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a b s t r a c t

Theautonomicnervoussystemgoverns thebody'smultifaceted internal adaptation todiverse

changes in the external environment, a role more complex than is accessible to the method-

sdand data scalesdhitherto used to illuminate its operation. Here we apply generative

graphicalmodelling to large-scalemultimodal neuroimaging data encompassing normal and

abnormal states to derive a comprehensive hierarchical representation of the autonomic

brain. We demonstrate that whereas conventional structural and functional maps identify

regions jointly modulated by parasympathetic and sympathetic systems, only graphical

analysis discriminates between them, revealing the cardinal roles of the autonomic system to

be mediated by high-level distributed interactions. We provide a novel representation of the

autonomic systemda multidimensional, generative networkdthat renders its richness

tractable within future models of its function in health and disease.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The autonomic nervous system is a bi-directional brain-body

interface, maintaining homeostasis by adapting the internal

environment in response to the demands of the external.

Comprised of two principal divisionsdthe sympathetic and

the parasympatheticdit regulates a wide array of bodily pro-

cesses, ranging from breathing, circulation, metabolism,

inflammation, to pain and sensation (Bonaz, Picq, Sinniger,

Mayol, & Clarencon, 2013; Botha et al., 2015; Frokjaer et al.,

2016; Matteoli et al., 2014). Autonomic function is perturbed

naturally across a vast range of disorders spanning numerous

body systems, including the neurological, cardiorespiratory,

gastrointestinal and rheumatological, as well as iatrogenically

from drugs and interventions (Benarroch, 1993; Mathias,

2003). So multifaceted a physiological role, with so many

points of pathological vulnerability, requires the closest, most

detailed evaluation. Yet the fundamental organisation of the

autonomic nervous system has hitherto been studied only

with methodsdand on data scalesdthat do not permit a

finely specified, high-dimensional characterisation.

In recent decades, multiple brain imaging studies have

investigated the neural correlates of the autonomic nervous

system. The ‘central autonomic network’ (Benarroch, 1993;

Critchley & Harrison, 2013) that has emerged, however, is

essentially drawn across small (rarely over 30 subjects),

typically young, homogeneous cohorts, comfortably within

the bounds of healthy normality, studied along a single

dimension (see table 1 of ref (Beissner, Meissner, Bar, &

Napadow, 2013)). For example, one characteristic (such as

regional neural activity) may be investigated with one im-

aging modality (such as functional magnetic resonance im-

aging (fMRI)), within a small healthy cohort, often of the

same sex and/or within a single decade of life (Goswami,

Frances, & Shoemaker, 2011; Nugent, Bain, Thayer, Sollers,

& Drevets, 2011). Though valuable in disclosing generalities

of neural organisation, this approach has limited power to

capture structural and functional aspects that are constitu-

tionally heterogeneous, especially as they cross into the

pathological realm. Representing biological heterogeneity in

greater detail, and with greater precision, permits patho-

logical changes to be more sensitively detected, for they then

become more easily distinguished from normal variation. A

single dimensional approach to investigating the autonomic

nervous system is furthermore blind to the interactions be-

tween distinct characteristics such as white matter archi-

tecture and grey matter concentrations, leaving in the dark

aspects of physiology and pathology that primarily manifest

in this way.

Moreover, the central autonomic network, while called a

‘network’, is largely based upon studies that preceded the

development of modelling techniques for studying the brain

formally as a graph (such as with functional connectivity and

network statistics (Bullmore & Sporns, 2009)). Even within

single dimensions such as white matter architecture, it may

be that connectivity between elementsdan approach only a

graphical analysis could reveal (Bullmore & Sporns, 2009;

Sporns, 2013)dis most informative, both in explaining normal

function and characterising its pathological deviation.
These arguments compel a new, integrative approach to

defining the human autonomic nervous system that surveys

the autonomic brain at high resolution, along multiple inter-

acting dimensions, within a highly expressive generative

graphical model applied to a large and diverse population

encompassing the spectrum of autonomic health and the

deviation from it.

Here we prototype such an approach with hierarchical

stochastic block modelling of the largest and most detailed

set of autonomic and neuroimaging data ever examined. We

seek to address five key aspects of the neural substrates of

autonomic function responsive to resting heart rate vari-

ability (HRV).

First, we determine the differences between conventional

unimodal and graphical multimodal representations of auto-

nomic function, identifying the features only graphical anal-

ysis sensitive to complex interactions between areas can

illuminate. If the two approaches yield identical maps,

graphical analysis is superfluous, if they are different, the

approach that produces the most extensive, robustly distinc-

tive maps ought to be preferred, for a broader swathe of

relevant substrates is thereby implicated.

Second, we identify characteristic macroscopic neural

“communities” ofmultiple areas exhibiting similar patterns of

inter-relatedness. This casts light on the fundamental orga-

nisation of autonomic function, generating hypotheses

explicitly testable in subsequent, focused studies.

Third, we derive a hierarchical parcellation of the brain

into regions-of-interest optimally tuned to detecting differ-

ences between areas implicated in autonomic function. Such

domain-specific parcellation can facilitate the design and

execution of group comparisons of morphological differ-

encesdinnate or acquired.

Fourth, we provide a principled mechanism for integrating

multimodal information in quantifying the impact of regional

dysfunctiondsuch as focal brain injury may causedfor the

purposes of individual clinical outcome prediction or indi-

vidual therapeutic effect estimation, again for use in down-

stream predictive or prescriptive studies.

Fifth, we demonstrate the application of generative

graphical modelling to large-scale multimodal data, enabling

others to extend it, both within the autonomic domain and

outside it.
2. Materials and methods

2.1. Study population

Patient data were obtained from the Cambridge Centre for

Ageing and Neuroscience (Cam-CAN) repository (Shafto et al.,

2014; Taylor et al., 2017), an open dataset of 3000 participants

aimed to evaluate healthy cognitive ageing.We report howwe

determined our sample size, all data exclusions, all inclusion/

exclusion criteria, whether inclusion/exclusion criteria were

established prior to data analysis, all manipulations, and all

measures in the study. The conception of this study did not

anticipate our analysis and is not informed by our aims. Our

inclusion criteria were those with both MRI brain imaging and

electrocardiographic (ECG) tracing, in order to allow

https://doi.org/10.1016/j.cortex.2021.06.012
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evaluation of autonomic activity by HRV and to ascertain its

corresponding neural correlate. We excluded all participants

with major pre-existing medical diagnoses, including cardio-

vascular, respiratory, neurological or psychiatric conditions,

in addition to those taking medication. This design sought to

capture the spectrum of autonomic normality and its distri-

butional tails to abnormality, withminimal confounding from

substantial disruption of other bodily systems. Further

exclusion criteria were individuals with ECG tracings under

5min in total length, the rationale of whichwas to ensure that

derivation of HRV-based autonomic measures were in accor-

dance with a minimum 5-minute epoch, aligning to interna-

tional guidelines (European, Society, of, & Cardiology, 1996).

Participants with a previously undiagnosed dysrhythmia

noted on ECG trace were also excluded. We excluded any

participants who did not have a full set of cardiac observa-

tions, including blood pressure, as we decided a priori tomodel

for blood pressure as an additional nuisance covariate. For

brain imaging, we excluded any studies with demonstrable

artefact, anatomical abnormality, movement exceeding 1 mm

in either x, y or z translation or rotational movement greater

than 1� around any axis, during the entire fMRI sequence. This
Fig. 1 e Processing pipeline. A) The original ECG-containing data

and quality control of heart rate variability (HRV) data, 604 indi

processing and quality control of neuroimaging data, there wer

imaging, and 501 of those with viable diffusion imaging. B) Sig

autonomic tone by HRV, specifically the markers of cardiac sym

successive differences (RMSSD) [~parasympathetic] and the rati

sympathovagal balance. C) Scatter plot of joint distribution betw

where participants whose autonomic tone were within normal

respectively. D) Neuroimaging data utilized were as follows: i) fu

connectivity; ii) diffusion tensor imaging e tract based spatial s

imaging e analysis of cortical thickness and volume, morphom

morphometry. E) Connectivity matrices of functional activity, w

were generated using a validated parcellation scheme of the cor

These were statistically evaluated with network-based statistic

graph (F), which would then be used in multi-dimensional gen

resting autonomic tone. G) Example of this approach with a sin
culminated in five hundred and eighteen samples with suit-

able functional and structural brain imaging data available

(261 males and 257 females, cohort mean ± SEM age

53.25 ± .79, range 18e88). For diffusion tensor imaging (DTI), a

further seventeen participants were excluded due to sub-

optimal image quality (251 males and 250 females, mean age

53.44 ± .81, range 18e88). A processing pipeline for the study

methods is visualised as Fig. 1.

2.2. Ethical approval

The Cam-CAN project was approved by local ethics commit-

tee, Cambridgeshire Research Ethics Committee (reference:

10/H0308/50), and our study submission to the Cam-CAN

group was approved by their departmental committee in late

2017. All participants for the Cam-CAN study gave written

consent (Shafto et al., 2014; Taylor et al., 2017).

2.3. Autonomic measure pre-processing

We used HRV e a quantifiable aspect of autonomic function

commonly examined in neuroscience and brain imaging
pool consisted of 718 individuals. After signals processing

viduals with viable autonomic data remained. After pre-

e 518 individuals with viable functional and structural

nal processing of ECG data was employed to elucidate

pathetic index (CSI) [~sympathetic], root mean square of

o between the two (RMSSD/CSI) as an approximation of

een RMSSD (~Parasympathetic) and CSI (~Sympathetic),

range and outside of it are colour-coded in orange and blue,

nctional magnetic resonance imaging - resting activity and

tatistics and probabilistic tractography; and iii) structural

etry of the subcortex and gray matter voxel-based

hite matter tractography and gray matter morphometry

tex (Gordon et al., 2016), supplemented with the subcortex.

s to generate weighted adjacency matrices of an undirected

erative networks to identify connectomes implicated in

gle human brain.
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(Beissner et al., 2013) e as the source of a set of summary

indices of inter-individual variation in autonomic activity. A

comprehensive set of measures of autonomic function would

be infeasibly large for a dataset of this size, and our concern

here is in any event with the correlates of synoptic functional

“signatures” of sympathetic and parasympathetic activity that

can be specified compactly. All autonomic analysis were un-

dertaken as per the international guidelines provided by the

European Society of Cardiology and the North American So-

ciety of Pacing Electrophysiology (European et al., 1996). Car-

diac data were acquired homogenously in all subjects, from

the physiological signals channel of magnetoencephalogra-

phy (MEG) using a pair of bipolar electrodes to record ECG

signal, as described in (Shafto et al., 2014), acquired while

participants sat within a 306-channel Vectorview system

(Elekta Neuromag, Helsinki, Finland), consisting of 102 mag-

netometers and 204 orthogonal planar gradiometers (see

(Shafto et al., 2014; Taylor et al., 2017)). Data was sampled at

1000 Hz with a band-pass filter of .03e330 Hz. Raw ECG

waveform data from MEG channels were extracted using

Statistical Parametric Mapping 8 (University College London).

Using MATLAB (2018a), an automated pre-processing pipeline

was developed to ensure homogenous signal pre-processing

of cardiac-autonomic data, and to avoid probable human

error. Notably, this included the determination of a QRS

complex as genuine or artefactual, which can otherwise be a

major source of human error in analysis. Individual pipeline

constituents were employed using modifications of the freely

available code in HRVTool (https://github.com/

MarcusVollmer/HRV) (Vollmer, 2015, 2020). The first 20 s of

the ECG recording was always discarded to allow for signal

stabilization in all samples. The remaining duration of ECG

monitoring periods varied across participants (median

9.38 min, range 5 - 18.35 min), and thus were subsampled to

5 min to ensure analytical homogeneity temporally (European

et al., 1996). QRS peak detectionwere employed and inter-beat

intervals (RR interval) calculated, in milliseconds. Artefact

removal was performed using the automated HRVTool filter.

Pre-processed traces were outputted to pictorial display for

the investigator to then review manually, for quality control

purposes. HRV measures used were the following: 1) root

mean square of successive differences (RMSSD) as a surrogate

to parasympathetic tone (European et al., 1996); 2) cardiac

sympathetic index (CSI) as a surrogate of sympathetic tone

(Allen, 2002; Allen, Chambers,& Towers, 2007; Toichi, Sugiura,

Murai, & Sengoku, 1997); and 3) RMSSD/CSI, the ratio between

the two, as a surrogate to sympathovagal balance

(supplementary material) (joint distribution available in

Fig. 1). The justification for the use of these specific measures

as surrogatemarkers to autonomic tone were on the review of

selecting HRV metrics least affected by other possible physi-

ological confounds, as per (Laborde, Mosley, & Thayer, 2017).

The computational derivation and validation of these mea-

sures is described in detail elsewhere (Allen, 2002; Allen et al.,

2007; European et al., 1996; Shaffer & Ginsberg, 2017; Vollmer,

2015). Any values that exceeded ± two standard deviations of

the cohort were automatically flagged, triggering a secondary

ECG tracing review of these participants, to ensure no ar-

rhythmias were demonstrable thatmight otherwise confound

results. We noted that, whilst the utility of RMSSD is well
validated as amarker of parasympathetic tone across decades

of autonomic neuroscience research, a marker for sympa-

thetic tone from HRV remains less well characterised, with

different research groups using differentmarkers. Based upon

literature review of HRV markers for sympathetic tone (Allen,

2002; Allen et al., 2007; Goldstein, Bentho, Park, & Sharabi,

2011), we decided to use CSI as the most plausible HRV-

derived approximation (Toichi et al., 1997). While this

marker may be further from the ‘ground truth’ than invasive

measurements of sympathetic nerve activity (Macefield &

Henderson, 2019), it is the only logistically feasible option at

this data scale.

ECG and HRV measures were deliberately acquired in a

session separate frombrain imaging. This is because our focus

here is the tonic, resting-state characteristics of autonomic

balance that the noise and claustrophobia of the MR imaging

environmentwould render unnatural and unrepresentative. A

previous study has shown that such ‘snapshot’ quantification

of resting autonomic measures is representative of typical

autonomic tone, and reproducible over 1 year later (Farmer

et al., 2014). Over the median duration between HRV acquisi-

tion and MRI scanning of 42 days, it would be reasonable to

expect no material change in grey or white matter organisa-

tion perceptible at the group level. Resting state functional

data also shows good stability over time (Choe et al., 2015; Finn

et al., 2015).

2.4. Acquisition of MRI data

All MRI data reported here were acquired by the CamCAN

group (Shafto et al., 2014; Taylor et al., 2017), according to a

protocol designed without our input. All MRI data were ac-

quired homogenously in a one-hour session conducted at the

MRC-CBSU using a 3 Tesla Siemens TIM Trio System, with 32-

channel head coil. Sequences acquired that were used in our

analysis were the following: 1) T1-Weighted Structural Image:

a high-resolution 3D image were acquired using the Magne-

tization Prepared Rapid Gradient Echo (MPRAGE) sequence

with the following parameters: Repetition Time (TR)

2250 msec; Echo Time (TE) 2.99 msec; Inversion Time (TI)

900msec; flip angle 9�; Field of View (FOV) 256mm� 240mmx

192 mm; voxel size 1 mm isotropic; GRAPPA acceleration

factor 2; acquisition time of 4 min and 32 s 2) Diffusion-

Weighted Images (DWI): DWI were acquired with a twice-

refocused spin-echo sequence, with 30 diffusion gradient di-

rections for each of two b-values: 1000 and 2000 sec/mm2, plus

three images acquired with a b-value of 0. These parameters

are optimised for estimation of the diffusion kurtosis tensor

and associated scalar metrics, as well as the traditional

diffusion tensor. Other parameters as follows: TR 9100 msec;

TE 104 msec; voxel size 2 mm isotropic; FOV

192 mm � 192 mm, 66 axial slices, number of averages 1;

acquisition time of 10 min and 2 s 3) Resting state functional

MRI (rsfMRI): T2*-weighted images were acquired during

which participants rest with their eyes shut using a Gradient-

Echo Echo-Planar Imaging (EPI) sequence. A total of 261 vol-

umes were acquired, each containing 32 axial slices (acquired

in descending order), slice thickness 3.7 mm with interslice

gap of 20%, providing whole brain coverage including cere-

bellum; TR 1970 msec; TE 30 msec; flip angle 78�; FOC

https://github.com/MarcusVollmer/HRV
https://github.com/MarcusVollmer/HRV
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192 mm � 192 mm; voxel size 3 mm � 3 mm x 4.44 mm,

acquisition time of 8 min and 40 s. Full documentation of MR

protocols are provided by the CamCAN group (Shafto et al.,

2014; Taylor et al., 2017).

2.5. Pre-processing and statistical analysis of
neuroimaging data

Before any pre-processing proper, all sequences were care-

fully reviewed manually for signal and image artefact that

may have otherwise confounded findings. Images excluded

are documented above in Study Population. All scans were re-

reviewed at every pre-processing stage to ensure no fault

which may confound findings.

2.5.1. Structural MRI
Structural imaging was pre-processed for three specific do-

mains: i) Cortex-specific measures were pre-processed using

FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) (Dale, Fischl,

& Sereno, 1999), specifically for analysis of cortical thickness

and cortical volumes; ii) Subcortex-specific measures were pre-

processed and analysed using the FMRIB Software Library

(FSL) FIRST analysis package (Patenaude, Smith, Kennedy, &

Jenkinson, 2011), for analysis of subcortical morphology and

volumetry and iii) Whole-brain voxel brain morphometry (VBM)

were pre-processed using the CAT-12 (http://www.neuro.uni-

jena.de/cat/) adaptation of VBM within SPM12(Ashburner &

Friston, 2005) for generation of gray-matter morphometric

networks (Supplementary Material).

2.5.2. Resting-state functional MRI
Pre-processing of fMRI: was undertaken using the FMRI Expert

Analysis Tool (FEAT), version 6.00, within FSL (Smith et al.,

2004). The first 4 volumes of each 4-dimensional fMRI time-

series were always discarded to allow for signal stabilisation.

The following pre-statistical processing steps were applied:

Motion Correction with FMRIB Linear Image Registration Tool

(MCFLIRT) (7 degrees of freedom); slice-timing correction

using Fourier-space time-series phase-shifting; brain extrac-

tion (BET); spatial smoothing using a Gaussian kernel of full-

width-half-maximum (FWHM) 5 mm; grand-mean intensity

normalisation of the entire 4-dimensional dataset by a single

multiplicative factor; high pass temporal filtering (Gaussian-

weighted least-squares straight line fitting, with

sigma ¼ 50.0s); registration to high resolution structural and

standard space images using the FMRIB Linear Image Regis-

tration Tool (FLIRT) (Jenkinson, Bannister, Brady, & Smith,

2002).

2.5.3. Diffusion weighted imaging
Pre-processing of DWI: were performed using the FMRIB diffu-

sion toolbox (FDT). Using TBSS(Smith et al., 2006), Fractional

Anisotropy (FA) images were created by fitting a tensor model

to raw diffusion data using FDT, in addition to skull-stripping.

All subject's FA data were aligned into common space using

nonlinear registration (FNIRT), which uses a b-spline repre-

sentation of the registration warp field. Subsequently, the

mean FA image was created and thinned to create a mean FA

skeleton, which represents the centres of all tracts common to

the group. Each subject's aligned FA data was projected onto
this skeleton and the resulting data fed into voxelwise cross-

subject statistics. Results were cross-referenced with white

matter/tract atlases (Tang, Sun, Toga, Ringman,& Shi, 2018) as

appropriate. Tractography: were performed using GPU imple-

mentations of bedpostx and probtrackx2 (Hernandez-

Fernandez et al., 2019).

2.5.4. Whole brain parcellations
For network connectivity analyses, parcellation of brain data

were undertaken using the (Gordon et al., 2016) schema of 333

cortical regions, further supplemented by the inclusion of 13

subcortical regions to form a parcellation scheme of 346

unique regions (parcel list provided as Supplementary Data,

the original surface parcellation defined is available here

(Gordon et al., 2016)). Functional connectivity adjacency

matrices were generated by extraction of time-series blood

oxygen level dependent (BOLD)-signal for each region with

subsequent pairwise correlation coefficient ascertained with r

to z transformation, white matter matrices by probabilistic

tractography of streamlines (normalised by waypoint), and

gray matter-morphometric matrices using GrayNet (https://

github.com/raamana/graynet) (Raamana & Strother, 2018)

where, using the Manhattan method, histogram distance be-

tween cortical thickness and subcortical volumes of the par-

cellation were ascertained. For each subject, and for each

imaging modality, these approaches produced adjacency

matrices of 59,685 edges.

2.5.5. Statistical analysis
General linear modelling (GLM) was used to statistically

evaluate the effects of the autonomic nervous systemon brain

gray matter structure (cortical thickness, cortical volumes,

subcortical morphometry, subcortical volumes), white matter

(tract based spatial statistics) and resting functional activity.

These were performed with permutation tested non-

parametric inference, using FSL-RANDOMISE. Tests were

linear contrasts for effect of i) RMSSD, ii) CSI and iii) RMSSD/

CSI, all of which also included nuisance covariates of age,

gender, mean arterial pressure, with variable de-meaning as

per (Mumford, Poline, & Poldrack, 2015). When a given auto-

nomic variable was tested, all other autonomic measures

were also included as nuisance regressors. For structure-

based analyses, total intracranial volume was also included

as an additional nuisance regressor. For example, a general

linear model of subcortical morphometry testing the effect of

RMSSD would feature the following nuisance covariates: CSI,

RMSSD/CSI, age, gender, mean arterial pressure and total

intracranial volume. Post-hoc correction was employed by

virtue of threshold-free-cluster-enhancement (TFCE) and

false discovery rate (FDR) where appropriate, to which the

significance value for all findings reported are to a significance

threshold of corrected-p < .05. Neuroimaging data were

visualised with BrainNet (Xia, Wang, & He, 2013).

2.5.6. Network analysis of multi-modal brain networks
Resting functional, whitematter tractography and gray-matter

morphometric networks, contingent on resting autonomic

tone were analysed by the network based statistics (NBS) con-

nectome toolbox (v1.2 (Zalesky, Cocchi, Fornito, Murray, &

Bullmore, 2012; Zalesky, Fornito, & Bullmore, 2010)). The NBS

http://surfer.nmr.mgh.harvard.edu/
http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
https://github.com/raamana/graynet
https://github.com/raamana/graynet
https://doi.org/10.1016/j.cortex.2021.06.012
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is a non-parametric statistical method which corrects for

multiple comparisons and controls for family-wise error and is

furtherdiscussed in the supplementarymaterial. For allmodels

using theNBS, input datawere the graphmattermorphometric

networks, waytotal normalised tractography matrices and

functional connectivity matrices of each participant, with

testing of RMSSD, CSI and RMSSD/CSI and inclusion of all

nuisance covariates as stated above.

2.5.7. Multi-dimensional, generative, hierarchical, brain
networks
Significant and t-statistic weighted connectivity matrices from

aforementioned network-based statistics were extracted and

incorporated into Bayesian weighted, non-parametric, hierar-

chical, generative stochastic block models (Peixoto, 2018).

Generative graphical modelling of brain networks was under-

taken using graph-tool (https://graph-tool.skewed.de). Our aim

was to identify a high-dimensional connectome built by the

culmination of white, gray and functional connectivity

matrices representative of and weighted by relationship to

resting autonomic tone. A graphical representation of this

generative and iterative process is illustrated as Supplementary

Movie 1. We compared community structure by normalized

mutual information. Network centrality measures were

computed by these weighted matrices, including eigenvector

centrality, ameasure of overall influence of a nodewith respect

to the overall network (Newman, 2008). Further network-based

metrics, including small world propensity, were quantified

using the brain connectivity toolbox (https://sites.google.com/

site/bctnet/) (Bullmore & Sporns, 2009; Rubinov & Sporns,

2010). A given node may belong to more than one net-

workdthe communities are not exclusivedwhat defines them

is not the nodalmembership but the nature of the connectivity.

Supplementary video related to this article can be found at

https://doi.org/10.1016/j.cortex.2021.06.012

2.5.8. Hierarchical, graph-delineated, parcellations
Lastly, we utilized the stochastic block model to generate a

hierarchical parcellation scheme representative of autonomic

tone. The fundamental parcellation was first drawn from the

stochastic blockmodel, and further strengthened by sampling

from the posterior distribution with iterative Markov chain

Monte Carlo equilibration (MCMC) to evidential equilibration

based uponmodel entropy, the state of negative log-likelihood

of the microcanonical stochastic block model (Peixoto, 2014),

using Metropolis-Hasting acceptance-rejection sampling

(Hastings, 1970). This value is also referred to the description

length of the data, corresponding to the amount of informa-

tion required to describe it in nats. We did not specify a finite

number of draws, rather we specified a wait step of 1000 it-

erations for a record-breaking event, to ensure that equili-

bration was driven by changes in the entropy criterion,

instead of driven by a finite number of iterations. Our

approach does not utilize burn-in. Rather, we used the

generative stochastic block model to initialize the Markov

chain from ground state, from which our posterior sampling

method ensued as aforementioned. Both nested and non-

nested models were constructed, with entropy after MCMC

equilibration used to inform of the most plausible fit. We used
automated labelling of revealed community structures by the

predominant functional community in accordance to well

published networks (Gordon et al., 2016).

Having generated a hierarchical graphical representation

of autonomic tone guided by functional connectivity, trac-

tography and gray-matter morphometric networks, we used

meta-analytic functional maps derived from natural language

processing of published imaging studies to assign candidate

functional labels to each level of organisation. This was ach-

ieved with NeuroQuery image search matching (Dockes et al.,

2020). Passing each identified region of interest (ROI) to Neu-

roQuery repository of 13,459 studies encompassing 5,144

activation pattern terms, we retrieved the closest matching 10

topic terms, at each hierarchical level. We filtered terms to

exclude those that were either anatomical, experimental,

vague or disease descriptors, utilising the Terminologia Ana-

tomica dictionary to automatically filter out anatomical terms

(FIPAT, 2019). This yielded a list of terms for each ROI, each

term with a matching score, from which we generated a

corpus for each hierarchical level, with detailed information

on the term frequency at all hierarchical levels. We de-

meaned the matching score across clusters to filter out for

commonalities and used word clouds to generate visual-

isations illustrating the proportionate frequency of terms.

2.6. Data and code availability

No part of the study procedures or analyses was preregistered

prior to the research being conducted. All brain imaging data

for this study is downloadable via the Cam-CAN data re-

pository at https://www.cam-can.org. All software used is all

freely available via original referenced sources in the

methods. Code excerpts are provided at https://osf.io/s3nej/.
3. Results

3.1. The imaging signature of the autonomic network

We sought to reveal the interplay between brain structure and

function in the operation of the autonomic nervous system as

reflected in heart rate variability, within a set of highly

expressive statisticalmodels.We examined three key domains,

crucially including their complex interactions: i) gray matter

structure; ii) white matter structure and iii) resting function,

both with conventional univariate-voxel and network-based

analysis. A complex array of distinctive characteristics was

revealed within each domain, but the most striking differenti-

ation between sympathetic and parasympathetic systems was

observed at the network level, further amplified when these

imaging domains were jointly modelled, yielding a compre-

hensive multimodal hierarchical model.

3.2. Autonomic measures

Resting mean autonomic measures were acquired by vali-

dated heart rate variability metrics in a group of 518 partici-

pants (261 males and 257 females, cohort mean ± SEM age

53.25 ± .79, range 18e88). Autonomic measures were in

keeping with the established population distribution of

https://graph-tool.skewed.de
https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/
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normality (n ¼ 277) and the distributional tails of abnormality

(n ¼ 241) (Allen, 2002; Shaffer & Ginsberg, 2017; Toichi et al.,

1997; Umetani, Singer, McCraty, & Atkinson, 1998): root

mean square of successive differences (RMSSD) (broadly

parasympathetic) was 44.35 ± 1.43 and cardiac sympathetic

index (CSI) was 2.33 ± .04, demonstrating that our sample was

reasonably representative. Thesemeasures had only amodest

anticorrelated relationship (cubic polynomial fit, R2 ¼ .30),

leaving substantial mutually unexplained variance (Fig. 1).

Mean resting heart rate was 63 ± .42. Mean height was

170.50 cm ± .54, whilst meanweight were 74.89 kg ± .67. Blood

pressure readings were as follows: i) systolic

120.00mmHg± .79; ii) diastolic 73.29mmHg± .49 and iii) mean

arterial 89.03 mmHg ± .51.

3.3. Gray matter structure

We identified a large array of widely distributed gray matter

areas modulated by resting autonomic tone. The extensive

gray matter networks observed were dominated by regions

within the frontal pole, orbitofrontal cortex, insula, dien-

cephalon (thalamus), basal ganglia (caudate and putamen),

hippocampus, amygdala and nucleus accumbens. Crucially,

while under mass univariate analysis sympathetic and para-

sympathetic regions were similar, their graphical community

structures differed radically (Fig. 2).
Fig. 2 e Brain gray matter structure and autonomic regulation.

Cortical volumetry significantly relates to CSI. C) A weighted st

based gray-matter morphometric parcellation of brain regions

proportional to z-statistic of voxel-basedmorphometry depende

proportional to effect size of connections from network-based s

coherence with the alternate autonomic contrast. A fully labelled

as supplementary Fig. 2. Brain images on the right depict the lev

Graphical representations on the far right of the figure illustrate

the given unit, where nodes are colour coded to the parcellatio

contain, with edge colour and width proportionate to the degree

cingulate cortex; OFC, orbitofrontal cortex; LOC, lateral occipital

PoG, postcentral gyrus; PrG, precentral gyrus.
3.3.1. Parasympathetic
Across the cortex, RMSSD was negatively correlated with

cortical thickness in the right anterior cingulate, orbitofrontal

cortex, precentral and postcentral gyrus (all p < .0001) and left

lateral occipital cortex (p ¼ .008). No significant positive cor-

relations were identified, nor was an association to cortical

volumetry. In the diencephalon, RMSSD was significantly

associated with modulation of shape of the thalamus bilat-

erally (both p ¼ .01) (Supplementary Figure 1). Network based

statistics identified a gray-matter morphometric network of

187 nodes and 346 edges (p ¼ .05), positively associated with

RMSSD, encompassing both cortical and subcortical regions,

including the frontal pole and orbitofrontal cortex (degree

[number of significant adjoining edges] 105), cingulate (degree

39), insula (degree 22), caudate (degree 7), hippocampus (de-

gree 6), putamen (degree 5), nucleus accumbens (degree 5) and

thalamus (degree 2) (Supplementary Figure 2).

3.3.2. Sympathetic
A negative correlation between CSI and cortical volume was

observed in left prefrontal cortex (p ¼ .008), right prefrontal

cortex, precentral gyrus, middle frontal gyrus (all p ¼ .01) and

lateral occipital cortex (p ¼ .04). No significant positive corre-

lations were identified, nor was there an association with

cortical thickness. Subcortical analyses showed significant

modulation of shape at the right accumbens (p < .05) and right
A) Cortical thickness significantly relates to RMSSD. B)

ochastic block model identifies a hierarchical community-

implicated in the regulation of the ANS. Nodes size is

nt on sympathetic and parasympathetic tone. Edge width is

tatistics. Hierarchical node colour is proportional to its

high-resolution representation of this network is available

el 0 (l0) community structure of the given autonomic model.

the community network architecture of the parcellation at

n, sized proportionately to the number of regions they

count between communities. Abbreviations: ACC, anterior

cortex; MFG, middle frontal gyrus; PFC, prefrontal cortex;
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caudate (p ¼ .04) by CSI (Supplementary Figure 1). Network

based statistics identified a gray-matter network positively

related to CSI of 75 nodes and edges (p ¼ .01), including many

edges connecting themiddle frontal gyrus (degree 72), but also

the cingulate (degree 8), hippocampus/hippocampal gyrus

(degree 5), orbitofrontal cortex (degree 4), amygdala (degree 3),

thalamus (degree 2), caudate, and accumbens (Supplementary

Figure 2). Sympathovagal balance was also reflected in

regional grey matter structure, reviewable in the supplemen-

tary material and Supplementary Figures 1 and 3.

Importantly, whilst we found no significant difference

between the mass univariate effects of RMSSD and CSI on

gray matter structure, their hierarchical community organi-

zation, revealed by the stochastic block model, differed

radically. For the parasympathetic arm, we found that mul-

tiple insula, thalamic and anterior cingulate nodes formed

communities together at the level 0 (l0) and level 1 (l1) hier-

archical blocks, whilst other regions such as the amygdala,

hippocampus, accumbens and posterior cingulate nodes

would community together (Supplementary Figure 2). There

were 27 l0 blocks and 4 l1 blocks derived from the para-

sympathetic contrast. In the sympathetic arm, regions such

as the caudate, putamen and insula would community

together, as would the insula, anterior cingulate, amygdala,

accumbens, orbitofrontal cortex and hippocampi. The sym-

pathetically derived communities were more equally sized,

and largely contained both regions reported key in the central

autonomic network (such as the cingulate), but also com-

munity to numerous other cortical regions, such as the pre-

and postecentral gyri. There were 25 l0 blocks and 3 l1 blocks

in this sympathetic contrast.

3.4. White matter structure

We identified extensive differences throughout the brain

white matter dependent on resting autonomic tone. Tract-

based analysis showed that FA was positively correlated

with CSI and RMSSD across multiple white matter areas,

including corticospinal and spinothalamic tracts. Network

analysis revealed a large sympathetic network, involving core

regions such as the cingulate and orbitofrontal cortices,

insula, subcortex (including numerous edges involving the

hippocampus) and brainstem. Unlike its parasympathetic

counterpart, the community structure of this network was

significantly different from the null. Overall, the differences in

the graphical structure between the two systems were more

pronounced than FA (Fig. 3).

3.4.1. Parasympathetic
Tract based spatial statistics identified many areas of the

white matter skeleton whose FA was positively correlated

with RMSSD (p-thresh<.0001). The white matter regions of

highest effect size and significance included the corticospinal

tract, spinothalamic tract, fronto-pontine tract, the medial

lemniscus, the anterior thalamic radiations, corpus callosum

and internal capsule (all bilateral). Analysis of axial, radial and

mean diffusivity revealed similar anatomical patterns.

Network based statistics did not yield a significant white

matter network (Supplementary Figure 4).
3.4.2. Sympathetic
The distribution of FA closely followed the parasympathetic

map, with the tracts of highest effect size again including the

corticospinal, spinothalamic, fronto-pontine, the medial

lemniscus, the anterior thalamic radiations, corpus callosum

and internal capsule (all bilateral) (p-thresh<.0001). Axial,

radial andmean diffusivitywere once again similar. The effect

size for CSI was significantly greater than for RMSSD, though

no regions were unique to either. Rather, there was a strong

regional correlation between the local FA in the two condi-

tions (R2 ¼ .76, p < .0001) (Supplementary Figure 5). Network

based statistics identified a white matter network negatively

related to resting CSI, consisting of 109 nodes and 133 edges

(p ¼ .003). This included edges incorporating the hippocam-

pus/parahippocampal gyrus (degree 30), frontal pole/orbito-

frontal cortex (degree 29), cingulate (degree 22), insula (degree

8), putamen (degree 4), nucleus accumbens and brainstem

(Supplementary Figure 4).

This network architecture and community allocation

differed extensively between parasympathetic and sympa-

thetic models (Supplementary Figure 4). The parasympathetic

arm identified a hierarchical structure of 14 blocks at l0 and

3 at l1, whilst the sympathetic branch in contrast consisted of

14 blocks at l0 and 2 at l1. For the sympathetic network com-

munity structure, brainstem, cingulate, accumbens, pre and

postecentral gyri nodes coalesced to a l0 block, as did insula

with further cingulate nodes in another. In contrast, in the

parasympathetic arm we found that several amygdala,

accumbens, brainstem, insula, anterior and posterior cingu-

late nodes clustered together at an l0 block.

3.5. Resting function

Multiple brain areas were modulated by resting autonomic

tone. An extensive functional brain network modulated by

both parasympathetic and sympathetic tone emerged, with a

preponderance for frontal lobe regions including the orbito-

frontal cortex, cingulate cortices, in addition to the caudate,

putamen, thalamus, amygdala, nucleus accumbens and

brainstem. In common with gray and white matter, while

univariate effects were similar, the community structure of

the sympathetic and parasympathetic graphical networks

differed extensively (Fig. 4).

3.5.1. Parasympathetic
RMSSD was significantly positively correlated with activity in

the bilateral insula cortex, the bilateral temporal poles, orbi-

tofrontal cortex, anterior cingulate cortex, the occipital pole,

bilateral nucleus accumbens, bilateral amygdala, the hypo-

thalamus, posterior brainstem structures, lingual gyrus,

cuneus and precuneus. RMSSD was significantly negatively

correlated to activity in the bilateral caudate, bilateral puta-

men, bilateral hippocampus and medial thalamic nuclei (all

p < .0001). Network based statistics identified a functional

brain network positively correlated to RMSSD of 216 nodes

and 570 edges (p < .0001). This included edges between pre-

dominantly cortical regions, with many edges including the

cingulate (degree 127), insula (degree 33) and orbital frontal

cortex (degree 16) (Supplementary Figure 6). Brain regions in

https://doi.org/10.1016/j.cortex.2021.06.012
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Fig. 3 e Brain white matter structure and autonomic regulation. A-B) Fractional anisotropy is significantly related to both

RMSSD and CSI, with a preponderance for effect size at the corticospinal, spinothalamic tract and fronto-pontine tracts. C) A

weighted stochastic block model identifies a hierarchical community-based probabilistic tractography parcellation of brain

regions implicated in the regulation of the sympathetic nervous system (parasympathetic not significantly different after

multiple comparisons in network-based statistics). Nodes size is proportional to z-statistic of fractional anisotropy related

to sympathetic and parasympathetic tone. Edge width is proportional to effect size of connections from network-based

statistics. Hierarchical node colour is proportional to its coherence with the alternate autonomic contrast. A fully labelled

high-resolution representation of this network is available as supplementary Fig. 4. Brain images on the right depict the

level 0 (l0) community structure of the given autonomic model. Graphical representations on the far right of the figure

illustrate the community network architecture of the parcellation at the given unit, where nodes are colour coded to the

parcellation, sized proportionately to the number of regions they contain, with edge colour and width proportionate to the

degree count between communities. Abbreviations: CST, corticospinal tract; FPT, fronto-pontine tract; STT, spinothalamic

tract.
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communities such as the default mode and cinguloparietal

networks exhibited the greatest eigenvector centrality, a

centrality measure of influence on the overall network struc-

ture), while those falling within the umbrella of the subcortex

and salience networks were of significantly lower centrality,

weighted by the RMSSD-derived edge statistics (p < .0001)

(Supplementary Figure 7).

3.5.2. Sympathetic
CSI was significantly positively correlated with activity in the

bilateral insula cortex, occipital pole, cuneus and precuneus.

CSI was significantly negatively correlated with activity in the

anterior andmid cingulate cortex, medial thalamic nuclei, the

bilateral caudate, the bilateral putamen and hypothalamus

(all p < .0001). Network based statistics identified a functional

brain network positively correlated to CSI of 95 nodes and 151

edges (p < .0001). This included edges between both cortical

and subcortical regions, including the cingulate (degree 28),

brainstem (degree 5), amygdala (degree 5), bilateral nucleus

accumbens (degree 4), insula (degree 3), thalamus and puta-

men (Supplementary Figure 6). We showed a converse profile

of centrality, wherein nodes of the subcortex, cinguloparietal

and salience networks had significantly greater eigenvector

centrality compared to those of the default mode network,
weighted by CSI-derived edge statistics (p ¼ .0002)

(Supplementary Figure 7). CSI was weakly negatively corre-

lated with small world propensity (r �.17, p ¼ .001) and clus-

tering coefficient (r �.14, p ¼ .01). As with regional FA, the

effect size and z-statistics of resting functional activity and its

relationship to RMSSD and CSI were strongly positively

correlated (R2 ¼ .52, p < .0001) (Supplementary Figure 8).

Findings pertaining to sympathovagal balance are presented

in the supplementary material (Supplementary Figure 9).

Similar to the aforementioned gray matter and white

matter network architecture, the community structure

differed extensively between the parasympathetic and sym-

pathetic resting functional connectivity stochastic block

models (Supplementary Figure 6). The parasympathetic arm

identified 18 l0 blocks and 2 at l1, whereas the sympathetic arm

consisted of 10 blocks at l0 and 2 l1. As described above, the

parasympathetic network invoked a large number of edges

illustrating the vast interconnectedness of much of the brain

with respect to resting parasympathetic tone. To that end, we

found that brainstem, caudate, insula, thalamic, frontal pole,

amygdala, globus pallidus and putamen nodes came together

at a an l0 block, with a separate block consisting of multiple

cingulate, pre- and postecentral gyri and thalamic nodes.

These separate communities would coalesce at the

https://doi.org/10.1016/j.cortex.2021.06.012
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Fig. 4 e Brain function and autonomic regulation. A) Cortical and subcortical regions activity significantly related to both

RMSSD and CSI (B). C) A weighted stochastic block model identifies a hierarchical community-based functional parcellation

of brain regions implicated in the regulation of the ANS. Nodes size is proportional to z-statistic of resting activity related to

sympathetic and parasympathetic tone. Edge width is proportional to effect size of functional connections from network-

based statistics. Hierarchical node colour is proportional to its coherence with the alternate autonomic contrast. A fully

labelled high-resolution representation of this network is available as supplementary Fig. 6. Brain images on the right

depict the level 0 (l0) community structure of the given autonomic model. Graphical representations on the far right of the

figure illustrate the community network architecture of the parcellation at the given unit, where nodes are colour coded to

the parcellation, sized proportionately to the number of regions they contain, with edge colour and width proportionate to

the degree count between communities. Abbreviations: ACC, anterior cingulate cortex; Amg, amygdala; ANS, autonomic

nervous system; BrStem, brainstem; Cd, caudate; Hi, hippocampus; Hyp, hypothalamus; Ins, insula; MCC, mid cingulate

cortex; NAcc, nucleus accumbens; OFC, orbitofrontal cortex; OP, occipital pole; Pu, putamen; Th, thalamus; TmP, temporal

pole.
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subsequent hierarchical level, the l1 block. Edge weights for

the sympathetic arm were generally smaller, though we

identified communities involving multiple orbitofrontal cor-

tex, thalamic, hippocampal, putamen and insula nodes in one

l0 block, with an adjacent l0 block consisting of multiple

cingulate, accumbens, brainstem and amygdala nodes. These

communities would then coalesce at the next hierarchical

level.

3.6. Multi-modal, high-dimensional, generative,
hierarchical autonomic connectomes

We next combined all the preceding structural and functional

analyses within a unified stochastic block model to generate a

multi-modal, high-dimensional, weighted, non-parametric

and hierarchical representation of the autonomic nervous

system (Fig. 5). The edge weights of themodel were significant

346 � 346 t-statistic adjacency matrices from all network-

based analyses (RMSSD and CSI adjacency matrices, x 3 im-

aging sequences evaluated, 358,110 unique edge weights).

First, we identified multimodal differences and similarities in

the graphical community structure of the sympathetic and

parasympathetic nervous systems, revealing a complex,

intricate, hierarchical representation of the autonomic
connectome (Fig. 5, high resolution fully labelled copy in

Supplementary Figure 10). At the first order (l0) there were 64

communities, coalescing into 12 communities at the second

order (l1) and finally into 2 at the third order (l2), corresponding

to sympathetic and parasympathetic tone. Communities were

dominated by structural and functional similarity, and natu-

rally retained elements of organization seen within both the

unimodal networks we defined, but also to that of networks

already well characterized elsewhere, such as the default

mode network. The inherently hierarchical nature of the or-

ganization was reinforced by a posterior odds ratio of

L z e420913 z infinitely in favour of the hierarchical repre-

sentation in place of the non-hierarchical alternative. To

quantify the degree of difference and similarity, we evaluated

the community coherence of brain regions across sympa-

thetic and parasympathetic models by normalized mutual

information (NMI), identifying that the architecture of these

networks differs extensively. Mean NMI between RMSSD and

CSI communities at l0 was .53 ± .15 (range .18e.64), whilst at l1
this was .49 ± .10 (range .30e.63). Labelled communities and

NMI approximations are reviewable on Fig. 5 and

Supplementary Figure 10.

Lastly, we employed the nested stochastic block model to

generate a hierarchical community structure of the brain

https://doi.org/10.1016/j.cortex.2021.06.012
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Fig. 5 e The parasympathetic and sympathetic connectome. A high-dimensional stochastic block model, weighted by

network-based statistics derived from resting functional brain activity, gray matter-morphometry and white matter

probabilistic tractography, identifies an intricate, hierarchical community-based parcellation implicated in parasympathetic

and sympathetic regulation. Node sizes are proportional to summed z-statistics from functional, gray-matter morphometry

and tract based spatial statistics. Edge width is proportional to summed network-based statistics. Hierarchical node colour

is proportional to its coherence with the alternate autonomic contrast. Representative regions implicated in the parcellation

are colour-coded according to the colour of the lowest level community of the hierarchical model. Select nodes are labelled

for reference, though a full labelled network is available in supplementary Fig. 10. Abbreviations: ACC, anterior cingulate

cortex; Amg, amygdala; BrStem, brainstem; Cd, caudate; FP, frontal pole; GP, globus pallidus; Hi, hippocampus; Ins, insula;

NAcc, nucleus accumbens; LOC, lateral occipital cortex; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; PoG,

postcentral gyrus; PrG, precentral gyrus; Pu, putamen; TmP, temporal pole.
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representing autonomic tone overall. We achieved this by use

of all imaging data reported, including the contrast edge

weights of gray, white matter and functional network data

across both sympathetic and parasympathetic contrasts. This

identified a 4-level hierarchical parcellation scheme of the

brain with respect to its multi-modality graphical association

of both sympathetic and parasympathetic tone. At its lowest

level (l0), a 15 regional parcellation was delineated, which

featured organised communities of motor, auditory, dorsal

attention, default mode, frontopolar, cingulo-opercular, ret-

rosplenial-temporal, visual, ventral attention and subcortex.

This hierarchically converged to 6 regions at l1, 4 regions at l2,

organised into communities of motor, default mode/dorsal

attention, default mode/subcortex and cingulo-opercular, and

3 regions at l3 (wherein the subsequent hierarchical level, l4,

would simply encompass the whole brain). We illustrate the

hierarchical parcellation and its community structure in Fig. 6,

making it available in NIFTI and tabulated format in the sup-

plementary data. We compared the underlying community
structure to that of the retrievedmeta-analytic corpus at the l2
level. This revealed organisation of domains of the following:

i) sensorimotor; ii) visuospatial; iii) cognitive-evaluative and

iv) social reflective).
4. Discussion

In the largest and most comprehensively studied group of

individuals to datedincorporating the relationship between

cortical, tractographic, functional brain mapping and heart

rate variabilitydwe reveal in unprecedented detail the rich

structural and functional brain signature of the autonomic

nervous system. We provide a generative, hierarchical,

graphical model of the brains architecture underpinning the

autonomic nervous system as disclosed by heart rate vari-

ability, an approach unifying all available modalities, drawn

from a large group of individuals of all ages encompassing the

full spectrum of autonomic normality and abnormality. The

https://doi.org/10.1016/j.cortex.2021.06.012
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Fig. 6 e The autonomic connectome. A multi-modal, hierarchical parcellation scheme of autonomic nervous system

function, defined by multi-modal graphical networks of both the parasympathetic and sympathetic nervous system.

Hierarchical parcellation from level 0 (A e 15 parcels) through to level 3 (D e 3 parcels), wherein communities ultimately co-

localise to a single unit. E) Graphical representations illustrate the community network architecture of the parcellation at the

given unit, where nodes are colour coded to the parcellation. Around the graphical plot, we use word clouds to illustrate the

weighted term frequency matches from NeuroQuery meta-analytic data with respect to the level 2 parcellation (panel C).

Hierarchical nodes are labelled automatically by their closest fit to established community structures. Abbreviations: AUD,

auditory control network; BL, bilateral; CO, cingulo-opercular network; DMN, default mode network; DAN, dorsal attention

network; R, right; RT, retrosplenial-temporal community; SMhand, somatomotor hand system; Sc, subcortical regions; VAN,

ventral attention network; VIS, visual network.
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complex brain networks thereby revealed plausibly underpin

autonomic functions that covary with heart rate variability: in

describing them so richly, we acquire potentially greater fi-

delity in characterising pathological deviations across the full

range of diseases with impact on autonomic function. Our

analysis provides a graphical network schema for evaluating

autonomic disruption at a variable, hierarchical granularity

that can be tailored to the statistical power of a specific study.

4.1. Brain gray matter structure and autonomic
regulation

We show how gray matter structure is related to autonomic

regulation at cortical regions inclusive of the anterior cingu-

late, orbitofrontal and prefrontal cortices. We identify regions

whose shapes differ contingent on autonomic tone, including

the thalamus, nucleus accumbens and basal ganglia. Our

univariate findings at both the cortex and subcortex repro-

duce those of other published studies (Ruffle, Coen,

Giampietro, Williams, Apkarian, et al., 2018), including a

largemulti-site study of brain structure (Koenig, Abler, Agartz,

et al., 2021). We advance current knowledge in identifying

gray matter morphometric networks (Raamana & Strother,

2018) subserving autonomic regulation, with high-degree

nodes including the orbitofrontal cortex, cingulate, insula,
basal ganglia, thalamus, nucleus accumbens, amygdala and

hippocampus. While our univariate findings replicate pub-

lished studies, our graphical analysis now uniquely reveals

their inter-relations, describing not just the network, but the

community structure within it.

4.2. Brain white matter structure and autonomic
regulation

The white matter connectivity of the autonomic system in

normal health has received little attention, most published

studies focusing on the impact of major pathology such as

Parkinson's disease (Ashraf-Ganjouei, Majd, Javinani, &

Aarabi, 2018) or stroke (Williamson et al., 2012). In conse-

quence, the relationship between autonomic tone and the

characteristics of white matter tracts have until now been

unknown. Here, we identify the clear relationship between

resting autonomic tone and many areas of the white matter

skeleton, with focus on the spinothalamic, corticospinal and

fronto-pontine tracts. With tractography, we illustrate a

sympathetic-specific white matter network structurally link-

ingmany autonomically salient graymatter regions, including

orbitofrontal cortex, cingulate, insula, hippocampus, nucleus

accumbens and brainstem. These findings reveal the impor-

tance of whitematter ascending tracts, brainstem, subcortical

https://doi.org/10.1016/j.cortex.2021.06.012
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and cortical regions with regard to central autonomic regu-

lation (Critchley & Harrison, 2013).

4.3. Brain function and autonomic regulation

We reveal a complex hierarchical network of functional brain

connectivity associated with autonomic tone, implicating a

wide array of cortical and subcortical regions, with clear dif-

ferences between sympathetic and parasympathetic systems.

We further show that the activity of key cortical and subcor-

tical regions (including multiple regions within the default

mode network) are implicated in autonomic regulation,

including the anterior and mid cingulate cortices, orbito-

frontal cortex, insula, thalamus, amygdala, nucleus accum-

bens, hypothalamus, hippocampus, basal ganglia and

brainstem structures. These findings consolidate previous

studies on smaller individuals/pooled meta-analyses

(Beissner et al., 2013; Ruffle, Coen, Giampietro, Williams,

Aziz, et al., 2018), and reinforce the argument that the

default mode network may serve an overarching regulatory

role across a variety of human physiology and behaviour

(Dohmatob, Dumas, & Bzdok, 2020).

4.4. The autonomic brain: multidimensional generative
hierarchical modelling of the autonomic connectome

Autonomic neuroimaging studies have to datemostly focused

on evaluating the relationship between autonomic function

and a single imagingmodality or brain characteristic, omitting

the multimodal level of organisation of the brain. Given the

central importance of the autonomic nervous system, and its

frequent disturbance in disorders spanning multiple body

systems, we argue its operations are bound to reflect the

complex interplay ofmany areas of the brain, best captured as

a graph. To arrive at the closest approximation to the under-

lying true organisation should therefore require a multi-

dimensional generative graphical model that comprehen-

sively integrates structure and function across the brain. Our

approach of using a Bayesian weighted and hierarchical sto-

chastic block modelda generative graphical modeldto iden-

tify a hierarchical community of brain regions implicated in

parasympathetic and sympathetic regulation is here shown to

be strongly favoured over a non-hierarchical alternative. The

resultant multi-dimensional ‘autonomic connectome’ reveals

the complex hierarchical interplay between cortical and

subcortical communities in autonomic regulation, yielding a

hierarchical parcellation of the substrate plausibly involved in

autonomic regulation and its deviation from normality,

providing a means to utilise this in future imaging study.

Meta-analytic functional labelling suggests a high-level orga-

nisation into sensorimotor, visuospatial, cognitive-evaluative

and social-reflective domains.

4.5. The value of graphical modelling

Our analysis attests to the value of the network approach to

brain imaging (Bullmore & Sporns, 2009; Rubinov & Sporns,

2010; Sporns, 2013). We have demonstrated that the mass-

univariate evaluation of functional activity, white matter ar-

chitecture, and gray matter morphometry robustly identifies
regions modulated by both parasympathetic and sympathetic

tone, but not regions that differ between the two systems. Yet,

the corresponding graphical networks are radically different.

This indicates that the regions implicated in autonomic con-

trol are unlikely to be uniquely allocated to regulating sym-

pathetic or parasympathetic function, but rather interact in

distinctive ways in subserving each function. To understand

the operation of the autonomic system as a whole we argue it

is the network level we must interrogate.

We have further shown that graphical analysis can reveal

communities ofmultiple neural areas sharing similar patterns

of inter-relatedness that may have mechanistic implications

for the organisation of autonomic function. The communities

identified here are potential targets for more detailed exami-

nation with correlative and especially with disruptive tech-

niques, illuminating the significance of the observed distinct

patterns of shared connectivity. Such downstream investiga-

tion is facilitated here by employing stochastic block models

to derive a hierarchical parcellation of the brain into regions-

of-interest optimally tuned to detecting differences between

autonomic areas. A system-specific, hierarchical parcellation

provides a flexible means of parameterising the brain at a

granularity chosen such that the functional anatomical

comparability of a set of individuals under study is optimised

for the available data. Where only a few individuals are

available, a coarser parcellation, obtained from higher levels

of the hierarchy would be appropriate, and the converse will

be true where a great deal of data is available. But whatever

the chosen scale, the comparability of each individual on the

dimensions that matterdthose related to autonomic func-

tiondwould be superior to a parcellation of the same resolu-

tion that is not informed by the system under study. Our

models also provide a principled mechanism for integrating

multimodal information in quantifying the impact of regional

neural dysfunction on any individual patient. For example, a

focal lesion such as an ischaemic stroke can now be weight-

eddseparately for grey and white matter componentsdto

produce a synoptic index of potential autonomic impact,

compactly expressed. Such “functionally-informed” multi-

modal lesion representations can facilitate predictive models

of individual clinical outcomes, and enhance the detection of

individual therapeutic effects (Xu, Rolf J€ager, Husain, Rees, &

Nachev, 2017). Finally, the same generative graphical

approach can be extended to autonomic measures them-

selves, extracting a hierarchically organised representation of

their relations that can then be used to provide an even richer

description of the autonomic brain, constrained only by the

scale and diversity of available data.

4.6. Strengths and limitations

All models of the brain are necessarily approximations: our

aim is less to produce the definitive map of the autonomic

nervous system than to provide a blueprint for generating

iteratively refined multimodal maps that grow in detail and

robustness with the addition of data, encompassing new

investigational modalities and broader populations. It would

be valuable to evaluate the population effects of parameters

known to modulate autonomic activity, such as caffeine

(Niedermaier et al., 1993) and smoking (Zahn & Rapoport,
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1987), which our data did not permit us to examine or con-

trol for. Though our cohort deliberately excluded any sub-

stantive ill-health or medication use so as to allow us to

focus on the spectrum of autonomic normality and abnor-

mality only, these aspects could naturally be addressed in

the same way, aided by the comparison of the present

population. In all modelling, we controlled for all available

demographic and baseline cardiovascular health parameters

(including blood pressure), but we could not control for the

time interval between autonomic testing and imaging owing

to the nature of the prospective study. However, given an

individual's autonomic signature has been shown as com-

parable over a year later (Farmer et al., 2014), it would seem

plausible that the effect of this is limited. Future work

should additionally validate these findings across other

alternate surrogate measures of autonomic nervous system

activity, including with real-time synchronous fMRI and HRV

data. Replication on large-scale datasets diversified both

biologically and instrumentallydsuch as the Human Con-

nectome Project or UK Biobank (Alfaro-Almagro et al., 2018;

Van Essen et al., 2013)dwill strengthen generalisability. That

all individuals here were studied and scanned on a single

site scanner with the same sequence throughout, a rarity in

large brain imaging cohorts.
5. Conclusion

We present the largest, most comprehensively studied group

of individuals with respect to the central brain regulation of

the autonomic nervous system and provide a hierarchical

representation of a functionally defined physiological domain

of the brain. Our multidimensional, generative hierarchical

network of the central regulation of autonomic nervous sys-

tem function reveals the topology of this complex and intri-

cate system. Future studies should investigate this network

with regards to its perturbation across major disease states.
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