288 research outputs found

    Traffic control for energy harvesting virtual small cells via reinforcement learning

    Get PDF
    Due to the rapid growth of mobile data traffic, future mobile networks are expected to support at least 1000 times more capacity than 4G systems. This trend leads to an increasing energy demand from mobile networks which raises both economic and environmental concerns. Energy costs are becoming an important part of OPEX by Mobile Network Operators (MNOs). As a result, the shift towards energy-oriented design and operation of 5G and beyond systems has been emphasized by academia, industries as well as standard bodies. In particular, Radio Access Network (RAN) is the major energy consuming part of cellular networks. To increase the RAN efficiency, Cloud Radio Access Network (CRAN) has been proposed to enable centralized cloud processing of baseband functions while Base Stations (BSs) are reduced to simple Radio Remote Heads (RRHs). The connection between the RRHs and central cloud is provided by high capacity and very low latency fronthaul. Flexible functional splits between local BS sites and a central cloud are then proposed to relax the CRAN fronthaul requirements via partial processing of baseband functions at the local BS sites. Moreover, Network Function Virtualization (NFV) and Software Defined Networking (SDN) enable flexibility in placement and control of network functions. Relying on SDN/NFV with flexible functional splits, network functions of small BSs can be virtualized and placed at different sites of the network. These small BSs are known as virtual Small Cells (vSCs). More recently, Multi-access Edge Computing (MEC) has been introduced where BSs can leverage cloud computing capabilities and offer computational resources on demand basis. On the other hand, Energy Harvesting (EH) is a promising technology ensuring both cost effectiveness and carbon footprint reduction. However, EH comes with challenges mainly due to intermittent and unreliable energy sources. In EH Base Stations (EHBSs), it is important to intelligently manage the harvested energy as well as to ensure energy storage provision. Consequently, MEC enabled EHBSs can open a new frontier in energy-aware processing and sharing of processing units according to flexible functional split options. The goal of this PhD thesis is to propose energy-aware control algorithms in EH powered vSCs for efficient utilization of harvested energy and lowering the grid energy consumption of RAN, which is the most power consuming part of the network. We leverage on virtualization and MEC technologies for dynamic provision of computational resources according to functional split options employed by the vSCs. After describing the state-of-the-art, the first part of the thesis focuses on offline optimization for efficient harvested energy utilization via dynamic functional split control in vSCs powered by EH. For this purpose, dynamic programming is applied to determine the performance bound and comparison is drawn against static configurations. The second part of the thesis focuses on online control methods where reinforcement learning based controllers are designed and evaluated. In particular, more focus is given towards the design of multi-agent reinforcement learning to overcome the limitations of centralized approaches due to complexity and scalability. Both tabular and deep reinforcement learning algorithms are tailored in a distributed architecture with emphasis on enabling coordination among the agents. Policy comparison among the online controllers and against the offline bound as well as energy and cost saving benefits are also analyzed.Debido al rápido crecimiento del tráfico de datos móviles, se espera que las redes móviles futuras admitan al menos 1000 veces más capacidad que los sistemas 4G. Esta tendencia lleva a una creciente demanda de energía de las redes móviles, lo que plantea preocupaciones económicas y ambientales. Los costos de energía se están convirtiendo en una parte importante de OPEX por parte de los operadores de redes móviles (MNO). Como resultado, la academia, las industrias y los organismos estándar han enfatizado el cambio hacia el diseño orientado a la energía y la operación de sistemas 5G y más allá de los sistemas. En particular, la red de acceso por radio (RAN) es la principal parte de las redes celulares que consume energía. Para aumentar la eficiencia de la RAN, se ha propuesto Cloud Radio Access Network (CRAN) para permitir el procesamiento centralizado en la nube de las funciones de banda base, mientras que las estaciones base (BS) se reducen a simples cabezales remotos de radio (RRH). La conexión entre los RRHs y la nube central es proporcionada por una capacidad frontal de muy alta latencia y muy baja latencia. Luego se proponen divisiones funcionales flexibles entre los sitios de BS locales y una nube central para relajar los requisitos de red de enlace CRAN a través del procesamiento parcial de las funciones de banda base en los sitios de BS locales. Además, la virtualización de funciones de red (NFV) y las redes definidas por software (SDN) permiten flexibilidad en la colocación y el control de las funciones de red. Confiando en SDN / NFV con divisiones funcionales flexibles, las funciones de red de pequeñas BS pueden virtualizarse y ubicarse en diferentes sitios de la red. Estas pequeñas BS se conocen como pequeñas celdas virtuales (vSC). Más recientemente, se introdujo la computación perimetral de acceso múltiple (MEC) donde los BS pueden aprovechar las capacidades de computación en la nube y ofrecer recursos computacionales según la demanda. Por otro lado, Energy Harvesting (EH) es una tecnología prometedora que garantiza tanto la rentabilidad como la reducción de la huella de carbono. Sin embargo, EH presenta desafíos principalmente debido a fuentes de energía intermitentes y poco confiables. En las estaciones base EH (EHBS), es importante administrar de manera inteligente la energía cosechada, así como garantizar el suministro de almacenamiento de energía. En consecuencia, los EHBS habilitados para MEC pueden abrir una nueva frontera en el procesamiento con conciencia energética y el intercambio de unidades de procesamiento de acuerdo con las opciones de división funcional flexible. El objetivo de esta tesis doctoral es proponer algoritmos de control conscientes de la energía en vSC alimentados por EH para la utilización eficiente de la energía cosechada y reducir el consumo de energía de la red de RAN, que es la parte más consumidora de la red. Aprovechamos las tecnologías de virtualización y MEC para la provisión dinámica de recursos computacionales de acuerdo con las opciones de división funcional empleadas por los vSC. La primera parte de la tesis se centra en la optimización fuera de línea para la utilización eficiente de la energía cosechada a través del control dinámico de división funcional en vSC con tecnología EH. Para este propósito, la programación dinámica se aplica para determinar el rendimiento limitado y la comparación se realiza con configuraciones estáticas. La segunda parte de la tesis se centra en los métodos de control en línea donde se diseñan y evalúan los controladores basados en el aprendizaje por refuerzo. En particular, se presta más atención al diseño de aprendizaje de refuerzo de múltiples agentes para superar las limitaciones de los enfoques centralizados debido a la complejidad y la escalabilidad. También se analiza la comparación de políticas entre los controladores en línea y contra los límites fuera de línea,Postprint (published version

    Survey on 5G Second Phase RAN Architectures and Functional Splits

    Get PDF
    The Radio Access Network (RAN) architecture evolves with different generations of mobile communication technologies and forms an indispensable component of the mobile network architecture. The main component of the RAN infrastructure is the base station, which includes a Radio Frequency unit and a baseband unit. The RAN is a collection of base stations connected to the core network to provide coverage through one or more radio access technologies. The advancement towards cloud native networks has led to centralizing the baseband processing of radio signals. There is a trade-off between the advantages of RAN centralization (energy efficiency, power cost reduction, and the cost of the fronthaul) and the complexity of carrying traffic between the data processing unit and distributed antennas. 5G networks hold high potential for adopting the centralized architecture to reduce maintenance costs while reducing deployment costs and improving resilience, reliability, and coordination. Incorporating the concept of virtualization and centralized RAN architecture enables to meet the overall requirements for both the customer and Mobile Network Operator. Functional splitting is one of the key enablers for 5G networks. It supports Centralized RAN, virtualized Radio Access Network, and the recent Open Radio Access Networks. This survey provides a comprehensive tutorial on the paradigms of the RAN architecture evolution, its key features, and implementation challenges. It provides a thorough review of the 3rd Generation Partnership Project functional splitting complemented by associated challenges and potential solutions. The survey also presents an overview of the fronthaul and its requirements and possible solutions for implementation, algorithms, and required tools whilst providing a vision of the evaluation beyond 5G second phase.info:eu-repo/semantics/submittedVersio

    Design and Service Provisioning Methods for Optical Networks in 5G and Beyond Scenarios

    Get PDF
    Network operators are deploying 5G while also considering the evolution towards 6G. They consider different enablers and address various challenges. One trend in the 5G deployment is network densification, i.e., deploying many small cell sites close to the users, which need a well-designed transport network (TN). The choice of the TN technology and the location for processing the 5G protocol stack functions are critical to contain capital and operational expenditures. Furthermore, it is crucial to ensure the resiliency of the TN infrastructure in case of a failure in nodes and/or links while the resource efficiency is maximized.Operators are also interested in 5G networks with flexibility and scalability features. In this context, one main question is where to deploy network functions so that the connectivity and compute resources are utilized efficiently while meeting strict service latency and availability requirements. Off-loading compute resources to large and central data centers (DCs) has some advantages, i.e., better utilization of compute resources at a lower cost. A backup path can be added to address service availability requirements when using compute off-loading strategies. This might impact the service blocking ratio and limit operators’ profit. The importance of this trade-off becomes more critical with the emergence of new 6G verticals.This thesis proposes novel methods to address the issues outlined above. To address the challenge of cost-efficient TN deployment, the thesis introduces a framework to study the total cost of ownership (TCO), latency, and reliability performance of a set of TN architectures for high-layer and low-layer functional split options. The architectural options are fiber- or microwave-based. To address the strict availability requirement, the thesis proposes a resource-efficient protection strategy against single node/link failure of the midhaul segment. The method selects primary and backup DCs for each aggregation node (i.e., nodes to which cell sites are connected) while maximizing the sharing of backup resources. Finally, to address the challenge of resource efficiency while provisioning services, the thesis proposes a backup-enhanced compute off-loading strategy (i.e., resource-efficient provisioning (REP)). REP selects a DC, a connectivity path, and (optionally) a backup path for each service request with the aim of minimizing resource usage while the service latency and availability requirements are met.Our results of the techno-economic assessment of the TN options reveal that, in some cases, microwave can be a good substitute for fiber technology. Several factors, including the geo-type, functional split option, and the cost of fiber trenching and microwave equipment, influence the effectiveness of the microwave. The considered architectures show similar latency and reliability performance and meet the 5G service requirements. The thesis also shows that a protection strategy based on shared connectivity and compute resources can lead to significant cost savings compared to benchmarks based on dedicated backup resources. Finally, the thesis shows that the proposed backup-enhanced compute off-loading strategy offers advantages in service blocking ratio and profit gain compared to a conventional off-loading approach that does not add a backup path. Benefits are even more evident considering next-generation services, e.g., expected on the market in 3 to 5 years, as the demand for services with stringent latency and availability will increase

    A Comprehensive Survey on Resource Allocation for CRAN in 5G and Beyond Networks

    Get PDF
    The diverse service requirements coming with the advent of sophisticated applications as well as a large number of connected devices demand for revolutionary changes in the traditional distributed radio access network (RAN). To this end, Cloud-RAN (CRAN) is considered as an important paradigm to enhance the performance of the upcoming fifth generation (5G) and beyond wireless networks in terms of capacity, latency, and connectivity to a large number of devices. Out of several potential enablers, efficient resource allocation can mitigate various challenges related to user assignment, power allocation, and spectrum management in a CRAN, and is the focus of this paper. Herein, we provide a comprehensive review of resource allocation schemes in a CRAN along with a detailed optimization taxonomy on various aspects of resource allocation. More importantly, we identity and discuss the key elements for efficient resource allocation and management in CRAN, namely: user assignment, remote radio heads (RRH) selection, throughput maximization, spectrum management, network utility, and power allocation. Furthermore, we present emerging use-cases including heterogeneous CRAN, millimeter-wave CRAN, virtualized CRAN, Non- Orthogonal Multiple Access (NoMA)-based CRAN and fullduplex enabled CRAN to illustrate how their performance can be enhanced by adopting CRAN technology. We then classify and discuss objectives and constraints involved in CRAN-based 5G and beyond networks. Moreover, a detailed taxonomy of optimization methods and solution approaches with different objectives is presented and discussed. Finally, we conclude the paper with several open research issues and future directions

    Joint access-backhaul mechanisms in 5G cell-less architectures

    Get PDF
    Older generations of wireless networks, such as 1G and 2G were deployed using leased line, copper or fibre line as backhaul. Later, in 3G and 4G, microwave wireless links have also worked as backhaul links while the backbone of the network was still wireline-based. However, due to multiple different use cases and deployment scenarios of 5G, solo wireline based backhaul network is not a cost-efficient option for the operators anymore. For cost-efficient and fast deployment, wireless backhaul options are very attractive. As drawbacks, wireless backhaul links have capacity and distance limitations. To take the advantages of both the solutions, i.e., wired and wireless, 5G transport networks are anticipated to be a heterogeneous, complex, and with stringent performance requirements. To address the aforementioned challenges, wireless backhaul options are providing more attractive solutions, and hence, technologies using the same resources (e.g., frequency channels) may be used by both access and backhaul networks. In this scenario, blurring the separation line between access and backhaul networks allows resource sharing and cooperation between both the networks and minimizes the network deployment and maintenance cost significantly. Therefore, in 5G, the access and backhaul networks cannot be seen as separate entities; rather, we seek to integrate them together to ensure the best use of resources. In this thesis, firstly, we investigate the challenges and potential technologies of 5G transport network. Later, to address these challenges, we identify and present different approaches to perform joint access-backhaul mechanism. An initial performance evaluation of access-aware backhaul optimization is presented, where backhaul network is dynamically assigned with the required resources to serve the dynamic requirements of a 5G access network. The evaluation results and discussions manifest the resource efficiency of joint access-backhaul mechanisms. Functional splits in different layers of the access network comes as an intelligent solution to reduce the enormous capacity requirements of the transport network in a centralized radio access network approach, which tends to centralize almost all the functionalities into a central unit, leaving only radio frequency functions at the access points. From the joint access-backhaul mechanism perspective, we propose a novel technique, which takes the benefit of functional splits at physical layer, to design a heterogeneous transport network in an economical budget-limited and capacity-limited scenario. Till today, the limited capacity of the wireless backhaul links remains a challenge, and hence, frequency spectrum becomes scarce, and requires efficient utilization. To address this challenge, a joint spectrum sharing technique to implement joint accessbackhaul mechanism is presented. Evaluation results show that our proposed joint spectrum sharing technique, where spectrum allocation in the backhaul network follows the access network's traffic load, is fair and efficient in terms of spectrum utilization. We also propose a machine learning technique, which analyses data from a real network and estimates access network's traffic pattern, and subsequently, assigns bandwidth in the access network according to the traffic estimations. Presented evaluation results show that a well-trained machine learning model can be very efficient to obtain an efficient utilization of frequency spectrum.Las primeras generaciones de redes móviles, se implementaron utilizando líneas de cobre o fibra para la conexión entre la red de acceso y el núcleo de la red (conexión backhaul). Más tarde, los enlaces inalámbricos también han funcionado como backhaul mientras que la columna vertebral de la red seguía basada en cable. Sin embargo, debido a los múltiples escenarios de implementación de 5G, una red de backhaul basada solamente en cable ya no es una opción rentable para los operadores. Para una implementación rentable y rápida, las opciones de backhaul inalámbrico son muy atractivas. Como inconvenientes, los enlaces backhaul inalámbricos tienen limitaciones de capacidad y distancia. Para aprovechar las ventajas de ambas soluciones, es decir, cableadas e inalámbricas, se prevé que las redes de transporte 5G sean heterogéneas, complejas y con estrictos requisitos de rendimiento. Para abordar los desafíos antes mencionados, las opciones de backhaul inalámbrico brindan soluciones más atractivas y, por lo tanto, las tecnologías que usan los mismos recursos (por ejemplo, canales de frecuencia) pueden usarse tanto en las redes de acceso como en las de backhaul. En este escenario, desdibujar la línea de separación entre las redes de acceso y backhaul permite el intercambio de recursos y la cooperación entre ambas redes, y minimiza significativamente los costes de implementación y mantenimiento de la red. Por lo tanto, en 5G las redes de acceso y backhaul no pueden verse como entidades separadas; más bien consideraremos su integración para asegurar el mejor uso de los recursos. En esta tesis, en primer lugar, investigamos los desafíos y las tecnologías potenciales para la implementación de la red de backhaul 5G. Más tarde, para abordar dichos desafíos, identificamos diferentes enfoques para un mecanismo conjunto de gestión de la red de acceso y backhaul. Se presenta una evaluación de rendimiento inicial para la optimización de backhaul que tiene en cuenta el estado de la red de acceso, donde la red de backhaul se equipa dinámicamente con los recursos necesarios para cumplir con los requisitos de la red de acceso 5G. Los resultados de la evaluación manifiestan la mayor eficiencia de los mecanismos de gestión de recursos que consideran redes de acceso y backhaul conjuntamente. Las divisiones funcionales en diferentes capas de la red de acceso (functional splits) se presentan como una solución inteligente para reducir los enormes requisitos de capacidad de la red de transporte en un enfoque de red de acceso, que tiende a centralizar casi todas las funcionalidades en una unidad central, dejando solo las funciones más relacionadas con la transmisión/recepción de señales en los puntos de acceso. Desde la perspectiva del mecanismo conjunto de red de acceso y backhaul, proponemos una técnica novedosa, que aprovecha las divisiones funcionales en la capa física para diseñar una red de transporte heterogénea con un presupuesto económico y un escenario de capacidad limitada. Hasta el día de hoy, la capacidad limitada de los enlaces inalámbricos sigue siendo un desafío, dado que el espectro de frecuencias es escaso y requiere una utilización eficiente. Para hacer frente a este desafío, se presenta una técnica de gestión de recursos espectrales compartidos entre red de acceso y backhaul. Los resultados de la evaluación muestran que nuestra propuesta, donde la asignación de espectro en la red de backhaul se hace de acuerdo a la carga de tráfico de la red de acceso, es justa y eficiente. También proponemos una técnica de aprendizaje automático, que analiza datos de una red real y estima el patrón de tráfico de la red de acceso para, posteriormente, asignar ancho de banda en la red de acceso de acuerdo con dichas estimaciones. Los resultados de la evaluación presentados muestran que un modelo de aprendizaje automático bien entrenado puede ser una herramienta muy útil a la hora de obtener una utilización eficiente del espectro de frecuencias.Postprint (published version

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore