10 research outputs found

    Joint Energy and SINR Coverage in Spatially Clustered RF-powered IoT Network

    Get PDF
    Owing to the ubiquitous availability of radio-frequency (RF) signals, RF energy harvesting is emerging as an appealing solution for powering IoT devices. In this paper, we model and analyze an IoT network which harvests RF energy and receives information from the same wireless network. In order to enable this operation, each time slot is partitioned into charging and information reception phases. For this setup, we characterize two performance metrics: (i) energy coverage and (ii) joint signal-to-interference-plus-noise (SINR) and energy coverage. The analysis is performed using a realistic spatial model that captures the spatial coupling between the locations of the IoT devices and the nodes of the wireless network (referred henceforth as the IoT gateways), which is often ignored in the literature. In particular, we model the locations of the IoT devices using a Poisson cluster process (PCP) and assume that some of the clusters have IoT gateways (GWs) deployed at their centers while the other GWs are deployed independently of the IoT devices. The level of coupling can be controlled by tuning the fraction of total GWs that are deployed at the cluster centers. Due to the inherent intractability of computing the distribution of shot noise process for this setup, we propose two accurate approximations, using which the aforementioned metrics are characterized. Multiple system design insights are drawn from our results. For instance, we demonstrate the existence of optimal slot partitioning that maximizes the system throughput. In addition, we explore the effect of the level of coupling between the locations of the IoT devices and the GWs on this optimal slot partitioning. Particularly, our results reveal that the optimal value of time duration for the charging phase increases as the level of coupling decreases.Comment: To appear in IEEE Transactions on Green Communications and Networkin

    Gaussian functional shapes-based type-II fuzzy membership-based cluster protocol for energy harvesting IoT networks

    Get PDF
    With the advancements in Internet of Things (IoT) technologies, energy harvesting IoT devices are becoming significantly important. These tiny IoT devices can harvest bounded energy, thus need an efficient protocol to conserve the energy in more efficient manner. From the review, it is found that the development of an efficient energy efficient protocol for energy harvesting IoT is still an open area of research. It is found that fuzzy based energy harvesting IoTs has shown significant improvement over the existing protocols. However, the fuzzy logic suffers from the data uncertainty issue. Therefore, in this paper, Gaussian functional shapes-based type-II fuzzy membership function is used to elect the cluster heads among the IoT devices to reduce the energy consumption of energy harvest IoTs. Thereafter, inter-cluster data aggregation is used. Finally, the communication between the elected cluster heads and the cloud servers or sink. Extensive experiments are drawn by considering the existing and the proposed protocols for energy harvesting IoTs. Comparative analysis reveals that the proposed type-II fuzzy membership function-based protocol outperforms the existing protocols in terms of bandwidth analysis, throughput, conserve energy, network lifetime, and average consumed energy

    On the Role of Age of Information in the Internet of Things

    Full text link
    In this article, we provide an accessible introduction to the emerging idea of Age of Information (AoI) that quantifies freshness of information and explore its possible role in the efficient design of freshness-aware Internet of Things (IoT). We start by summarizing the concept of AoI and its variants with emphasis on the differences between AoI and other well-known performance metrics in the literature, such as throughput and delay. Building on this, we explore freshness-aware IoT design for a network in which IoT devices sense potentially different physical processes and are supposed to frequently update the status of these processes at a destination node (such as a cellular base station). Inspired by the recent interest, we also assume that these IoT devices are powered by wireless energy transfer by the destination node. For this setting, we investigate the optimal sampling policy that jointly optimizes wireless energy transfer and scheduling of update packet transmissions from IoT devices with the goal of minimizing long-term weighted sum-AoI. Using this, we characterize the achievable AoI region. We also compare this AoI-optimal policy with the one that maximizes average throughput (throughput-optimal policy), and demonstrate the impact of system state on their structures. Several promising directions for future research are also presented.Comment: To appear in IEEE Communications Magazin

    AoI-optimal Joint Sampling and Updating for Wireless Powered Communication Systems

    Full text link
    This paper characterizes the structure of the Age of Information (AoI)-optimal policy in wireless powered communication systems while accounting for the time and energy costs of generating status updates at the source nodes. In particular, for a single source-destination pair in which a radio frequency (RF)-powered source sends status updates about some physical process to a destination node, we minimize the long-term average AoI at the destination node. The problem is modeled as an average cost Markov Decision Process (MDP) in which, the generation times of status updates at the source, the transmissions of status updates from the source to the destination, and the wireless energy transfer (WET) are jointly optimized. After proving the monotonicity property of the value function associated with the MDP, we analytically demonstrate that the AoI-optimal policy has a threshold-based structure w.r.t. the state variables. Our numerical results verify the analytical findings and reveal the impact of state variables on the structure of the AoI-optimal policy. Our results also demonstrate the impact of system design parameters on the optimal achievable average AoI as well as the superiority of our proposed joint sampling and updating policy w.r.t. the generate-at-will policy

    Joint Energy and SINR Coverage in Spatially Clustered RF-Powered IoT Network

    No full text
    Owing to the ubiquitous availability of radio-frequency (RF) signals, RF energy harvesting is emerging as an appealing solution for powering Internet-of-Things (IoT) devices. In this paper, we model and analyze an IoT network which harvests RF energy and receives information from the same wireless network. In order to enable this operation, each time slot is partitioned into charging and information reception phases. For this setup, we characterize two performance metrics: 1) energy coverage and 2) joint signal-to-interference-plus-noise and energy coverage. The analysis is performed using a realistic spatial model that captures the spatial coupling between the locations of the IoT devices and the nodes of the wireless network (referred, henceforth, as the IoT gateways), which is often ignored in the literature. In particular, we model the locations of the IoT devices using a Poisson cluster process and assume that some of the clusters have IoT gateways (GWs) deployed at their centers while the other GWs are deployed independently of the IoT devices. The level of coupling can be controlled by tuning the fraction of total GWs that are deployed at the cluster centers. Due to the inherent intractability of computing the distribution of shot noise process for this setup, we propose two accurate approximations, using which the aforementioned metrics are characterized. Multiple system design insights are drawn from our results. For instance, we demonstrate the existence of optimal slot partitioning that maximizes the system throughput. In addition, we explore the effect of the level of coupling between the locations of the IoT devices and the GWs on this optimal slot partitioning. Particularly, our results reveal that the optimal value of time duration for the charging phase increases as the level of coupling decreases

    Joint Energy and SINR Coverage in Spatially Clustered RF-Powered IoT Network

    No full text
    Owing to the ubiquitous availability of radio-frequency (RF) signals, RF energy harvesting is emerging as an appealing solution for powering Internet-of-Things (IoT) devices. In this paper, we model and analyze an IoT network which harvests RF energy and receives information from the same wireless network. In order to enable this operation, each time slot is partitioned into charging and information reception phases. For this setup, we characterize two performance metrics: 1) energy coverage and 2) joint signal-to-interference-plus-noise and energy coverage. The analysis is performed using a realistic spatial model that captures the spatial coupling between the locations of the IoT devices and the nodes of the wireless network (referred, henceforth, as the IoT gateways), which is often ignored in the literature. In particular, we model the locations of the IoT devices using a Poisson cluster process and assume that some of the clusters have IoT gateways (GWs) deployed at their centers while the other GWs are deployed independently of the IoT devices. The level of coupling can be controlled by tuning the fraction of total GWs that are deployed at the cluster centers. Due to the inherent intractability of computing the distribution of shot noise process for this setup, we propose two accurate approximations, using which the aforementioned metrics are characterized. Multiple system design insights are drawn from our results. For instance, we demonstrate the existence of optimal slot partitioning that maximizes the system throughput. In addition, we explore the effect of the level of coupling between the locations of the IoT devices and the GWs on this optimal slot partitioning. Particularly, our results reveal that the optimal value of time duration for the charging phase increases as the level of coupling decreases

    Joint Energy and SINR Coverage in Spatially Clustered RF-Powered IoT Network

    Get PDF
    Owing to the ubiquitous availability of radio-frequency (RF) signals, RF energy harvesting is emerging as an appealing solution for powering Internet-of-Things (IoT) devices. In this paper, we model and analyze an IoT network which harvests RF energy and receives information from the same wireless network. In order to enable this operation, each time slot is partitioned into charging and information reception phases. For this setup, we characterize two performance metrics: 1) energy coverage and 2) joint signal-to-interference-plus-noise and energy coverage. The analysis is performed using a realistic spatial model that captures the spatial coupling between the locations of the IoT devices and the nodes of the wireless network (referred, henceforth, as the IoT gateways), which is often ignored in the literature. In particular, we model the locations of the IoT devices using a Poisson cluster process and assume that some of the clusters have IoT gateways (GWs) deployed at their centers while the other GWs are deployed independently of the IoT devices. The level of coupling can be controlled by tuning the fraction of total GWs that are deployed at the cluster centers. Due to the inherent intractability of computing the distribution of shot noise process for this setup, we propose two accurate approximations, using which the aforementioned metrics are characterized. Multiple system design insights are drawn from our results. For instance, we demonstrate the existence of optimal slot partitioning that maximizes the system throughput. In addition, we explore the effect of the level of coupling between the locations of the IoT devices and the GWs on this optimal slot partitioning. Particularly, our results reveal that the optimal value of time duration for the charging phase increases as the level of coupling decreases

    Joint Energy and SINR Coverage in Spatially Clustered RF-Powered IoT Network

    No full text
    corecore