345 research outputs found

    Joint Data compression and Computation offloading in Hierarchical Fog-Cloud Systems

    Get PDF
    Data compression has the potential to significantly improve the computation offloading performance in hierarchical fog-cloud systems. However, it remains unknown how to optimally determine the compression ratio jointly with the computation offloading decisions and the resource allocation. This joint optimization problem is studied in the current paper where we aim to minimize the maximum weighted energy and service delay cost (WEDC) of all users. First, we consider a scenario where data compression is performed only at the mobile users. We prove that the optimal offloading decisions have a threshold structure. Moreover, a novel three-step approach employing convexification techniques is developed to optimize the compression ratios and the resource allocation. Then, we address the more general design where data compression is performed at both the mobile users and the fog server. We propose three efficient algorithms to overcome the strong coupling between the offloading decisions and resource allocation. We show that the proposed optimal algorithm for data compression at only the mobile users can reduce the WEDC by a few hundred percent compared to computation offloading strategies that do not leverage data compression or use sub-optimal optimization approaches. Besides, the proposed algorithms for additional data compression at the fog server can further reduce the WEDC

    Stacked Auto Encoder Based Deep Reinforcement Learning for Online Resource Scheduling in Large-Scale MEC Networks

    Get PDF
    An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the Internet-of-Things (IoT) users, by optimizing offloading decision, transmission power, and resource allocation in the large-scale mobile-edge computing (MEC) system. Toward this end, a deep reinforcement learning (DRL)-based solution is proposed, which includes the following components. First, a related and regularized stacked autoencoder (2r-SAE) with unsupervised learning is applied to perform data compression and representation for high-dimensional channel quality information (CQI) data, which can reduce the state space for DRL. Second, we present an adaptive simulated annealing approach (ASA) as the action search method of DRL, in which an adaptive h -mutation is used to guide the search direction and an adaptive iteration is proposed to enhance the search efficiency during the DRL process. Third, a preserved and prioritized experience replay (2p-ER) is introduced to assist the DRL to train the policy network and find the optimal offloading policy. The numerical results are provided to demonstrate that the proposed algorithm can achieve near-optimal performance while significantly decreasing the computational time compared with existing benchmarks

    Mobility-aware hierarchical fog computing framework for Industrial Internet of Things (IIoT)

    Get PDF
    The Industrial Internet of Things (IIoTs) is an emerging area that forms the collaborative environment for devices to share resources. In IIoT, many sensors, actuators, and other devices are used to improve industrial efficiency. As most of the devices are mobile; therefore, the impact of mobility can be seen in terms of low-device utilization. Thus, most of the time, the available resources are underutilized. Therefore, the inception of the fog computing model in IIoT has reduced the communication delay in executing complex tasks. However, it is not feasible to cover the entire region through fog nodes; therefore, fog node selection and placement is still the challenging task. This paper proposes a multi-level hierarchical fog node deployment model for the industrial environment. Moreover, the scheme utilized the IoT devices as a fog node; however, the selection depends on energy, path/location, network properties, storage, and available computing resources. Therefore, the scheme used the location-aware module before engaging the device for task computation. The framework is evaluated in terms of memory, CPU, scalability, and system efficiency; also compared with the existing approach in terms of task acceptance rate. The scheme is compared with xFogSim framework that is capable to handle workload upto 1000 devices. However, the task acceptance ratio is higher in the proposed framework due to its multi-tier model. The workload acceptance ratio is 85% reported with 3000 devices; whereas, in xFogsim the ratio is reduced to approx. 68%. The primary reason for high workload acceptation is that the proposed solution utilizes the unused resources of the user devices for computations

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Edge Offloading in Smart Grid

    Full text link
    The energy transition supports the shift towards more sustainable energy alternatives, paving towards decentralized smart grids, where the energy is generated closer to the point of use. The decentralized smart grids foresee novel data-driven low latency applications for improving resilience and responsiveness, such as peer-to-peer energy trading, microgrid control, fault detection, or demand response. However, the traditional cloud-based smart grid architectures are unable to meet the requirements of the new emerging applications such as low latency and high-reliability thus alternative architectures such as edge, fog, or hybrid need to be adopted. Moreover, edge offloading can play a pivotal role for the next-generation smart grid AI applications because it enables the efficient utilization of computing resources and addresses the challenges of increasing data generated by IoT devices, optimizing the response time, energy consumption, and network performance. However, a comprehensive overview of the current state of research is needed to support sound decisions regarding energy-related applications offloading from cloud to fog or edge, focusing on smart grid open challenges and potential impacts. In this paper, we delve into smart grid and computational distribution architec-tures, including edge-fog-cloud models, orchestration architecture, and serverless computing, and analyze the decision-making variables and optimization algorithms to assess the efficiency of edge offloading. Finally, the work contributes to a comprehensive understanding of the edge offloading in smart grid, providing a SWOT analysis to support decision making.Comment: to be submitted to journa
    corecore