69 research outputs found

    Joint Common Phase Error and Channel Estimation for OFDM-Based WLANs in the Presence of Wiener Phase Noise and Residual Frequency Offset

    Get PDF
    In orthogonal frequency-division multiplexing (OFDM)-based wireless local area networks (WLANs), the phase noise (PHN) and a residual frequency offset (RFO) can cause the common phase error (CPE) and the inter-carrier interferences (ICI), which seriously degrade the performance of systems. In this paper, we propose a combined pilot symbol assisted and decision-directed scheme based on the least-squares (LS) and maximum-likelihood (ML) algorithms. In the proposed scheme, the CPE estimator is derived using the pilot symbols embedded in each OFDM symbol. Then, data symbols and channel response including the CPE are estimated using the CPE estimator. Simulation results present that the proposed scheme significantly improves the performance of OFDM-based WLANs

    Channel, Phase Noise, and Frequency Offset in OFDM Systems: Joint Estimation, Data Detection, and Hybrid Cramer-Rao Lower Bound

    Full text link
    Oscillator phase noise (PHN) and carrier frequency offset (CFO) can adversely impact the performance of orthogonal frequency division multiplexing (OFDM) systems, since they can result in inter carrier interference and rotation of the signal constellation. In this paper, we propose an expectation conditional maximization (ECM) based algorithm for joint estimation of channel, PHN, and CFO in OFDM systems. We present the signal model for the estimation problem and derive the hybrid Cramer-Rao lower bound (HCRB) for the joint estimation problem. Next, we propose an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking. Numerical results show that, compared to existing algorithms, the performance of the proposed ECM-based estimator is closer to the derived HCRB and outperforms the existing estimation algorithms at moderate-to-high signal-to-noise ratio (SNR). In addition, the combined estimation algorithm and iterative receiver are more computationally efficient than existing algorithms and result in improved average uncoded and coded bit error rate (BER) performance

    Estimation of Channel Transfer Function and Carrier Frequency Offset for OFDM Systems with Phase Noise

    Get PDF
    The joint estimation of carrier frequency offset (CFO) and channel transfer function (CTF) for orthogonal frequency-division multiplexing (OFDM) systems with phase noise is discussed in this paper. A CFO estimation algorithm is developed by exploring the time-frequency structure of specially designed training symbols, and it provides a very accurate estimation of the CFO in the presence of both unknown frequency-selective fading and phase noise. Based on the estimated CFO, phase noise and frequency-selective fading are jointly estimated by employing the maximum a posteriori (MAP) criterion. Specifically, the fading channel is estimated in the form of the frequency-domain CTF. The estimation of the CTF eliminates the requirement of a priori knowledge of channel length, and it is simpler compared with the time-domain channel impulse response (CIR) estimation methods used in the literature. Theoretical analysis with the Cramer-Rao lower bound (CRLB) demonstrates that the proposed CFO and CTF estimation algorithms can achieve near-optimum performance

    Synchronization Technique for OFDM-Based UWB System

    Get PDF

    Channel, Phase Noise, and Frequency Offset in OFDM Systems: Joint Estimation, Data Detection, and Hybrid Cramer-Rao Lower Bound

    Get PDF
    Oscillator phase noise (PHN) and carrier frequency offset (CFO) can adversely impact the performance of orthogonal frequency division multiplexing (OFDM) systems, since they can result in inter carrier interference and rotation of the signal constellation. In this paper, we propose an expectation conditional maximization (ECM) based algorithm for joint estimation of channel, PHN, and CFO in OFDM systems. We present the signal model for the estimation problem and derive the hybrid Cramer-Rao lower bound (HCRB) for the joint estimation problem. Next, we propose an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking. Numerical results show that, compared to existing algorithms, the performance of the proposed ECM-based estimator is closer to the derived HCRB and outperforms the existing estimation algorithms at moderate-to-high signal-to-noise ratio (SNR). In addition, the combined estimation algorithm and iterative receiver are more computationally efficient than existing algorithms and result in improved average uncoded and coded bit error rate (BER) performance.ARC Discovery Projects Grant DP14010113

    Low-cost blind carrier frequency offset estimator for mimo multicarrier systems

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Subspace based carrier frequency offset estimations for OFDM systems

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Advanced receiver structures for mobile MIMO multicarrier communication systems

    Get PDF
    Beyond third generation (3G) and fourth generation (4G) wireless communication systems are targeting far higher data rates, spectral efficiency and mobility requirements than existing 3G networks. By using multiple antennas at the transmitter and the receiver, multiple-input multiple-output (MIMO) technology allows improving both the spectral efficiency (bits/s/Hz), the coverage, and link reliability of the system. Multicarrier modulation such as orthogonal frequency division multiplexing (OFDM) is a powerful technique to handle impairments specific to the wireless radio channel. The combination of multicarrier modulation together with MIMO signaling provides a feasible physical layer technology for future beyond 3G and fourth generation communication systems. The theoretical benefits of MIMO and multicarrier modulation may not be fully achieved because the wireless transmission channels are time and frequency selective. Also, high data rates call for a large bandwidth and high carrier frequencies. As a result, an important Doppler spread is likely to be experienced, leading to variations of the channel over very short period of time. At the same time, transceiver front-end imperfections, mobility and rich scattering environments cause frequency synchronization errors. Unlike their single-carrier counterparts, multi-carrier transmissions are extremely sensitive to carrier frequency offsets (CFO). Therefore, reliable channel estimation and frequency synchronization are necessary to obtain the benefits of MIMO OFDM in mobile systems. These two topics are the main research problems in this thesis. An algorithm for the joint estimation and tracking of channel and CFO parameters in MIMO OFDM is developed in this thesis. A specific state-space model is introduced for MIMO OFDM systems impaired by multiple carrier frequency offsets under time-frequency selective fading. In MIMO systems, multiple frequency offsets are justified by mobility, rich scattering environment and large angle spread, as well as potentially separate radio frequency - intermediate frequency chains. An extended Kalman filter stage tracks channel and CFO parameters. Tracking takes place in time domain, which ensures reduced computational complexity, robustness to estimation errors as well as low estimation variance in comparison to frequency domain processing. The thesis also addresses the problem of blind carrier frequency synchronization in OFDM. Blind techniques exploit statistical or structural properties of the OFDM modulation. Two novel approaches are proposed for blind fine CFO estimation. The first one aims at restoring the orthogonality of the OFDM transmission by exploiting the properties of the received signal covariance matrix. The second approach is a subspace algorithm exploiting the correlation of the channel frequency response among the subcarriers. Both methods achieve reliable estimation of the CFO regardless of multipath fading. The subspace algorithm needs extremely small sample support, which is a key feature in the face of time-selective channels. Finally, the Cramér-Rao (CRB) bound is established for the problem in order to assess the large sample performance of the proposed algorithms.reviewe
    corecore