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Abstract

Oscillator phase noise (PHN) and carrier frequency offset (CFO) can adversely impact the performance of

orthogonal frequency division multiplexing (OFDM) systems since they can result in inter carrier interference and

rotation of the signal constellation. In this paper, we propose an expectation conditional maximization (ECM) based

algorithm for joint estimation of channel, PHN, and CFO in OFDM systems. We outline the signal model for the

estimation problem and derive the hybrid Cramér-Rao lower bound (HCRB) for the joint estimation problem. Next,

we propose an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking.

Numerical results show that compared to existing algorithms, the performance of the proposed ECM-based estimator

is closer to the derived HCRB and outperforms the existing estimation algorithms at moderate to high signal-to-noise

ratio (SNR). In addition, the combined estimation algorithm and iterative receiver are more computationally efficient

than existing algorithms and result in improved average uncoded and coded bit error rate (BER) performance.
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I. INTRODUCTION

A. Motivation and Literature Survey

Orthogonal frequency division multiplexing (OFDM) is a powerful multi-carrier modulation technique

for increasing the bandwidth efficiency of wireless communication systems. By converting a frequency-

selective channel into multiple frequency-flat subchannels, OFDM can mitigate the detrimental effects of

frequency-selective fading [1, 2]. Hence, OFDM has been adopted by existing and future wireless local

area network (WLAN) standards such as IEEE 802.11ac and IEEE 802.11ad [3, 4]. However, OFDM

systems are much more sensitive to synchronization errors than single-carrier systems.

In practice, OFDM systems require timing offset estimation, carrier frequency offset (CFO) estimation,

phase noise (PHN) tracking as well as channel estimation. Timing synchronization for OFDM systems

has been well investigated for the past two decades [5, 6]. Compared to timing offsets, OFDM is very

sensitive to CFO and PHN, which arise due to instabilities and the thermal noise in the local oscillator

[7], respectively. CFO and time varying PHN result in a common phase error (CPE) and inter-carrier

interference (ICI) at the receiver, degrading the performance of OFDM systems [8–13]. In particular, the

impact of PHN in systems operating at higher carrier frequencies, e.g., V-band/60 GHz and E-band/70–80

GHz, can be even more profound [14]. Thus, as wireless communication systems and standards, e.g., IEEE

802.11ad, migrate to millimeter-wave frequencies to take advantage of the large bandwidth in this band

and adopt higher order modulations and closely spaced subcarriers to achieve higher spectral efficiencies,

it is increasingly important to develop efficient and accurate estimation and detection algorithms for

compensating the effect of CFO and PHN in OFDM systems.

In order to jointly estimate channel, CFO, and time varying PHN, training signals are used in OFDM sys-

tems. In the context of point-to-point systems, joint channel and CFO estimation based on the expectation-

maximization (EM) approach is proposed in [15]. However, in [15], the authors do not take the effect

of PHN into account. In [8] and [16], a MAP estimator is used for joint estimation of channel, CFO,

and PHN. However, the estimation approach in [8] and [16] is based on a small angle approximation

(single-order Taylor series expansion of PHN), that adversely affects the performance of the estimation

and data detection algorithms, especially for higher order modulations. In addition, as shown in this
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paper, the approach in [8] and [16] can be computationally very complex. Recently, the authors in [17]

proposed a joint channel, CFO, and PHN estimation algorithm based on the sequential Monte Carlo and

EM approaches. However, as explained in [18], the estimation complexity of Monte Carlo based method

in [17] is very high. More importantly, in [8, 16, 17], the hybrid Cramér-Rao lower bound (HCRB)

for the joint estimation of channel impulse response (CIR), PHN, and CFO in OFDM systems is not

derived and the performances of the proposed estimators are not benchmarked against their respective

estimation performance bounds. Recently, the problem of joint estimation of channel, CFO, and PHN was

considered in the context of OFDM relay networks in [19]. However, the approach in [19] is also based

on the maximum a posteriori (MAP) criterion, which is computationally very complex.

Given the time-varying nature of PHN, it needs to be tracked not only during the training interval but

also during the data transmission interval. Hence, following the training period, a receiver structure for joint

data detection and PHN mitigation in the data transmission period is required. In the existing literature,

joint data detection and PHN mitigation is analyzed in [13, 20–22]. However, the algorithms proposed

in [13] and [21] are based on the assumption of perfect knowledge of channel and CFO. Moreover, the

PHN tracking and data detection approach presented in [20] is computationally complex and suffers from

performance degradation for higher order modulations. The PHN tracking in [22] requires the application

of pilots throughout an OFDM symbol, which adversely affects the bandwidth efficiency of the system.

In addition, our simulations show that the approach in [22] is outperformed by the receiver structure

proposed here.

B. Contributions

In this paper, a computationally efficient training based approach for joint channel, CFO, and PHN

estimation in OFDM systems is presented. In order to detect the data symbols in the presence of time-

varying PHN, an iterative receiver is proposed. The major contributions of this paper can be summarized

as follows:1

• We propose an expectation conditional maximization (ECM) based estimator for jointly obtaining the

channel, CFO, and PHN parameters in OFDM systems. The ECM based estimation is carried out in

1This paper was in part presented at IEEE International Workshop on Signal Processing Advances in Wireless Communications [23].
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two steps. In the expectation or E-step, an extended Kalman filter (EKF) based estimator is utilized

to accurately track the PHN over the training OFDM symbol. During the maximization or M-step,

the channel and CFO parameters are estimated by minimizing the derived negative log likelihood

function (cf. (6)).

• We derive an expression for the HCRB for the joint estimation of the channel, CFO and PHN in

OFDM systems. Simulation results show that, compared to the existing algorithms in the literature,

the mean square error (MSE) of the proposed algorithm is closer to the HCRB and outperforms the

existing estimation algorithms at moderate to high signal-to-noise ratio (SNR).

• We propose a new iterative algorithm based on the EKF for data detection and tracking the unknown

time-varying PHN throughout the OFDM data packet.

• We show that the proposed estimation and detection algorithms are computationally efficient, com-

pared to existing algorithms in the literature. In addition, the proposed estimation and detection

algorithms outperform existing algorithms in terms of uncoded and coded bit error rate (BER)

performance.

C. Organiztion

The remainder of the paper is organized as follows. Section II describes the system model and the

assumptions used in this work. Section III derives the HCRB for joint channel, CFO and PHN estimation

in OFDM systems. Section IV describes the proposed ECM based estimator while Section V presents

the proposed receiver for joint data detection and PHN tracking. Section V analyzes the complexity of

the proposed estimation and data detection algorithms and compares it with existing schemes. Section VI

provides numerical and simulation results. Finally, Section VII concludes the paper.

D. Notations

Superscripts (·)∗, (·)H , and (·)T denote the conjugate, the conjugate transpose, and the transpose

operators, respectively. Bold face small letters, e.g., x, are used for vectors, bold face capital alphabets,

e.g., X, are used for matrices, and [X]x,y represents the entry in row x and column y of X. IX , 0X×X , and

1X×X denote the X×X identity, all zero, and all 1 matrices, respectively. The notation X(n1:n2,m1:m2)
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Fig. 1. Timing diagram for transmission of training and data symbols within an OFDM packet.

is used to denote a submatrix of X from row n1 to row n2 and from column m1 to column m2. | · | is the

absolute value operator, |x| denotes the element-wise absolute value of a vector x, and diag(x) is used to

denote a diagonal matrix, where the diagonal elements are given by vector x. Ex,y[·] denotes the expectation

over x and y. <{·} and ={·} denote the real and imaginary parts of a complex quantity, respectively. ∇x

and 4x
y represent the first and the second-order partial derivatives operator, i.e., ∇x = [ ∂

∂x1
, · · · , ∂

∂xN
]T

and 4x
y = ∇y×∇T

x . N (µ, σ2) and CN (µ, σ2) denote real and complex Gaussian distributions with mean

µ and variance σ2, respectively. ⊗ denotes circular convolution. Finally, ż denotes the Jacobian of z.

II. SYSTEM MODEL

We consider an OFDM packet of (M + 1) symbols, which consists of one training symbol and M data

symbols, as illustrated in Fig. 1. In this paper, the following set of assumptions are adopted:

A1. The channel is modeled as a slow fading frequency-selective channel, i.e., the channel is assumed

to be quasi-static, which is constant and unknown over the OFDM packet duration and changes

from packet to packet following a complex Gaussian distribution.

A2. The time-varying PHN changes from symbol to symbol and is modeled as a Wiener process,

i.e., θn = θn−1 + δn, ∀ n, where θn is the PHN at the nth instant, δn ∼ N (0, σ2
δ ) is the PHN

innovation and σ2
δ is the variance of the innovation process [24],[25].

A3. The CFO is modeled as a deterministic unknown parameter over a packet and is assumed to

change from packet to packet.

A4. The training symbol is assumed to be known at the receiver.

A5. The timing offset is assumed to be perfectly estimated. Hence it is not considered.

Note that assumptions A1, A2, A3, and A5 are in line with previous channel, CFO and PHN estimation

algorithms in [8–10, 17, 20, 22, 25]. Assumption A2 is also reasonable in many practical scenarios to
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describe the behavior of practical oscillators [24] [8]. Furthermore, assumption A4 is adopted in the IEEE

802.11ac/ad standards to estimate channel and CFO in [3, 4, 8, 13, 22, 26, 27].

The complex baseband OFDM signal is given by

xn =
1√
N

N−1∑
k=0

dke
j2πkn/N n = 0, 1, . . . , N − 1, (1)

where dk, for k = 1, . . . , N , is the modulated training symbol, xn is the nth sample of the transmitted

OFDM symbol, N is the number of subcarriers, and k denotes the subcarrier index. At the receiver, after

removing the cyclic prefix, the complex baseband received signal, rn, is given by

rn = ej(θ̄n+2πnε/N)s̄n + ηn (2a)

= ej(θn+2πnε/N)sn + ηn, (2b)

where s̄n , h̄n⊗xn is the received OFDM training symbol, {θ̄n}N−1
n=0 is the discrete-time PHN sequence,

ε is the normalized CFO, {h̄l}L−1
l=0 is the channel impulse response, L is the channel length, and h̄l ∼

CN (µhl , σ
2
hl

). Note that (2b) is an equivalent system model representation of (2a), where sn , hn ⊗ xn,

hn , ejθ̄0h̄n and θn , θ̄n − θ̄0. This equivalent system model helps to distinguish between the phase

disturbance caused by PHN and the channel phase for the first sample, which in turn resolves the phase

ambiguity in the joint estimation problem as indicated in Section IV. In addition, {ηn}N−1
n=0 is the complex

additive white Gaussian noise (AWGN) with zero-mean and known variance σ2
w. The received signal,

r , [r0, r1, . . . , rN−1]T , in vector form is given by

r = EPFHDWh + η, (3)

where

• E , diag([1, e(j2πε/N), . . . , e(j2πε/N)×(N−1)]T ) is the N ×N CFO matrix,

• P , diag([ejθ0 , ejθ1 , . . . , ejθN−1 ]T ) is the N ×N PHN matrix,

• F is an N ×N DFT matrix, i.e., [F]l,n , (1/
√
N)e−j(2πnl/N) for n, l = 0, 1, · · · , N − 1,

• D , diag(d),d , [d0, d1, · · · , dN−1]T is the modulated training vector,

• W is an N × L DFT matrix, i.e., W , F(1 : N, 1 : L),

• L denotes the number of channel taps,

• h , [h0, h1, . . . , hL−1]T is the channel impulse response (CIR), and
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• η , [η0, η1, · · · , ηN−1]T is the noise vector.

III. DERIVATION OF THE HYBRID CRAMÉR-RAO BOUND

In this section, the HCRB for joint estimation of CIR, PHN, and CFO parameters in OFDM systems

is derived. The HCRB is a lower bound on the joint estimation of random, e.g., PHN, and deterministic,

e.g., CIR and CFO parameters. Let λ = [θT hT ε]T be the vector of hybrid parameters of interest, where

θ , [θ0, . . . , θN−1]T is a vector of random PHN parameters and the channel vector, h, and the CFO, ε,

are modeled as deterministic parameters. The accuracy of estimating λ is lower bounded by the HCRB,

Ω, as [28]

Er,θ|ε

[
(λ̂(r)− λ)(λ̂(r)− λ)T

]
� Ω. (4)

Let us define Ω , B−1. Here, B is an (N + L + 1) × (N + L + 1) hybrid information matrix (HIM),

which is determined according to the following theorem.

Theorem 1: The closed-form HIM for joint estimation of CIR, PHN, and CFO is given by

B =


B11 B12 b13

B21 B22 b23

b31 b32 b33

 , (5)

where

• B11 , ΞD11 + ΞP11 is the N ×N HIM for the estimation of θ,

• ΞD11 , diag(hHWHDHF)Σ−1diag(FHDWh), Σ , σ2
wIN , and ΞP11 is an N × N tridiagonal

matrix, where its diagonal elements are given by 1
σ2
δ
[1, 2, . . . , 2, 1] and its off-diagonal elements are

given by −1
σ2
δ
[1, . . . , 1],

• B22 , WHDHΣ−1DW is an L× L information matrix for the estimation of h,

• B12 = BT
21 ,

−j
σ2
w

diag(hHWHDHF)FHDW,

• b13 = bT31 ,
1
σ2
w

diag(hHWHDHF
√

M)FHDWh,

• b23 = bT32 , jWHDHFΣ−1
√

MFHDWh, and

• b33 , hHWHDHFΣ−1MFHDWh is a scalar representing the information for the estimation of

CFO, ε.
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Eqs. (10)-(15)
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Eq. (20)
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Eq. (22)
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Joint Estimation (Section IV)

ĥ θ
[i]
n

e−j2πε̂n/N E-step M-step

Training

Data

Data Bits

yr

Fig. 2. Proposed estimator based on an ECM algorithm and data detection.

Proof: The proof is given in Appendix A.

Finally, the HCRB, Ω, is given by the inverse of HIM, i.e., Ω = B−1.

IV. PROPOSED ECM BASED ESTIMATOR

In this section, an ECM based algorithm that utilizes the OFDM training symbol to jointly estimate

the CIR, CFO and PHN at the receiver is derived. Joint data detection and PHN tracking during data

transmission interval is analyzed in Section V.

Fig. 2 depicts the block diagram of the overall system employing the proposed ECM based estimator

and the joint data detection and PHN mitigation algorithm. As illustrated in Fig. 2, the proposed ECM

based estimator applies the training OFDM symbol at the beginning of each packet to estimate the CIR

and CFO in the presence of PHN. Next, the data detection is performed by: 1) mitigating the impact

of CFO over the length of packet by multiplying the received packet with the complex conjugate of the

estimated CFO coefficients supplied by the proposed ECM estimator; 2) tracking the PHN parameters

using an iterative algorithm that utilizes an EKF; 3) mitigating the effect of PHN over the received packet;

and 4) detecting data symbols using the estimated CIR and hard decision decoding.

As shown in Fig. 2, the ECM algorithm iterates between the expectation step (E-step) and the maxi-

mization step (M-step). In the E-step, an EKF is used to update the PHN vector at the (i+ 1)th iteration,

θ[i+1], using the CIR and CFO estimates, ĥ[i] and ε̂[i], respectively, obtained from the previous iteration,
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i.e., ith iteration. Next, in the M-step, the estimates of the CIR and CFO at the (i+ 1)th iteration, ĥ[i+1]

and ε̂[i+1], respectively are obtained.

For the given problem, the incomplete data set is given by the N × 1 vector s , FHDWh =

[s0, s1, . . . , sN−1]T and the received data, r in (3). The complete data set is defined as z , [rT θT hT ε]T .

Following [8, 29], it is assumed that there is no prior knowledge of ε and h and the prior distribution of

θ is known. Therefore, the complete data set can be written as z , [rT θT ]T . Moreover, the negative log

likelihood function (LLF) of the complete data, log p(z; ε), is given by

log p(z; ε) = C +
1

σ2
w

N−1∑
n=0

‖ rn − ej2πεn/Nejθnsn ‖2 + log p(θ0) +
N−1∑
n=0

log p(θn|θn−1), (6)

where C is a constant. The E and M-steps for estimating the CIR, CFO, and PHN in the training interval

are detailed in the following subsections.

A. E-step

In this step, the received signal rn is first multiplied by e−j2πε̂
[i]n/N . Subsequently, the signal yn ,

e−j2πnε
[i]/Nrn is used to estimate the PHN vector, where ε̂[i] is the latest CFO estimate obtained from the

previous iteration. We propose to use an EKF during the E-step to estimate the PHN samples θ. The

intuition behind choosing the EKF will be explained shortly after (8).

The signal yn can be written as

yn = e−j2πnε
[i]/Nrn = ej2πn∆ε̂/Nejθns[i]

n + w̃n, (7)

where s[i]
n is the nth symbol of the vector s[i] , FHDWĥ[i], ∆ε̂ , ε− ε̂[i], and w̃n , wne

−j2πnε̂[i]/N . The

state and observation equations at time n are given by

θn =θn−1 + δn, (8)

yn =zn + wn = ejθnsn + w̃n, (9)

respectively. Since the observation equation in (9) is a non-linear function of the unknown state vector

θ, the EKF is used instead of the simple Kalman filtering. The EKF uses the Taylor series expansion to
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linearize the non-linear observation equation in (9) about the current estimates [30]. Thus, the Jacobian

of zn, żn, is evaluated by computing the first order partial derivative of zn with respect to θn as

żn =
∂z(θn)

∂θn
|θn=θ̂n|n−1

=jz(θ̂n|n−1) (10)

=jejθ̂
[i]
n|n−1 ŝn.

The first and second moments of the state vector at the ith iteration denoted by θ̂
[i]
n|n−1 and M

[i]
n|n−1,

respectively, are given by

θ̂
[i]
n|n−1 =θ̂

[i]
n−1|n−1, (11)

M
[i]
n|n−1 =M

[i]
n−1|n−1 + σ2

δ . (12)

Given the observation yn, the Kalman gain Kn, posteriori state estimate θ̂
[i]
n|n, and the filtering error

covariance, M [i]
n|n are given by

Kn =M
[i]
n|n−1ż

∗(θn|n−1)
(
ż(θn|n−1)M

[i]
n−1|n−1ż

∗(θn|n−1) + σ2
w

)−1
, (13)

θ̂
[i]
n|n =θ̂

[i]
n|n−1 + <

{
Kn

(
yn − ejθ̂

[i]
n|n−1 ŝ[i]

n

)}
, (14)

M
[i]
n|n =<

{
M

[i]
n|n−1 −Knż(θn|n−1)M

[i]
n|n−1

}
, (15)

respectively. Before starting the EKF recursion (10)-(15), θ̂[0]
1|0 and M

[0]
1|0 are initialized to θ̂

[0]
1|0 = 0 and

M
[0]
1|0 = σ2

δ . The initialization choice for the PHN follows from the assumption that the complex channel

parameter takes into account the PHN corresponding to the first symbol.

B. M-step

In this step, the CIR and CFO are estimated by minimizing the LLF in (6). In order to further reduce

the complexity associated with the M-step, the minimization in (6) is carried out with respect to one of

the parameters while keeping the remaining parameters at their most recently updated values [31], [32].

First, by using the channel estimate at the ith iteration, ĥ[i], and the PHN vector estimate from the E-step,

θ̂[i+1], the LLF in (6) is minimized with respect to ε to obtain the CFO estimate for the (i+1)th iteration,

ε̂[i+1], as

ε̂[i+1] = arg min
ε

N−1∑
n=0

‖ rn − ej2πεn/Nejθnsn ‖2
∣∣
θn=θ̂

[i]
n ,h=ĥ[i] . (16)
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After simplifying (16), we have

ε̂[i+1] = arg max
ε

N−1∑
n=0

<{(rn)∗Ŝ[i]
n e

j2πεn/N}, (17)

where Ŝ[i]
n = ejθ̂

[i]
n ŝn. In order to resolve the nonlinearity in (17), we can approximate the term ej2πεn/N

using a second order Taylor series expansion around the pervious CFO estimate, ε̂[i], as

ej2πεn/N =ej2πε̂
[i]n/N + (ε− ε̂[i])(j 2π

N
n)ej2πε̂

[i]n/N +
1

2
(ε− ε̂[i])2(j

2π

N
n)2ej2πε̂

[i]n/N . (18)

Substituting (18) into (17), ε̂[i+1] is given by

ε̂[i+1] = arg max
ε

{N−1∑
n=0

<
{

(rn)∗Ŝ[i]
n e

j2πε̂[i]n/N (19)

+ (ε− ε̂[i])
N−1∑
n=0

<
{

(rn)∗Ŝ[i]
n (j

2π

N
n)ej2πε̂

[i]n/N
}

+
1

2
(ε− ε̂[i])2

N−1∑
n=0

<
{

(rn)∗Ŝ[i]
n (j

2π

N
n)2ej2πε̂

[i]n/N
}}

.

Taking the derivative of (19) with respect to ε and equating the result to zero, the estimate of ε at the

(i+ 1)th iteration is given by

ε̂[i+1] = ε̂[i] +
N

2π

∑N−1
n=0 n=

{
(rn)∗Ŝ

[i]
n ej2πε̂

[i]n/N
}∑N−1

n=0 n
2<
{

(rn)∗Ŝ
[i]
n ej2πε̂

[i]n/N
} . (20)

Next, by setting θ and ε to their latest updated values, the updated value of ĥ at the (i+ 1)th iteration,

ĥ[i+1], is determined as outlined below.

Based on the vectorial form of the received signal in (3), the negative LLF, in (6), can be written as

log p(z; ε) = C1+ ‖ r− EPΓh ‖2 + log p(θ). (21)

where Γ , FHDW. Taking the derivative of (21) with respect to h and equating the result to zero, the

estimate of h at the (i+ 1)th iteration is given by

ĥ[i+1] = (ΓHΓ)−1ΓHP̂HÊHr, (22)

where Ê , diag([e(j2πε̂[i+1]/N)×0, e(j2πε̂[i+1]/N), . . . , e(j2πε̂[i+1]/N)×(N−1)]T ) and P̂ , diag([ejθ̂
[i]
0 , ejθ̂

[i]
1 , . . . , ejθ̂

[i]
N−1 ]T ).

Note that ε̂[i+1] and θ̂[i] , [θ̂
[i]
0 , θ̂

[i]
1 , . . . , θ̂

[i]
N−1]T are determined as in (20) and (14), respectively.
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Using (14), (20), and (22), the proposed algorithm iteratively updates the PHN, CFO, and CIR estimates,

respectively. The algorithm is terminated when the difference between the likelihood functions of two

iterations is smaller than a threshold ζ , i.e.,∣∣∣∣∣
N−1∑
n=0

∥∥∥rn − ej2πε̂[i+1]n/Nejθ̂
[i+1]
n s[i+1]

n

∥∥∥2

−
N−1∑
n=0

∥∥∥rn − ej2πε̂[i]n/Nejθ̂[i]n s[i]
n

∥∥∥2

∣∣∣∣∣ ≤ ζ. (23)

C. Initialization and Convergence

The appropriate initialization of CFO and CIR, i.e., ε̂[0] and ĥ[0], respectively, is essential to ensure

the global convergence of the proposed estimator [33]. The initialization process can be summarized as

follows:

• The initial CFO estimate is obtained by applying an exhaustive search for the value of ε that minimizes

the cost function,
∑N−1

n=0 ‖ rn−ej2πε̂n/N ŝn ‖2. Here, ŝn is the nth symbol of the vector ŝ , FHDWĥ

with ĥ , (ΓHΓ)−1ΓHÊHr. Note that this exhaustive search needs to be only carried out at the system

start up to initialize the estimation process. Simulations in Section VI indicate that an exhaustive

search with a coarse step size of 10−2 is sufficient for the initialization of the proposed estimator.

• Using ε̂[0], the initial channel estimate, ĥ[0], is obtained by applying the relationship, ĥ[0] = (ΓHΓ)−1ΓH

(Ê[0])Hr. Here, Ê[0] = Ê|ε̂=ε̂[0] .

Note that based on the equivalent system model in (2b) and the simulation results in Section VI, it can

be concluded that the proposed ECM algorithm converges globally when the PHN vector θ̂ is initialized

as θ̂[0] = 0N×1.

Simulation results in Section VI show that at SNRs of 20 dB or higher the proposed ECM-based

estimator always converges to the true estimates in only 2 iterations.

V. JOINT DATA DETECTION AND PHN MITIGATION

In this section, we propose an iterative detector that utilizes an EKF to the track the PHN parameters

during the data transmission interval.

At first, using the estimated CFO value, the effect of CFO on the received data symbol, r, in (3) is

compensated. As shown Fig. 2, the resulting signal, y , [y1, . . . , yn], where yn is defined in (9), passes
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through an iterative data detection and PHN estimation block. We propose to use an EKF to track the

PHN samples, θ, over the data symbols. The PHN estimation is similar to that in (10)-(15) and is not

presented here to avoid repetition. However, instead of training-based PHN tracking, the PHN estimation

is followed in decision-directed fashion for the received data symbols. In other words, the estimate of the

data symbol in the previous iteration, d̂[i−1], is used to update the symbol’s PHN estimate at the current

iteration θ̂[i]. Particularly, s[i] in (9), is calculated as s[i] = FHD̂[i−1]Wĥ, where ĥ is the CIR vector

estimate obtained from the ECM estimator during the training interval, and D̂[i−1] , diag(d̂[i−1]). Next,

the data vector estimate is updated for the ith iteration. Following [20] and based on the received signal

in (3), the negative LLF for the CFO compensated signal, y, can be written as

log p(y, d̂, θ̂) = C +
1

2σ2
w

‖ y − P̂FHΥ̂d̂ ‖2 +
1

2ξd
‖ d̂ ‖2 + log p(θ), (24)

where

• Υ̂ , diag(Wĥ) is the estimated channel frequency response,

• d̂ , [d̂0, d̂1, · · · , d̂N−1]T is the estimate of the modulated data vector, and

• ξd is the average transmitted symbol power and normalized to 1,

Taking the derivative of (24) with respect to d and equating the result to zero, the estimate of d at the

ith iteration, d̂[i] is given by

d̂[i] = (Υ̂HΥ̂ +
σ2
w

ξd
IN)−1Υ̂HFP̂Hy, (25)

where P̂ , diag([ejθ̂
[i]
0 , ejθ̂

[i]
1 , . . . , ejθ̂

[i]
N−1 ]T ) and θ̂[i] , [θ̂

[i]
0 , θ̂

[i]
1 , . . . , θ̂

[i]
N−1]T are obtained via the EKF based

estimator.

Using the EKF set of equations (10)−(15) and (25), the proposed algorithm iteratively updates the

PHN and data estimates, respectively, and stops when the difference between likelihood functions of two

iterations is smaller than a threshold ζ , i.e.,∣∣∣∣∣
N−1∑
n=0

∥∥∥yn − ejθ̂[i+1]
n ŝ[i+1]

n

∥∥∥2

−
N−1∑
n=0

∥∥∥yn − ejθ̂[i]n ŝ[i]
n

∥∥∥2

∣∣∣∣∣ ≤ ζ. (26)

Let d̂[0] denote the initial estimate of the transmitted data vector. Appropriate initialization of d̂[0]

results in the proposed iterative detector to converge quickly. In our algorithm, the initial data estimate is

obtained using d̂[0] = (Υ̂HΥ̂+ σ2
w

ξd
IN)−1Υ̂HFP̂H

[m−1]y, where P̂[m−1] is the PHN matrix estimate obtained
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from the previous OFDM symbol. Simulation results in Section VI indicate that at SNR= 20 dB the

proposed detector, on average, converges after 2 iterations. The overall estimation and detection algorithm

is summarized in Algorithm V on the next page.

A. Complexity Analysis

In this subsection, the computational complexity of the proposed estimator and detector is compared

with that of [8] and [20]. Throughout this section, computational complexity is defined as the number of

complex additions and multiplications [34].

Let us denote the computational complexity of the proposed estimator by CEST = C
[M ]
EST + C

[A]
EST,

where C [M ]
EST and C [A]

EST denote the number of complex multiplications and additions used by the estimator,

respectively. C [M ]
EST and C [A]

EST are determined as

C
[M ]
EST =

[
N︸︷︷︸
(10)

+ 5N︸︷︷︸
(13)

+ 2N︸︷︷︸
(14)

+ 2N︸︷︷︸
(15)

+ 7N︸︷︷︸
(20)

+LN(2N + 1)︸ ︷︷ ︸
(22)

+N(N2 + L(N + 1))︸ ︷︷ ︸
snin(14)

]
tECM

+
[

3N︸︷︷︸∑N−1
n=0 ‖rn−ej2πε̂n/N ŝn‖2

+LN(2N + 1)︸ ︷︷ ︸
ĥ,ξd

−1ΓHÊHr

+N(N2 + L(N + 1))︸ ︷︷ ︸
ŝ,FHDWĥ

]
tinitialize

+N2(N + L)︸ ︷︷ ︸
Γin(22)

, (27)

C
[A]
EST =

[
N︸︷︷︸
(12)

+ N︸︷︷︸
(13)

+ 2N︸︷︷︸
(14)

+ N︸︷︷︸
(15)

+ 2N + 1︸ ︷︷ ︸
(20)

+L(N − 1)(2N + 1)︸ ︷︷ ︸
(22)

+N(N − 1)(L+ 1) +N(L− 1)︸ ︷︷ ︸
snin(14)

]
tECM

+
[

2N︸︷︷︸∑N−1
n=0 ‖rn−ej2πε̂n/N ŝn‖2

+L(N − 1)(2N + 1)︸ ︷︷ ︸
ĥ,ξd

−1ΓHÊHr

+N(N − 1)(L+ 1) +N(L− 1)︸ ︷︷ ︸
ŝ,FHDWĥ

]
tinitialize

+N(N − 1)(N + L)︸ ︷︷ ︸
Γin(22)

, (28)

where tECM is the number of iterations in the ECM estimator and tinitialize is the number of iterations

required to initialize the ECM algorithm. The latter depends on the step size of the exhaustive search

used to initialize the CFO estimates.
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Algorithm 1 PROPOSED ECM ESTIMATOR AND DATA DETECTION ALGORITHMS
ECM ESTIMATOR

Initialization

θ̂
[0]
1|0 = 0 and M

[0]
1|0 = σ2

δ and obtain ε̂[0] and ĥ[0] using an exhaustive search and (22) with coarse step

size i.e., 10−2

while

∣∣∣∣∣∑N−1
n=0

∥∥∥rn − ej2πε̂[i+1]n/Nejθ̂
[i+1]
n s

[i+1]
n

∥∥∥2

−∑N−1
n=0

∥∥∥rn − ej2πε̂[i]n/Nejθ̂[i]n s[i]
n

∥∥∥2

∣∣∣∣∣ > ζ. do

for n = 0, 1, . . . , N − 1 do

(10)−(15)

end for

for n = 0, 1, . . . , N − 1 do

ε̂[i+1] = ε̂[i] + N
2π

∑N−1
n=0 n=

{
(rn)∗Ŝ[i]

n e
j2πε̂[i]n/N

}
∑N−1
n=0 n

2<
{

(rn)∗Ŝ[i]
n ej2πε̂

[i]n/N
}

end for

ĥ[i+1] = (ΓHΓ)−1ΓHP̂HÊHr

ĥ[i] = ĥ[i+1], θ̂[i] = θ̂[i+1], ε̂[i] = ε̂[i+1]

end while

DATA DETECTION

for m = 1, . . . ,M do

Initialization

Obtain d̂[0] = (Υ̂HΥ̂ + σ2
w

ξd
IN)−1Υ̂HFP̂H

[m−1]y

Replace d̂[0] by its hard decision.

while

∣∣∣∣∣∑N−1
n=0

∥∥∥yn − ejθ̂[i+1]
n ŝ

[i+1]
n

∥∥∥2

−∑N−1
n=0

∥∥∥yn − ejθ̂[i]n ŝ[i]
n

∥∥∥2

∣∣∣∣∣ > ζ do

Using the EKF set of equation in Section IV-A to estimate the PHN parameters,

d̂[i] = (Υ̂HΥ̂ + σ2
w

ξd
IN)−1Υ̂HFP̂Hy.

Replace d̂[i] by its hard decision.

d̂[i] = d̂[i+1]

end while

end for
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Similarly, the computational complexity of the proposed detector is denoted by C [M ]
DATA DET and C [A]

DATA DET,

where C [M ]
DATA DET and C [A]

DATA DET denote the number of complex multiplications and additions used by the

estimator, respectively. C [M ]
DATA DET and C [A]

DATA DET are determined as

C
[M ]
DATA DET =

[
N︸︷︷︸
(10)

+ 5N︸︷︷︸
(13)

+ 2N︸︷︷︸
(14)

+ 2N︸︷︷︸
(15)

+N(N2 + L(N + 1))︸ ︷︷ ︸
snin(14)

+N2(5N + 1)︸ ︷︷ ︸
(25)

]
tDATA DET

+ N2(5N + 1)︸ ︷︷ ︸
d̂[0]=(Υ̂HΥ̂+

σ2w
ξd

IN )−1Υ̂HFPH
[m−1]

y

+ NL︸︷︷︸
Υ̂in(25)

, (29)

C
[A]
DATA DET =

[
N︸︷︷︸
(12)

+ N︸︷︷︸
(13)

+ 2N︸︷︷︸
(14)

+ N︸︷︷︸
(15)

+N(N − 1)(L+ 1) +N(L− 1)︸ ︷︷ ︸
snin(14)

+N(N2 +N(N − 1)(4N + 1))︸ ︷︷ ︸
(25)

]
tDATA DET +N(N2 +N(N − 1)(4N + 1))︸ ︷︷ ︸

d̂[0]=(Υ̂HΥ̂+
σ2w
ξd

IN )−1Υ̂HFPH
[m−1]

y

+N(L− 1)︸ ︷︷ ︸
Υ̂in(25)

, (30)

where tDATA DET is the number of iterations required by the detector in (26).

Following similar steps as in (27)-(30), we can find the computational complexity of the estimator in

[8] as

C
[M ]
[8,EST] =

[
N2(11N + 7) + 2N

]
t[8] +N2(9N + 4L+ 1) + LN (31)

C
[A]
[8,EST] =

[
2N3 + (N − 1)(9N2 + 7N + 2) + 1

]
t[8] + 2N3 + (N − 1)(N(7N + 4L+ 1) + L) (32)

where t[8] is the number of iterations required for estimating the CFO via an exhaustive search in [8].

Moreover, the notations C [M ]
[8,EST] and C

[A]
[8,EST] are used to denote the number of complex multiplications

and additions used by the estimator in [8], respectively.

The computational complexity of the detector in [20] is given by

C
[M ]
[20, DATA DET] =

[
N2(11N + 6)

]
t[20] +N2(6N + 1) (33)

C
[A]
[20, DATA DET] =

[
N(N − 1)(9N + 6) +N2(2N + 1)

]
t[20] +N2(6N − 5) +N(N − 1) (34)

where t[20] is the number of iterations used by the detector in [20]. Note that since the estimation approach

of [8] and [16] are similar, the complexity of estimation algorithm in [16] can be calculated as in (31)
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and (32). We do not present the computational complexity of the algorithm in [22] since the approach in

[22] only considers channel and PHN estimation while assuming that no CFO is present.
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Fig. 3. Comparison of computational complexity of the proposed algorithms for PHN variance, σ2
δ = [10−3, 10−4] rad2 and the algorithms

in [8] & [20].

In Fig. 3, the computational complexity of the proposed algorithms for PHN variance, σ2
δ = [10−3, 10−4] rad2

is compared against the existing algorithms in [8] and [20]. Simulations indicate that at low SNR, i.e.,

SNR < 10 dB, on average, the proposed estimator and detector converge after tECM = 3 and tDATA DET = 5

iterations, respectively. In addition, the number of iterations in the proposed estimator and detector is

gradually decreased to tECM = tDATA DET = 2 at SNR ≥ 20 dB and SNR ≥ 30 dB for σ2
δ = 10−4 rad2

and σ2
δ = 10−3 rad2, respectively. On the other hand, the detector in [20] requires a total of t[20] = 4

iterations to converge for PHN variance, σ2
δ = [10−3, 10−4] rad2. Since simulations indicate that the

proposed ECM algorithm converges to the true estimates when the CFO estimates are initialized with a

step size of 10−2, here tinitialize is set to 102. Moreover, the results in Section VI indicate that to reach

a similar estimation accuracy and system performance, the approach in [8] requires the step size for the

exhaustive search to be set to 10−2, i.e., t[8]=103 for a step size of 10−3. For example, at SNR = 20 dB,

σ2
δ = 10−4 rad2, L = 4 and N = 64 and using this system setup and by applying (27)-(34), it can be

determined that the proposed estimation and data detection algorithm is computationally more efficient

than that of Lin et. al. in [8] and [20] by a factor of 130.
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VI. SIMULATION RESULTS AND DISCUSSIONS

In this subsection, we present simulation results to evaluate the performance of the proposed esti-

mation and data detection algorithms. We consider an OFDM packet to consist of m = 6 OFDM

symbols, comprising an OFDM training symbol followed by 5 data symbols. The data symbols are

drawn from normalized 64, 128, or 256 quadrature amplitude modulation (QAM). The sampling rate of

the OFDM signal is 20 MHz corresponding to the OFDM sampling duration of Ts = 50 nanoseconds.

The channel impluse response (CIR) is assumed to be a Rayleigh fading multipath channel with a

delay of L = 4 taps and an exponentially decreasing power delay profile with the average channel

power = [-1.52 -6.75 -11.91 -17.08] dB. The Wiener PHN is generated with PHN variances of σ2
δ =

[10−3, 10−4] rad2. The unknown normalized CFO is assumed to be uniformly distributed over the range

ε ∈ (−0.5, 0.5) for each simulation. Unless specified otherwise, an OFDM training symbol size of N = 64

subcarriers is used with each subcarrier modulated in quadrature phase-shift keying (QPSK) with subcarrier

spacing = 312.5 kHz. The simulation results are averaged over 1× 105 Monte Carlo simulation runs.

A. Estimation Performance

In this subsection, we compare the performance of the proposed ECM estimator with the HCRB in

Theorem 1 and the MAP estimator in [8]. Figs. 4, 5, and 6 plot the HCRB and the mean square error

(MSE) for estimating the channel impluse response, carrier frequency offset, and PHN, respectively. The

HCRB in (6) is numerically evaluated for two different PHN variance, e.g., σ2
δ = [10−3, 10−4] rad2.

The following observations can be made from the figures:

1) The HCRB and the estimator’s MSE are dependent on the variance of the PHN process. Note that,

σ2
δ = 10−3 rad2, corresponds to presence of a very strong PHN [35].

2) Fig. 4 shows that the HCRB for the channel estimation does not suffer from an error floor. However,

Figs. 5 and 6 show that the HCRB for CFO and PHN suffer from an error floor, which is directly

related to the variance of the PHN process. This is due to the fact that at low SNR the performance

of the system is dominated by AWGN, while at high SNR the performance of the proposed estimator

is limited by PHN and the resulting ICI.
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3) Figs. 4, 5, and 6 show that the proposed estimator outperforms the estimation algorithm in [8]. The

biggest gain is achieved in the MSE of PHN estimation, followed by the MSE of CFO and channel

estimation. For example, for σ2
δ = 10−4 rad2 and at high SNR, the proposed estimator results in a

2–3 dB performance gain compared to that of [8] while estimating PHN or CFO. This performance

gain is in addition to the lower complexity of the proposed estimator as shown in Section V-A.

4) Figs. 4, 5, and 6 show that at low SNR, i.e., SNR < 15 dB, the proposed estimator is outperformed
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by the estimation algorithm in [8]. This can be attributed to the fact that EKF is not an optimal

minimum mean square filter compared to MAP estimator duo to the application of a first order

Taylor series approximation to linearize the observation model [30]. Therefore, at low SNR the

estimation accuracy of the proposed EKF estimator is limited by the variance of the phase noise

innovations and noise from AWGN. However, this performance of the proposed estimator does not

affect the overall BER performance at low SNR since the performance of the system is dominated

by AWGN at low SNR, while at high SNR the performance of the proposed estimator is limited by

PHN and the resulting ICI only.

Note that in Fig. 5, the PHN estimation MSE of the proposed estimator and the estimator in [20] are

lower than the HCRB at low SNR. This is due to the fact that the HCRB cannot be derived in closed-form

while taking into account the prior knowledge of the range of CFO values, i.e., (−0.5, 0.5). However, the

proposed estimator and the estimator in [20] take into account this prior information while estimating the

PHN, CFO, and the channel paraments.

B. Comparison with Existing Work

In the following, we examine the combined estimation and data detection performance in terms of the

uncoded BER of the OFDM system. The following system setups are considered for comparison:

(i) The proposed estimation and data detection algorithm (labelled as “proposed”).

(ii) The estimation and data detection algorithm in [8] and [20], respectively (labelled as “[8] & [20]”).

(iii) The data detection in [22] combined with the proposed estimation algorithm (labelled “[22, Data

detection] ”).

(iv) The estimation algorithm in [8] with the proposed data detection algorithm (labelled “[8, MAP

estimator] ”).

(v) As a reference, a system that applied the proposed estimation algorithm but utilizes no PHN tracking

during OFDM data symbols (labelled “No CFO cancel. and PHN track.”).

(vi) As a lower-bound on the BER performance, a system assuming perfect channel, PHN, and CFO

estimation (labelled “Perf. CIR, PHN & CFO est.”).
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Fig. 7. Comparison of uncoded BER of the proposed algorithms for PHN variance, σ2
δ = [10−3, 10−4] rad2 and 64-QAM modulation with

the algorithms in [8] & [20] and [22].

Fig. 7 depicts the uncoded BER performances of the OFDM systems listed above. The following

observations can be made from Fig. 7:

1) The results demonstrate that without phase tracking and CFO cancellation throughout the packet, the

OFDM system performance deteriorates significantly. On the other hand, by combining the proposed

estimation and data detection algorithms, the BER performance of an OFDM system is shown to

improve immensely even in the presence of very strong PHN, e.g., σ2
δ = 10−3 rad2.

2) Compared to existing algorithms, the BER performance of an OFDM system using the proposed

algorithms is closer to the ideal case of perfect CIR, PHN, and CFO estimation (a performance gap

of 10 dB at SNR = 20 dB).

3) It can be clearly observed that the proposed receiver structure outperforms the algorithms in [8] and

[20]. This performance improvement can be attributed to the fact that the proposed ECM based joint

CIR, PHN, and CFO estimator applies a single-order Taylor series approximation using the most

recent estimated PHN values to obtain an updated PHN estimates unlike the approach in [8] and

[20].

4) It is clear that the performance of the proposed data detection algorithm outperforms the algorithm

in [22]. This result is anticipated, since at high PHN variance, the approximation of PHN parameters
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Fig. 9. Comparison of uncoded BER of the proposed algorithms with

the algorithm in [8] & [20] for varying training symbol lengths N=

128, 256, 512 and 1024, at σ2
δ = 10−4 rad2 and 128-QAM modulation.

using linear interpolation in [22] highly deviates from the true PHN parameters. Therefore, the linear

interpolation approach in [22] may not be used in the presence of very strong PHN, e.g., σ2
δ = 10−3

rad2.

5) It is clear that the performance of the proposed estimation algorithm outperforms the algorithm in

[8]. This result is anticipated, since the algorithm in [8] is based on a small angle approximation and

at high PHN variance, the approximation of PHN parameters using a small angle approximation in

[8] highly affects the performance of the data detection algorithm.

6) Finally, Fig. 7 shows that in the presence of PHN, the overall BER performance of an OFDM system

suffers from an error floor at high SNR, since at high SNR the performance of an OFDM system is

dominated by PHN, which cannot be completely eliminated.

C. Effect of Modulation and OFDM System Parameter

Fig. 8 evaluates the uncoded BER performances of an OFDM system for higher order modulations,

i.e., 256-quadrature amplitude modulation (256-QAM). The results in Fig. 8 shows that even for denser

constellation, the proposed estimation and data detection algorithms significantly improve the overall

system performance compared to that of [8, MAP estimator], [20] and [22]. For example, to achieve a

BER of 3× 10−2 with a PHN variance of 10−4 rad2, the proposed algorithm outperforms the algorithms
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in [8, MAP estimator] and [20] by a margin of 6 dB and 7 dB, respectively. In addition, the proposed

algorithm outperforms the algorithm in [22] by a margin of 3 dB at a BER of 10−2 with a PHN variance

of 10−4 rad2. More importantly, this gap widens at high SNR values.

Fig. 9 illustrates the uncoded BER performance of an OFDM system for different number of subcarriers,

e.g., N = 128, 256, 512 and 1024, within an OFDM symbol. Based on the results in Fig. 9, it can

be concluded that the proposed algorithm is not sensitive to the subcarrier spacing at low-to-medium

SNRs while at high SNRs, the BER degrades as one moves to N = 1024 subcarriers. This is because

increasing the number of subcarriers results in more ICI that is caused by the residual PHN and CFO.

More importantly, the BER performance of an OFDM system using the proposed algorithms outperforms

that of [8] and [20] for any value of N . For instant, at BER = 10−2 and N=128, the SNR gain for the

proposed algorithms is almost 8 dB than the algorithms in [8] and [20]. Moreover, at SNR = 35 dB with

N = 512 or N = 1024, the BER for the proposed algorithms is almost 10 times lower than the algorithms

in [8] and [20].

It is worth mentioning that Figs. 7, 8 and 9 show that although the estimator of PHN, CIR and CFO at

low SNR has lower performance than the estimator in [8], the estimation accuracy at low SNR does not

impact the overall BER performance. This fact is anticipated, since at low SNR the performance of the

system is dominated by AWGN, while at high SNR and even in the absence of AWGN, i.e., SNR→∞,

the performance of the proposed estimator and detector are limited by PHN and CFO. Moreover, as

shown in simulation results in [8, 13, 20, 25], the effects of PHN and CFO are dominant on the system

performance than AWGN at moderate to high SNRs.

Finally, the coded BER performance is shown in Fig. 10. The low-density parity-check (LDPC) is

employed with the channel coding rate, 1/2 and codeword bits 1296 under 64-QAM modulation. The

encoding algorithm in [38] is used for encoding, while the soft-decision iterative decoding algorithm based

on a sum-product algorithm in [39] is utilized for decoding the estimated data vector in (25). The results

in Fig. 10 illustrates that, the proposed estimation and data detection algorithms significantly improve

the overall system performance compared to the existing the algorithms in [8] and [20]. For example,

to achieve a BER of 10−4 with a PHN variance of 10−4 rad2, the proposed algorithm outperforms the

algorithms in [8, MAP estimator] and [8] & [20] by a margin of 5 dB and 10 dB, respectively. More
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importantly, compared to existing algorithms, the coded BER performance of an OFDM system using the

proposed algorithms is closer to the ideal case of perfect CIR, PHN, and CFO estimation (a performance

gap of 2 dB at BER of 10−4).
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Fig. 10. Comparison of coded BER of the proposed algorithms for PHN variance, σ2
δ = 10−4 rad2 and 64-QAM modulation with the

algorithms in [8] & [20] and [8, MAP estimator].

VII. CONCLUSION

In this paper, an ECM based algorithm is proposed for joint estimation of channel, PHN, and CFO

in OFDM systems. The signal model for the estimation problem is outlined in detail and the HCRB

for the joint estimation of channel, PHN, and CFO in OFDM systems is derived. Simulation indicate

that the estimation MSE of the proposed algorithm is closer to the derived HCRB and outperforms

the existing estimation algorithms at moderate to high SNR. Next, an iterative algorithm for joint data

detection and PHN mitigation is proposed for the OFDM data symbols. The proposed algorithm employs

an EKF based approach to track the time-varying PHN parameters throughout the OFDM data symbols.

The performance of the proposed estimation and detection algorithms have been evaluated for different

PHN variances σ2
δ = [10−3, 10−4]rad2, different number of subcarriers N = [64, 128, 256, 512, 1024],

and different modulation schemes, 64, 128, 256-QAM. Numerical results show that the proposed ECM

based estimator and the iterative data detection algorithm are not only computationally more efficient
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than the existing algorithms but also outperform existing algorithms in terms of uncoded and coded BER

performance. For example, the uncoded BER for the proposed algorithms almost has SNR gain of 8

dB than the existing algorithms at an BER of 10−2 with N = 128. More importantly, the coded BER

performance using the proposed algorithms is closer to the ideal case of perfect CIR, PHN, and CFO

estimation with a performance gap of 2 dB at BER of 10−4 and PHN variance, σ2
δ = 10−4 rad2.

APPENDIX A

DERIVATION OF THE HCRB

The hybrid information matrix B can be written as [28]

B = ΞD + ΞP , (A.1)

where ΞD , Eθ [Ψ(θ,h, ε)] with Ψ(θ,h, ε) , Er|θ,h,ε
[
−∆λ

λ log p(r|θ,h, ε)|h, ε
]

denoting the Fisher’s

information matrix (FIM) and ΞP , Eθ|h,ε
[
−∆λ

λ log p(θ|h, ε)|h, ε
]

is the prior information matrix with

p(θ|h, ε) denoting the prior distribution of PHN vector given the CIR and CFO. Thus, we first obtain

expressions for matrices ΞD and ΞP .

A. Computation of ΞD , Eθ [Ψ(θ,h, ε)]

We partition the matrix ΞD as

ΞD =


ΞD11 ΞD12 ξD13

ΞD21 ΞD22 ξD23

ξD31 ξD32 ξD33

 ,

=


Eθ[Ψ11(θ,h, ε)] Eθ[Ψ12(θ,h, ε)] Eθ[ψ13(θ,h, ε)]

Eθ[Ψ21(θ,h, ε)] Eθ[Ψ22(θ,h, ε)] Eθ[ψ23(θ,h, ε)]

Eθ[ψ31(θ,h, ε)] Eθ[ψ32(θ,h, ε)] Eθ[ψ33(θ,h, ε)]

 , (A.2)
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where

Ψ11(θ,h, ε) , Er|θ,h,ε
[
−∆θ

θ log p(r|θ,h, ε)|h,ε
]
, (A.3)

Ψ22(θ,h, ε) , Er|θ,h,ε
[
−∆h

h log p(r|θ,h, ε)|h,ε
]
, (A.4)

ψ33(θ,h, ε) , Er|θ,h,ε [−∆ε
ε log p(r|θ,h, ε)|h,ε] , (A.5)

Ψ12(θ,h, ε) , Er|θ,h,ε
[
−∆h

θ log p(r|θ,h, ε)|h,ε
]
, (A.6)

ψ13(θ,h, ε) , Er|θ,h,ε [−∆ε
θ log p(r|θ,h, ε)|h,ε] , (A.7)

Ψ21(θ,h, ε) , Er|θ,h,ε
[
−∆θ

h log p(r|θ,h, ε)|h,ε
]
, (A.8)

ψ23(θ,h, ε) , Er|θ,h,ε [−∆ε
h log p(r|θ,h, ε)|h,ε] , (A.9)

ψ31(θ,h, ε) , Er|θ,h,ε
[
−∆θ

ε log p(r|θ,h, ε)|h,ε
]
, (A.10)

ψ32(θ,h, ε) , Er|θ,h,ε
[
−∆h

ε log p(r|θ,h, ε)|h,ε
]
, (A.11)

1) Computation of ΞD11 , Eθ[Ψ11(θ,h, ε)]: To compute the log-likelihood function in (A.3), p(r|θ,h, ε)

is given by
p(r|θ,h, ε) = C exp

[−1

σ2
w

(r− µ(ε))H(r− µ(ε))

]
, (A.12)

where C , (πσ2
w)−N . Given θ, h, and ε, r is a complex Gaussian vector with mean vector µ(h, ε) =

EPFHDWh and covariance matrix σ2
wIN . Based on (A.3) and (A.12), we compute the expectation with

respect to r, yielding [30]

Er|θ,h,ε

[
−∆θ

θ log p(r|θ,h, ε)|h,ε
]

= Er|θ,h,ε

{[ ∂

∂θ∗
log p(r|θ,h, ε)

][ ∂

∂θ∗
log p(r|θ,h, ε)

]H}
(A.13)

which can be simplified as [36]

Er|θ,h,ε[−∆θ
θ log p(r|θ,h, ε)|h,ε] =

∂µH

∂θ∗
Σ−1 ∂µ

∂θT
, (A.14)

where µ(θ,h, ε) = EPFHDWh, Σ = E
{

(r− µ(θ,h, ε))H(r− µ(θ,h, ε))
}

= σ2
wIN , ∂µH

∂θ∗ is an N ×N

matrix and its nth row is given by[
∂µH

∂θ∗

]
n,:

=
∂

∂θ∗n

[
hHWHDHFPHEH

]
= hHWHDHFUnE

H (A.15)
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where Un , diag([01×(n−1),−je−jθn ,01×(N−n)]). By simplifying (A.15), we have

∂µH

∂θ∗
= −jdiag(hHWHDHFPHEH). (A.16)

In addition, ∂µ
∂θT

is an N ×N matrix and its nth column is given by[
∂µ

∂θ∗

]
:,n

=
∂

∂θTn

[
EPFHDWh

]
(A.17)

By following the simplification given above (A.16), we obtain

∂µ

∂θT
= jdiag(EPFHDWh). (A.18)

By substituting (A.16) and (A.18) into (A.13) and simplifying, ΞD11 is found to be an N × N matrix,

such that

ΞD11 = Eθ[diag(hHWHDHF)Σ−1diag(FDWh)] = diag(hHWHDHF)Σ−1diag(FDWh). (A.19)

2) Computation of ΞD22 = Eθ[Ψ22(θ,h, ε)]: Based on (A.3) and (A.12), it follows that

Er|θ,h,ε[−∆h
h log p(r|θ,h, ε)|h,ε] = Er|θ,h,ε

{[ ∂

∂h∗
log p(r|θ,h, ε)

][ ∂

∂hT
log p(r|θ,h, ε)

]H}
=

∂µH

∂h∗
Σ−1 ∂µ

∂hT
, (A.20)

where ∂µH

∂h∗ is an L×N matrix and its lth row is given by[
∂µH

∂h∗

]
l,:

=
∂

∂h∗l

[
hHWHDHFPHEH

]
= ulW

HDHFPHEH , (A.21)

where ul , diag([01×(l−1), 1,01×(L−l)]). By simplifying (A.21), we have

∂µH

∂h∗
= WHDHFPHEH . (A.22)

In addition, ∂µ

∂hT
is an N × L matrix and its lth column is given by:[

∂µ

∂hT

]
:,l

=
∂

∂hTl

[
EPFHDWh

]
. (A.23)

By following the simplification given above (A.22), we obtain

∂µ

∂hT
= EPFHDW. (A.24)
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After substituting the derivatives in (A.22) and (A.24) into (A.20) and carrying out straightforward

algebraic manipulations and simplifying, ΞD22 is found to be an L × L matrix and can be obtained

as

ΞD22 = Eθ[WHDHΣ−1DW] = WHDHΣ−1DW. (A.25)

3) Computation of ξD33 = Eθ[ψ33(θ,h, ε)]: Based on (A.3) and (A.12), it follows that:

Er|θ,h,ε[−∆ε
ε log p(r|θ,h, ε)|h,ε] = Er|θ,h,ε

{[ ∂
∂ε∗

log p(r|θ,h, ε)
][ ∂
∂εT

log p(r|θ,h, ε)
]H}

=
∂µH

∂ε∗
Σ−1 ∂µ

∂εT
, (A.26)

where ∂µH

∂ε∗ is a 1×N vector and given by

∂µH

∂ε∗
=

∂

∂ε∗

[
hHWHDHFPHEH

]
= hHWHDHFPHÉH . (A.27)

where É , diag([0, j2π
N
e(j2πε/N), . . . , j2π(N−1)

N
e(j2πε/N)×(N−1)]T ). Similar to (A.27), we have

∂µH

∂εT
=

∂

∂εT

[
EPFHDWh

]
= ÉPFHDWh. (A.28)

After substituting the derivatives in (A.27) and (A.28) into (A.26) and carrying out straightforward

algebraic manipulations and simplifying, ξD33 is found to be a scalar and can be obtained as

ξD33 = Eθ[hHWHDHFΣ−1MFHDWh] = hHWHDHFΣ−1MFHDWh, (A.29)

where M , diag
([

(2π 0
N

)2, (2π 1
N

)2, . . . , (2πN−1
N

)2
]T).

4) Computation of the remaining terms in (A.2): By following similar steps as in (A.13)-(A.29), it can

be found that

• ΞD12 = Eθ[Ψ12(θ,h, ε)] is an N × L matrix and given by:

ΞD12 =
−j
σ2
w

diag(hHWHDHF)FHDW (A.30)

and ΞD21 can be determined as ΞD21 = ΞT
D12

,

• ξD13 = Eθ[ψ13(θ,h, ε)] is a N × 1 vector and given by

ξD13 =
1

σ2
w

diag(hHWHDHF
√

M)FHDWh (A.31)
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and ξD31 can be determined as ξD31 = ξTD13
,

• ξD23 = Eθ[ψ23(θ,h, ε)] is a L× 1 vector and given by

ξD23 = jWHDHFΣ−1
√

MFHDWh (A.32)

and ξD32 can be determined as ξD32 = ξTD23
,

B. Computation of ΞP , Eθ|h,ε
[
−∆λ

λ log p(θ|h, ε)|h, ε
]

The second factor in HIM, defined in (A.1), can be written as:

ΞP = Eθ|h,ε
[
−∆λ

λ log p(θ|h, ε)|ε
]
,


ΞP11 ΞP12 ξP13

ΞP21 ΞP22 ξP23

ξP31 ξP32 ξP33



=


Eθ

[
−∆θ

θ log p(θ)
]

Eθ

[
−∆h

θ log p(θ)
]

Eθ [−∆ε
θ log p(θ)]

Eθ

[
−∆θ

h log p(θ)
]T Eθ

[
−∆h

h log p(θ)
]

Eθ [−∆ε
h log p(θ)]

Eθ

[
−∆θ

ε log p(θ)
]T Eθ

[
−∆h

ε log p(θ)
]

Eθ [−∆ε
ε log p(θ)] ,

 . (A.33)

where p(θ) is the prior distribution of θ.

1) Computation of ΞP11 , Eθ

[
−∆θ

θ log p(θ)
]
: From [37, eq.(19)], we obtain the N×N matrix Eθ

[
−∆θ

θ log p(θ)
]

as

ΞP11 =
−1

σ2
δ



−1 1 0 · · · 0

1 −2 1 0
...

0
. . . . . . . . . 0

... 0 1 −2 1

0 · · · 0 1 −1


. (A.34)

2) Computation of ΞP12 , Eθ

[
−∆h

θ log p(θ)
]
, ΞP21 , Eθ

[
−∆θ

h log p(θ)
]T , ΞP22 , Eθ

[
−∆h

h log p(θ)
]
,

ξP13 , Eθ [−∆ε
θ log p(θ)], ξP31 , Eθ

[
−∆θ

ε log p(θ)
]T , ξP23 , Eθ [−∆ε

h log p(θ)], ξP32 , Eθ

[
−∆h

ε log p(θ)
]
,
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and ξP33 , Eθ [−∆ε
ε log p(θ)]: Since CFO is a deterministic parameter and no prior knowledge of h is

assumed, we have

ΞP12 =ΞT
P21

= 0N×L, (A.35)

ΞP22 =0L×L, (A.36)

ξP13 =ξTP31
= 0N×1, (A.37)

ξP23 =ξTP32
= 0L×1, (A.38)

ξP33 =0. (A.39)

Using the above results, we can evaluate the HIM in (6), since B11 = ΞD11 +ΞP11 , B22 = ΞD22 +ΞP22 =

ΞD22 , b33 = ξD33 + ξP33 = ξD33 , B12 = BT
21 = ΞD12 + ΞP12 = ΞD12 , b13 = bT31 = ξD13 + ξP13 = ξD13 , and

b23 = bT32 = ξD23 + ξP23 = ξD23 .
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