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Estimation of Channel Transfer Function and Carrier
Frequency Offset for OFDM Systems

With Phase Noise
Jun Tao, Jingxian Wu, Member, IEEE, and Chengshan Xiao, Senior Member, IEEE

Abstract—The joint estimation of carrier frequency offset
(CFO) and channel transfer function (CTF) for orthogonal
frequency-division multiplexing (OFDM) systems with phase noise
is discussed in this paper. A CFO estimation algorithm is de-
veloped by exploring the time–frequency structure of specially
designed training symbols, and it provides a very accurate esti-
mation of the CFO in the presence of both unknown frequen-
cy-selective fading and phase noise. Based on the estimated CFO,
phase noise and frequency-selective fading are jointly estimated by
employing the maximum a posteriori (MAP) criterion. Specifically,
the fading channel is estimated in the form of the frequency-
domain CTF. The estimation of the CTF eliminates the require-
ment of a priori knowledge of channel length, and it is simpler
compared with the time-domain channel impulse response (CIR)
estimation methods used in the literature. Theoretical analysis
with the Cramer–Rao lower bound (CRLB) demonstrates that the
proposed CFO and CTF estimation algorithms can achieve near-
optimum performance.

Index Terms—Carrier frequency offset (CFO), channel esti-
mation, channel transfer function (CTF), maximum a posteriori
(MAP), orthogonal frequency-division multiplexing (OFDM),
phase noise.

I. INTRODUCTION

THE orthogonal frequency-division multiplexing (OFDM)
system has emerged as one of the most promising commu-

nication technologies for both wireless and wireline commu-
nications [1]–[5]. OFDM achieves broadband communication
by multiplexing a large number of narrow-band data streams
onto mutually orthogonal subcarriers via fast Fourier transform
(FFT). The adoption of FFT greatly reduces implementation
costs due to the advancement in digital signal processing and
the very large scale integrated circuit. Compared with the
single-carrier system, OFDM has higher spectral efficiency and
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is less sensitive to intersymbol interference (ISI). However, the
performance of OFDM systems is very sensitive to the carrier
frequency offset (CFO) and phase noise. The CFO is caused
by the Doppler shift and/or frequency mismatch between os-
cillators at the transmitter and the receiver; phase noise is the
phase difference between the carrier and the local oscillator
[6]. The CFO and phase noise, if not properly estimated and
compensated, will cause amplitude reduction and phase drift in
equalized symbols and introduce intercarrier interference, thus
degrading the performance of OFDM systems [7]–[16].

CFO and phase noise estimations for OFDM systems have
attracted considerable attention during the past decade [7]–[16].
A large number of algorithms have been developed for CFO
estimation, where the CFO can be estimated by utilizing either
specially designed training symbols [7], [8], redundant infor-
mation contained in the cyclic prefix (CP) [9], [10], or null
subcarriers embedded in one OFDM symbol [11], [12]. Works
on phase noise estimation and suppression for OFDM systems
can be found in [13]–[16]. In [13], a carrier recovery (CR)
scheme is performed in the time domain with the aid of CR
pilot tones for the estimation and compensation of phase noise.
In [14] and [15], phase noise is estimated by using a parametric
frequency-domain model of the received OFDM signal. In [16],
phase noise cancellation is achieved via approximate proba-
bilistic inference.

The proper operation of coherent OFDM systems demands
the joint estimation of CFO, phase noise, and channel state
information. In [17], the CFO is estimated and compensated
before channel estimation, and phase noise is suppressed by
passing the estimated channel impulse response (CIR) through
a low-pass filter originally designed for additive noise sup-
pression. In [18], joint CFO and channel estimation for multi-
input–multi-output (MIMO) OFDM systems is performed by
relying on null subcarriers and nonzero pilot symbols hopping
from block to block. This specifically designed pilot pattern
enables decoupling of CFO estimation and channel estimation.
However, the optimum solution in [18] requires an exhaustive
line search, which leads to high computational complexity.
The CFO, timing error, and CIR for a multiuser orthogonal
frequency-division multiple-access (OFDMA) uplink transmis-
sion are estimated in [19] with a maximum-likelihood (ML)
criterion. Again, the ML solution in [19] requires an exhaustive
search over a multidimensional grid spanned by CFOs and
timing errors from multiple users. Although simplifications
can be performed to reduce the search effort for the optimum
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solutions, the computational complexity is still high. A joint
CFO/phase noise/CIR estimator (JCPCE) is presented in [20].
Similar to [18] and [19], the JCPCE suffers from high com-
putational complexity due to the nonclosed-form estimation of
the CFO. To reduce the complexity of the JCPCE, a modified
JCPCE (MJCPCE) algorithm with closed-form CFO estimation
is developed in [20] by adopting a special training symbol
structure, as proposed in [7]. The MJCPCE algorithm requires
knowledge of channel length, which is usually not available at
the receiver before channel estimation. In addition, its practical
value is seriously limited by the fact that it can only estimate
the CFO with a value less than the frequency space between
two adjacent subcarriers.

We present in this paper an enhanced algorithm for the
efficient estimation of CFO, phase noise, and channel state
information. The new algorithm does not suffer from any of the
aforementioned limitations. CFO estimation is developed by
exploring the time–frequency properties of two consecutive
training symbols with structures similar to those used in [8].
The new method renders an accurate estimation of the CFO
in the presence of both unknown frequency-selective fad-
ing and phase noise. More importantly, the CFO can take
arbitrary values, as against the limitation imposed by the
MJCPCE that the CFO must be less than the subcarrier space
[20]. With the estimated CFO, phase noise and frequency-
selective fading are jointly estimated based on the maximum
a posteriori (MAP) criterion. In particular, the channel is
estimated in terms of the frequency-domain channel transfer
function (CTF), and it is different from the time-domain CIR
estimation method used in the MJCPCE. The adoption of the
CTF instead of the CIR leads to an estimator with lower
complexity and better accuracy. In addition, it eliminates the
requirement for a priori knowledge of channel length, which is
usually unavailable at the receiver before channel estimation.
The Cramer–Rao lower bound (CRLB) for the mean square
error (MSE) of CTF estimation is derived to benchmark the per-
formance of the proposed algorithm. Simulation results show
that the new channel estimator can achieve performance close to
the CRLB.

The remainder of this paper is organized as follows: In
Section II, an OFDM system model with CFO and phase noise
distortion is presented. In Section III, a CFO estimation method
is first developed by exploring the time–frequency structure of
the training symbols, and then, a joint phase noise and CTF esti-
mation algorithm is developed based on the CFO-compensated
signals. Simulation results are presented in Section V, and
Section VI concludes this paper.

II. SYSTEM MODEL

A baseband OFDM signal can be obtained by performing
normalized inverse discrete Fourier transform (IDFT) on a
group of modulated symbols s = [s0, s1, . . . , sN−1] ∈ C1×N at
the transmitter, i.e.,

xn =
1√
N

N−1∑
k=0

skej2π kn
N , −Np ≤ n < N (1)

where N is the number of subcarriers, and Np ≥ L is the length
of the CP, with L being the length of the equivalent discrete-
time CIR {hl}L−1

l=0 . The adoption of the CP removes ISI, and it
enables the conversion of linear channel convolution to circular
convolution, which leads to simple equalization at the receiver.

We consider slow frequency-selective fading in this paper.
The CIR is assumed to be constant over one slot duration, which
contains two OFDM training symbols, followed by multiple
OFDM data symbols [20]. The OFDM training symbol is gen-
erated by alternatively transmitting pilot symbols and zeros in
the frequency domain. Without loss of generality, it is assumed
that N/2 pilot symbols are transmitted on the even-indexed
subcarriers and zeros on the odd-indexed subcarriers. The time-
domain representation of the OFDM training symbol can then
be expressed as

xn =
1√
N/2

N/2−1∑
k=0

s2kej2π kn
N/2 , −Np ≤ n < N (2)

where {s2k}N/2−1
K=0 are pilot symbols, and the normalization

factor 1/
√

N/2 is used in (2) to maintain constant OFDM
symbol energy. The transmission of zeros on odd-indexed
subcarriers results in (N/2)-point IDFT in (2). In addition, it
is clear from (2) that the time-domain OFDM training symbol
has two identical halves, i.e., {xn}N/2−1

n=0 is exactly the same
as {xn}N−1

n=N/2. This property of the training symbol will be
exploited to assist CFO estimation.

At the receiver, after the removal of the CP, we have the time-
domain samples of the received OFDM training symbol as

yn = ej(2π nε
N +φn)(hn ⊗ xn) + vn

= ej(2π nε
N +φn) 1√

N/2

N/2−1∑
k=0

s2kH2kej2π kn
N/2 + vn (3)

where n = 0, 1, . . . , N − 1; ⊗ denotes circular convolution; vn

is the additive white Gaussian noise (AWGN) with variance σ2;
ε is the CFO normalized with respect to the subcarrier space
1/(NTs), with Ts being the sampling period at the receiver; φn

is the phase noise distortion; and the frequency-domain CTF
H2k is defined as

H2k =
L−1∑
l=0

hle
−j2π 2kl

N , 0 ≤ k ≤ N/2 − 1. (4)

It should be noted that the circular convolution in the first
equality of (3) is due to the insertion of the CP, and the
relationship described in (3) is valid as long as Np ≥ L.

Defining E = diag{1, ej2πε/N , . . . , ej2π(N−1)ε/N}, P =
diag{ejφ0 , ejφ1 , . . . , ejφN−1}, S = diag{s0, s2, . . . , sN−2},
and H = [H0,H2, . . . , HN−2]t, (3) can then be represented in
matrix format as

y = EPF̃hSH + v (5)

where y = [y0, y1, . . . , yN−1]t; v = [v0, v1, . . . , vN−1]t; (·)t

and (·)h stand for transpose and Hermitian transpose, respec-
tively; and F̃ = [FN/2,FN/2] ∈ C(N/2)×N , with FN/2 being
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the (N/2)-point normalized DFT matrix. The (k, l)th element
of FN/2 is (FN/2)k,l = (1/

√
N/2)e−(j2π(k−1)(l−1))/(N/2).

The statistical properties of phase noise depend on specific
receiver implementations [6]. For a receiver equipped with a
phase-locked loop (PLL), phase noise can be modeled as a
zero-mean colored stationary Gaussian process [6]. When the
system is only frequency locked, phase noise is modeled as a
zero-mean nonstationary Wiener process [21]. Since the PLL
is necessary for a coherent receiver, the stationary Gaussian
process model, which has extensively been used in the literature
[13], [16], [20], [22], is adopted in this paper. In this case, φ =
[φ0, φ1, . . . , φN−1]t has a multivariate Gaussian distribution of
φ ∼ N (0N ,Rφ), where the mean vector 0N is a size N × 1
all-zero vector, and Rφ is the covariance matrix of φ. The value
of Rφ can be calculated with the specifications of a phase-
locked voltage-controlled oscillator [21].

III. DEVELOPMENT OF THE ESTIMATION ALGORITHM

A. CFO Estimation in the Presence of Unknown
Fading and Phase Noise

Based on the training symbol property xn = xn+N/2, for
n = 0, . . . , N/2 − 1, the received time-domain training sam-
ples yn and yn+N/2 are the same, except for a phase difference
in the absence of additive noise and phase noise [cf. (3)], i.e.,

y∗
nyn+N/2 = |yn|2ejπε. (6)

Obviously, (6) is a periodic function of ε with period 2z, where
z is an integer. Thus, the CFO can be estimated by measuring
the phase difference between y1 = [y0, y1, . . . , yN/2−1]t and
y2 = [yN/2, yN/2+1, . . . , yN−1]t, up to an ambiguity 2z. In
[20], CFO estimation with additive noise and phase noise
rejection is performed in the time domain by measuring the
phase difference between y1 and y2, and the result can be
written as

ε̂ =
1
π

�
[
yh

1

(
Y1RΔYh

1 + 2σ2IN/2

)−1
y2

]
(7)

where �a ∈ (−π, π] returns the phase of the complex-valued
number a; Y1 = diag{y1}, with diag{a} being a diagonal
matrix with the vector a on its diagonal; IN/2 is a size N/2
identity matrix; and RΔ = 2RN/2 − Υ − Υt, with RN/2 ∈
C(N/2)×(N/2) and Υ ∈ C(N/2)×(N/2) being submatrices of Rφ,
which is expressed as follows:

Rφ =

[
RN/2 Υ

Υt RN/2

]
. (8)

The CFO estimation described in (7) implies that the esti-
mated CFO satisfies |ε̂| < 1. When the actual CFO is larger than
the subcarrier space, or |ε| > 1, it fails to solve the ambiguity
2z, with z being a nonzero integer, as indicated by (6). In other
words, if we denote the CFO by ε = ε0 + 2z, with |ε0| < 1,
then only the fractional CFO ε0 is estimated from (7).

We propose to estimate the integer part of the CFO, i.e., 2z,
in the frequency domain by utilizing two consecutive OFDM

training symbols. From (3), the received samples of the first
and second OFDM training symbols can be written as

y1,n =

√
2
N

ej2π nε
N ejφn

N/2−1∑
k=0

s1,2kH2kej2π kn
N/2 + v1,n

(9a)

y2,n =

√
2
N

ej2π
(n+N+Np)ε

N ejφn+N+Np

×
N/2−1∑

k=0

s2,2kH2kej2π kn
N/2 + v2,n (9b)

where n = 0, 1, . . . , N − 1 for both y1,n and y2,n. The ratio

of the two training sequences {s1,2k}N/2−1
k=0 and {s2,2k}N/2−1

k=0

is set to be equal to a predefined pseudonoise (PN) sequence
{αk}N/2−1

k=0 , i.e., s2,2k/s1,2k = αk.
The fractional CFO ε0 is estimated with (7) and then com-

pensated in y1,n and y2,n, respectively, leading to the following
approximation:

ŷ1,n ≈
√

2
N

N/2−1∑
k=0

s1,2kH2kej2π
(k+z)n

N/2 + v̂1,n (10a)

ŷ2,n ≈
√

2
N

ej4π
zNp

N

N/2−1∑
k=0

s2,2kH2kej2π
(k+z)n

N/2 + v̂2,n

(10b)

where v̂1,n and v̂2,n are the noise components after
fractional CFO compensation, and the approximation
ej[φn+2πn(ε0−̂ε0)/N ] ≈ 1 is used in the preceding equations
based on the fact that the combined disturbance of the phase
noise and residual CFO is usually small in practice [13]. It
should be noted that the approximation used in (10) is only
for the convenience of integer CFO estimation. The actual
phase noise will be estimated and compensated during channel
estimation described in the next section. It will be shown in
simulation that the integer CFO 2z can accurately be estimated,
even with the approximation used in (10).

The estimation of 2z is performed in the frequency domain.
Performing N -point DFT on ŷ1,n and ŷ2,n leads to

Ŷ1,k =
√

2s1,(k−2z)N
H(k−2z)N

+ V̂1,k (11a)

Ŷ2,k =
√

2ej4πzNp/Ns2,(k−2z)N
H(k−2z)N

+ V̂2,k (11b)

where (·)N denotes modulus N operation, and Ŷi,k and V̂i,k are
the DFTs of ŷi,n and v̂i,n, respectively, for i = 1 and 2. There
is a phase difference ej4πzNp/N between Ŷ1,k and Ŷ2,k in the
frequency domain, and the phase difference is independent of
the subcarrier index k. Define the metric used to estimate z as

M(z) =

∣∣∣∣∣∣
N/2−1∑

k=0

Ŷ ∗
1,2k+2zα

∗
kŶ2,2k+2z

∣∣∣∣∣∣ (12)

where (·)∗ denotes complex conjugate. With M(z) defined in
(12), the estimated value of z is obtained as

ẑ = arg max
z∈I

M(z). (13)
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The estimation of the CFO, i.e., ε = ε0 + 2z, can then be
expressed as ε̂ = ε̂0 + 2ẑ.

It should be noted that with the estimation method derived
from (11) and (12), the value of the integer CFO z must satisfy
|z| < N/4, due to the fact that both Ŷ1,k and Ŷ2,k in (11) are
periodic functions of z with period N/2. In a practical OFDM
system, it is reasonable to assume that the CFO (proportional to
2z) is much less compared with the OFDM signal bandwidth
(proportional to N ). Therefore, the additional restriction of
|z| < N/4 can be met in most practical OFDM systems.

An alternative null-subcarrier-based suboptimum integer
CFO estimation algorithm was presented in [11] by transmitting
zeros not only on odd subcarriers but on part of the even subcar-
riers of the OFDM training symbol as well. While the method
requires only one OFDM training symbol, the reduction in the
number of nonnull even-indexed subcarriers leads to inferior
estimation of the overall CIR. Simulation results show that
the algorithm proposed in this paper obtains a more accurate
estimation of the CFO compared with that in [11] at a low
signal-to-noise ratio (SNR).

B. Joint Phase Noise and CTF Estimation

With the estimated CFO ε̂, we are able to construct Ê =
diag{1, ej2πε̂/N , . . . , ej2πε̂(N−1)/N} as the CFO compensation
matrix. Multiplying both sides of (5) with Êh leads to

ỹ = PeffF̃hSH + ṽ (14)

where ỹ = Êhy, and Peff = (ΔE)P is the effective phase
noise matrix after CFO compensation, with ΔE = diag{1,
ej2πΔε/N , . . . , ej2πΔε(N−1)/N} being a phase rotation matrix
due to the CFO estimation error Δε = ε − ε̂. The equivalent
noise ṽ = Êhv is still the AWGN with a covariance matrix σ2I.

The effective phase noise matrix can alternatively be
represented as Peff =diag{φeff}, where φeff =[φ0, φ1+
2π(Δε/N), . . . , φN−1+2π(Δε(N−1)/N)]t. The vector φeff

has a multivariate Gaussian distribution of φeff ∼ N (0,Rφeff ).
The covariance matrix Rφeff depends on the variance of the
residual CFO Δε. At a high SNR, the variance of Δε can be
approximated by [7], [8]

σ2
Δε =

1
π2 · (N/2) · γ (15)

where γ denotes the SNR in linear scale. Therefore, the covari-
ance matrix of φeff can accurately be approximated as Rφeff =
Rφ+(8/(N3γ))T, where T=bbt, with b=[0, 1, . . . , N−1]t.
Noting the fact that the scaling factor 8/(N3γ) of T is inversely
proportional to N3, whereas the maximum element in T is on
the order of N2, we conclude that the effect of the residual
CFO on phase noise is negligible for practical values of N .
As a result, it is reasonable to assume that φeff has the same
distribution as φ, i.e., φeff ∼ N (0,Rφ). Simulation results
show that the assumption of φeff ∼ N (0,Rφ) is valid under
both low and high SNRs, and it does not apparently affect the
accuracy of the proposed channel estimation method.

The MAP criterion is adopted for the joint estimation of φeff

and H. From (14), the a posteriori probability density of φeff

and H can be written as

p(φeff ,H|ỹ) = p(ỹ|φeff ,H)p(φeff)p(H)/p(ỹ) (16)

where it is assumed that φeff and H are mutually indepen-
dent. In practice, a priori knowledge of channel is usually
unavailable; therefore, it is reasonable to treat H as an unknown
constant during channel estimation. Thus, p(H) = 1. From
(16), the negative log-likelihood function can be written as

L(φeff ,H) = −log p(φeff ,H|ỹ)
= −log p(ỹ|φeff ,H) − log p(φeff) + log p(ỹ).

(17)

Discarding irrelevant constants and noting that p(ỹ) is irrele-
vant to specific values of φeff and H, we define the cost function
for the MAP criterion as

J (φeff ,H) =
1
σ2

‖ỹ − PeffF̃hSH‖2 +
1
2
φt

effR−1
φ φeff (18)

where ‖a‖2 = aha for a column vector a.
Solving ∂J (φeff ,H)/∂H∗ = 0 leads to the optimal estima-

tion of the CTF vector H, i.e.,

Ĥ =
1
2
S−1F̃Ph

eff ỹ. (19)

The solution in (19) requires knowledge of effective phase
noise matrix Peff . When Peff is ideally estimated, the channel
estimator given by (19) is a minimum variance unbiased esti-
mator (MVUE) for H [23].

To estimate Peff , substituting (19) into (18) yields

J (φeff) =
1
σ2

ptBp∗ +
1
2
φt

effR−1
φ φeff (20)

where p = ejφeff , B = Ỹh(IN − (1/2)F̃hF̃)Ỹ, and Ỹ =
diag{ỹ}. Using the approximation of p = ejφeff ≈ 1N +
jφeff for small φeff [13] and solving ∂J (φeff)/∂φeff = 0, we
have the optimal estimation of φeff as

φ̂eff =
[
Re(B) + (σ2/2)R−1

φ

]−1

Im(B)1N (21)

where Re(·) and Im(·) are the real and imaginary part oper-
ators, respectively, and 1N denotes an N × 1 all-one column
vector. Obviously, the estimation of φ̂eff is independent of the
modulation data matrix S, which, on the other hand, is required
by the MJCPCE method in [20]. The independence of the
estimation on S leads to a much simpler form of the estimator,
which requires less computational complexity and no a priori
knowledge of transmitted modulation symbols, as compared
with the phase noise estimator provided by MJCPCE method.

The estimated value of φ̂eff can then be substituted back
into (19) to obtain an estimate of the CTF vector Ĥ. Equation
(19) provides an estimation of H ∈ C(N/2)×1, which is the CTF
of even-indexed subcarriers. The estimation of the normalized
CTF on all subcarriers can be calculated from Ĥ as

Ĥfull =
√

2/NFN

[(
Fh

N/2Ĥ
)t

0t
N/2

]t

(22)
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where FN is the N -point normalized DFT matrix, with the
(k, l)th element being (FN )k,l = (1/

√
N)e−j2π(k−1)(l−1)/N ;

and 0N/2 is an all-zero column vector with size N/2. Further-
more, the time-domain channel CIR h = [h0, h1, . . . , hL−1]t

can be estimated by performing IDFT over the estimated CTF
vector Ĥ as [cf. (4)]

ĥ =
√

2/NFh
1:LĤ (23)

where F1:L ∈ C(N/2)×L contains the first L columns of the
(N/2)-point DFT matrix FN/2. In the case that the channel
length L is unknown, the matrix F1:L can be replaced by FN/2.
Replacing F1:L with FN/2 leads to an estimated CIR with N/2
channel taps, where the first L channel taps are exactly the same
as those estimated by using F1:L, and the remaining N/2 − L
channel taps contain pure noise. In this case, the estimation
accuracy can be improved by either directly discarding channel
taps with negligible power [24] or applying the noise-reduction
algorithm [25].

Compared with the MJCPCE method presented in [20], the
algorithm proposed in this paper has three main advantages:
First, the new algorithm can accurately estimate the CFO with
arbitrary values, whereas the method in [20] can only estimate
the CFO with a value less than the subcarrier space. Second, es-
timating the frequency-domain CTF instead of the time-domain
CIR leads to a simpler estimator with lower computational com-
plexity. Third, knowledge of channel length L is not required
during CTF estimation, whereas the estimation procedure in
[20] depends on L. The newly presented estimation method
can easily be extended to single-input–multiple–output (SIMO)
systems with independent CFO, phase noise, and fading chan-
nel on different receive antennas.

IV. CRLB FOR OFDM CHANNEL ESTIMATION

The CRLBs of the MSE for the estimation of the frequency-
domain CTF, i.e., H and Hfull, and the time-domain CIR, i.e.,
h, are derived in this section.

In the absence of CFO and phase noise, the log-likelihood
function log p(y|H) can be calculated from (5) as

log p(y|H) = c − 1
σ2

(y − F̃hSH)h(y − F̃hSH) (24)

where c is a constant, independent of y and H. The CRLB for
the estimation of H can then be calculated as

CRLB(H) = tr

⎧⎨
⎩

[
E

{[
∂

∂H∗ [log p(y|H)]
]

×
[

∂

∂H∗ [log p(y|H)]
]h

}]−1
⎫⎬
⎭

=
σ2

2
tr

{{
E[ShS]

}−1
}

(25)

where tr{·} denotes the trace of a square matrix, and E{·}
denotes the mathematical expectation. Based on (22) and (25),

it is easy to obtain the CRLB for the estimation of normalized
Hfull as

CRLB(Hfull) =
2
N

× CRLB(H) =
σ2

N
tr

{{
E[ShS]

}−1
}

.

(26)

Similarly, from (23) and (25), the CRLB for the estimation
of the CIR vector h is obtained as

CRLB(h) =
σ2

N
tr

{{
Fh

1:LE[ShS]F1:L

}−1
}

. (27)

If the modulation symbols are equiprobable and independent,
i.e., E[ShS] = σ2

sI, then (26) and (27) can be simplified to

CRLB(Hfull) =
1
2
· σ2

σ2
s

(28)

CRLB(h) =
L

N
· σ2

σ2
s

. (29)

We conclude this section with the following two remarks.
Remark 1: From (28) and (29), we find CRLB(Hfull) �=

CRLB(h) when N �= 2L. The difference is due to the fact that
the estimation of h in (23) depends on knowledge of channel
length L, whereas Hfull is estimated without knowledge of L.

Remark 2: From (19), the channel-estimation MSE can be
evaluated as

E

[
‖H − Ĥ‖2

]
=

σ2

2
tr

{
E

[
(SSh)−1

]}
(30)

which is equal to the CRLB given by (25) when the constant
modulus modulation scheme, such as phase-shift keying (PSK),
is adopted. In other words, if Peff is ideally estimated, then the
CRLB for the estimation of Ĥ can be achieved for systems
with constant modulus modulation. On the other hand, for
a nonconstant modulus-modulation scheme, the MSE in (30)
is always larger than the CRLB bound in (25). This means
that even if the obtained estimator is still the MVUE, the
CRLB can never be reached for systems with nonconstant
modulus-modulation schemes. Therefore, in terms of channel
estimation, constant modulus-modulation schemes are prefer-
able compared with nonconstant modulus-modulation schemes
under the same energy constraint.

V. SIMULATION

Simulation results are presented in this section to verify the
performance of the proposed algorithm. System parameters
similar to those used in [20] are adopted here for comparison
purposes: The number of subcarriers is N = 64, and the system
sampling rate is fs = 1/Ts = 20 MHz, leading to a subcarrier
space of Δf = fs/N = 312.5 kHz. Phase noise is simulated
by passing a white Gaussian process through a one-pole But-
terworth low-pass filter with a 3-dB bandwidth fo = 100 kHz.
The covariance matrix of phase noise Rφ is calculated as
(Rφ)m,n = (πφrms/180)2 exp{−2πfo|m − n|/fs}. The frac-
tional CFO ε0 is generated as a uniform distribution over (−1,
1), and the integer CFO z is randomly taken from [−zm, zm],
with |zm| < N/4. Frequency-selective fading has a power
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Fig. 1. CFO estimation error (ε0 ∈ (−1, 1), z ∈ [−14, 14], QPSK).

Fig. 2. Average |Δε| versus SNR (ε0 ∈ (−1, 1), z ∈ [−14, 14], QPSK).

delay profile of 1.2257 × e−0.8l (0 ≤ l < L), which is normal-
ized to unit energy. The CP length Np is selected so that ISI
is avoided among OFDM symbols. Unless otherwise specified,
QPSK modulation is adopted, and φrms is set to 6◦ in the sim-
ulations. The PN sequence {αk}N/2−1

k=0 is randomly generated
from the set {1, j,−j,−1}.

We first investigate the accuracy of CFO estimation. The
channel length is chosen as L = 8. The integer CFO is in the
range of [−14, 14] ⊂ [−(N/4 − 1), N/4 − 1], with N/4 − 1
being the maximum integer CFO that can be estimated by
the proposed method. Fig. 1 plots the residual CFO Δε =
ε − ε̂ at different SNRs. For each SNR, 300 independent CFO
estimations are performed at the presence of phase noise.
From the figure, it is obvious that the residual CFO Δε is
consistently less than 0.2. This observation indicates that the
proposed algorithm can accurately estimate the integer part of
the CFO without error, i.e., ẑ = z, at the presence of unknown
frequency-selective fading and phase noise.

The 1000-times averaged absolute residual CFO |Δε| is
shown in Fig. 2 as a function of the SNR, with Np = N/4 and
Np = N/8, respectively. For comparison purposes, the results

Fig. 3. CTF estimation MSE versus SNR (QPSK, ε0 ∈ (−1, 1), z = 0).

obtained with the CFO estimation method in [11] are also
shown in this figure. For fairness of comparison, the power of
the pilot symbol used in the method of [11] is maintained to
be the same as the pilot symbol in our proposed method. As
expected, the average absolute CFO estimation error for both
methods monotonically decreases with the increase of the SNR.
The proposed method is better than [11] at a low SNR. When
the SNR is high, the residual CFO |Δε| from both methods is
very small and, thus, has a negligible impact on the subsequent
channel estimation.

The performance of the joint phase noise and CTF estimation
algorithm is studied in the next example, where the channel
length is set as L = 10, and Np = N/4. We first consider
the case when |ε| < 1, and the performance of systems with
arbitrary ε is discussed in the next example. Fig. 3 illustrates
the MSE and the corresponding CRLB of the estimated nor-
malized CTF Ĥfull in the presence of phase noise. The results
from the MJCPCE method [20] and the proposed algorithm
neglecting phase noise are also shown in the figure for com-
parison. Obviously, the new algorithm achieves performance
that is very close to the CRLB. As expected, the estimation
performance degrades when phase noise is ignored. For the
MJCPCE method, it has been shown in [20] that its MSE per-
formance is very close to the CRLB when |ε| < 0.4. However,
its performance degrades when the range of ε is extended to
(−1, 1), as evidenced in Fig. 3. The performance degradation
of the MJCPCE method is caused by phase flipping introduced
during CFO estimation. Phase flipping refers to the case when
−π is estimated as π, or vice versa, when the phase difference
πε in (6) approaches −π or π. The performance of the MJCPCE
method greatly suffers from phase flipping, even in systems
with only fractional CFO. Due to phase flipping, the inclusion
of CFO estimation and compensation in the MJCPCE results
in worse performance compared with the case when the CFO is
not estimated at all. Phase flipping also happens in the proposed
method. However, the incorrectly estimated fractional CFO
caused by phase flipping can easily be corrected by integer
CFO estimation. Therefore, the performance of the proposed
method is not affected by phase flipping. Similar results are
observed for CIR estimation, as shown in Fig. 4. We repeat



4386 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 8, OCTOBER 2009

Fig. 4. CIR estimation MSE versus SNR (QPSK, ε0 ∈ (−1, 1), z = 0).

Fig. 5. CIR estimation MSE versus SNR (QPSK, ε0 ∈ (−1, 1), z ∈ [−4, 4]).

the simulations for systems with 8PSK modulation and observe
that the proposed algorithm performs consistently well and has
better performance than the MJCPCE method. Finally, we note
that the unresolvable residual common-phase rotation (RCPR),
which means that phase noise can accurately be estimated but
differs from that of the actual by a constant phase rotation, also
exists in the proposed method, as in [20]. Detailed analysis of
the cause of the RCPR is given in [20].

The next example demonstrates channel estimation perfor-
mance when the integer CFO z is introduced, in addition to the
fractional CFO ε0. The maximum integer CFO is set as zm = 4.
The MSE results, along with the CRLB of CIR estimation, are
presented in Fig. 5. As expected, the MJCPCE method, which
neglects the integer CFO, does not properly function under such
a system configuration. The proposed scheme, on the other
hand, consistently works well, regardless of the presence of the
integer CFO.

The uncoded bit error rates (BERs) obtained from different
channel-estimation algorithms are compared in Fig. 6. Phase
noise has a standard deviation of φrms = 10◦. Each slot consists
of 52 OFDM symbols, with the first two as training symbols.
Each BER point is obtained by simulating 1000 slots. The

Fig. 6. BER versus SNR (ε0 ∈ (−1, 1), z = 0, QPSK).

BER curve for the system with ideal channel estimation is
plotted as a reference. The performance of the system with the
proposed channel-estimation method is only 0.5 dB away from
the system with ideal channel estimation. This corroborates the
MSE results presented in the previous figures.

VI. CONCLUSION

A new channel-estimation algorithm for OFDM systems with
CFO and phase noise has been presented in this paper. The CFO
was estimated by a hybrid time–frequency estimation method.
Specifically, the fractional part of the CFO was estimated by
identifying the phase difference between the time-domain sam-
ples from the same training symbol, whereas the integer part of
the CFO was estimated by utilizing the frequency-domain sam-
ples residing on the same subcarrier but belonging to different
training symbols. Simulation results show that the integer part
of the CFO can be estimated without error, even at a low SNR.
With the CFO-compensated signal, a joint phase noise and CTF
estimation algorithm was developed by employing the MAP
criterion over the time-domain samples. Compared with the
CIR estimation algorithm in the literature, the new algorithm
has lower complexity and better accuracy, and it can operate
without knowledge of channel length in the time domain.
Simulation results show that the joint phase noise and CTF
estimation algorithm achieves MSE performance close to the
CRLB. The proposed estimation method can easily be extended
to SIMO OFDM systems with independent fading channels.
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