37,930 research outputs found

    Partout: A Distributed Engine for Efficient RDF Processing

    Full text link
    The increasing interest in Semantic Web technologies has led not only to a rapid growth of semantic data on the Web but also to an increasing number of backend applications with already more than a trillion triples in some cases. Confronted with such huge amounts of data and the future growth, existing state-of-the-art systems for storing RDF and processing SPARQL queries are no longer sufficient. In this paper, we introduce Partout, a distributed engine for efficient RDF processing in a cluster of machines. We propose an effective approach for fragmenting RDF data sets based on a query log, allocating the fragments to nodes in a cluster, and finding the optimal configuration. Partout can efficiently handle updates and its query optimizer produces efficient query execution plans for ad-hoc SPARQL queries. Our experiments show the superiority of our approach to state-of-the-art approaches for partitioning and distributed SPARQL query processing

    A Smirnov-Bickel-Rosenblatt theorem for compactly-supported wavelets

    Full text link
    In nonparametric statistical problems, we wish to find an estimator of an unknown function f. We can split its error into bias and variance terms; Smirnov, Bickel and Rosenblatt have shown that, for a histogram or kernel estimate, the supremum norm of the variance term is asymptotically distributed as a Gumbel random variable. In the following, we prove a version of this result for estimators using compactly-supported wavelets, a popular tool in nonparametric statistics. Our result relies on an assumption on the nature of the wavelet, which must be verified by provably-good numerical approximations. We verify our assumption for Daubechies wavelets and symlets, with N = 6, ..., 20 vanishing moments; larger values of N, and other wavelet bases, are easily checked, and we conjecture that our assumption holds also in those cases

    On Defining SPARQL with Boolean Tensor Algebra

    Full text link
    The Resource Description Framework (RDF) represents information as subject-predicate-object triples. These triples are commonly interpreted as a directed labelled graph. We propose an alternative approach, interpreting the data as a 3-way Boolean tensor. We show how SPARQL queries - the standard queries for RDF - can be expressed as elementary operations in Boolean algebra, giving us a complete re-interpretation of RDF and SPARQL. We show how the Boolean tensor interpretation allows for new optimizations and analyses of the complexity of SPARQL queries. For example, estimating the size of the results for different join queries becomes much simpler

    Numerical Fitting-based Likelihood Calculation to Speed up the Particle Filter

    Get PDF
    The likelihood calculation of a vast number of particles is the computational bottleneck for the particle filter in applications where the observation information is rich. For fast computing the likelihood of particles, a numerical fitting approach is proposed to construct the Likelihood Probability Density Function (Li-PDF) by using a comparably small number of so-called fulcrums. The likelihood of particles is thereby analytically inferred, explicitly or implicitly, based on the Li-PDF instead of directly computed by utilizing the observation, which can significantly reduce the computation and enables real time filtering. The proposed approach guarantees the estimation quality when an appropriate fitting function and properly distributed fulcrums are used. The details for construction of the fitting function and fulcrums are addressed respectively in detail. In particular, to deal with multivariate fitting, the nonparametric kernel density estimator is presented which is flexible and convenient for implicit Li-PDF implementation. Simulation comparison with a variety of existing approaches on a benchmark 1-dimensional model and multi-dimensional robot localization and visual tracking demonstrate the validity of our approach.Comment: 42 pages, 17 figures, 4 tables and 1 appendix. This paper is a draft/preprint of one paper submitted to the IEEE Transaction
    • …
    corecore