2,481 research outputs found

    Experimental Verification of a Harmonic-Rejection Mixing Concept using Blind Interference Canceling

    Get PDF
    Abstract—This paper presents the first practical experiments\ud on a harmonic rejection downconverter, which offers up to 75 dB of harmonic rejection, without an RF filter. The downconverter uses a two-stage approach; the first stage is an analog multipath/ multi-phase harmonic rejection mixer followed by a second stage providing additional harmonic rejection based on blind adaptive interference canceling in the discrete-time domain. The aim is to show its functional operation and to find practical performance limitations. Measurement results show that the harmonic rejection of the downconverter is insensitive to frontend nonlinearities and LO phase noise. The canceler cannot cope with DC offsets. The DC offsets are removed by highpass filters. The signal paths used to obtain an estimate of the interference must\ud be designed to provide as much attenuation of the desired signal as possible

    Digital instrumentation for the measurement of high spectral purity signals

    Get PDF
    Improvements on electronic technology in recent years have allowed the application of digital techniques in time and frequency metrology where low noise and high accuracy are required, yielding flexibility in systems implementation and setup. This results in measurement systems with extended capabilities, additional functionalities and ease of use. The Analog to Digital Converters (ADCs) and Digital to Analog Converters (DACs), as the system front-end, set the ultimate performance of the system in terms of noise. The noise characterization of these components will allow performing punctual considerations on the study of the implementation feasibility of new techniques and for the selection of proper components according to the application requirements. Moreover, most commercial platforms based on FPGA are clocked by quartz oscillators whose accuracy and frequency stability are not suitable for many time and frequency applications. In this case, it is possible to take advantage of the internal Phase Locked Loop (PLL) for generating the internal clock from an external frequency reference. However, the PLL phase noise could degrade the oscillator stability thereby limiting the entire system performance becoming a critical component for digital instrumentation. The information available currently in literature, describes in depth the features of these devices at frequency offsets far from the carrier. However, the information close to the carrier is a more important concern for time and frequency applications. In this frame, my PhD work is focused on understanding the limitations of the critical blocks of digital instrumentation for time and frequency metrology. The aim is to characterize the noise introduced by these blocks and in this manner to be able to predict their effects on a specific application. This is done by modeling the noise introduced by each component and by describing them in terms of general and technical parameters. The parameters of the models are identified and extracted through the corresponding method proposed accordingly to the component operation. This work was validated by characterizing a commercially available platform, Red Pitaya. This platform is an open source embedded system whose resolution and speed (14 bit, 125 MSps) are reasonably close to the state of the art of ADCs and DACs (16 bit, 350 MSps or 14 bit, 1 GSps/3GSPs) and it is potentially sufficient for the implementation of a complete instrument. The characterization results lead to the noise limitations of the platform and give a guideline for instrumentation design techniques. Based on the results obtained from the noise characterization, the implementation of a digital instrument for frequency transfer using fiber link was performed on the Red Pitaya platform. In this project, a digital implementation for the detection and compensation of the phase noise induced by the fiber is proposed. The beat note, representing the fiber length variations, is acquired directly with a high speed ADC followed by a fully digital phase detector. Based on the characterization results, it was expected a limitation in the phase noise measurement given by the PLL. First measurements of this implementation were performed using the 150 km-long buried fibers, placed in the same cables between INRiM and the Laboratoire Souterrain de Modane (LSM) on the Italy-France border. The two fibers are joined together at LSM to obtain a 300 km loop with both ends at INRiM. From these results the noise introduced by the digital system was verified in agreement with characterization results. Further test and improvements will be performed for having a finished system which is intended to be used on the Italian Link for Frequency and Time from Turin to Florence that is 642-km long and to its extension in the rest of Italy that is foreseen in the next future. Currently, a higher performance platform is under assessment by applying the tools and concepts developed along the PhD. The purpose of this project is the implementation of a state of the art phasemeter whose architecture is based on the DAC. In order to estimate the ultimate performance of the instrument, the DAC characterization is under development and preliminary measurements are also reported here

    The Advanced LIGO timing system

    Get PDF
    Gravitational wave detection using a network of detectors relies upon the precise time stamping of gravitational wave signals. The relative arrival times between detectors are crucial, e.g. in recovering the source direction, an essential step in using gravitational waves for multi-messenger astronomy. Due to the large size of gravitational wave detectors, timing at different parts of a given detector also needs to be highly synchronized. In general, the requirement toward the precision of timing is determined such that, upon detection, the deduced (astro-) physical results should not be limited by the precision of timing. The Advanced LIGO optical timing distribution system is designed to provide UTC-synchronized timing information for the Advanced LIGO detectors that satisfies the above criterium. The Advanced LIGO timing system has modular structure, enabling quick and easy adaptation to the detector frame as well as possible changes or additions of components. It also includes a self-diagnostics system that enables the remote monitoring of the status of timing. After the description of the Advanced LIGO timing system, several tests are presented that demonstrate its precision and robustness

    A selectable-bandwidth 3.5 mW, 0.03 mm(2) self-oscillating Sigma Delta modulator with 71 dB dynamic range at 5 MHz and 65 dB at 10 MHz bandwidth

    Get PDF
    In this paper we present a dual-mode third order continuous time Sigma Delta modulator that combines noise shaping and pulse-width-modulation (PWM). In our 0.18 micro-m CMOS prototype chip the clock frequency equals 1 GHz, but the PWM carrier is only around 125 MHz. By adjusting the loop filter, the ADC bandwidth can be set to 5 or 10 MHz. In the 5 MHz mode the peak SNDR equals 64 dB and the dynamic range 71 dB. In the 10 MHz mode the peak SNDR equals 58 dB and the DR 65 dB. This performance is achieved at an attractively low silicon area of 0.03 mm^2 and a power consumption of 3.5 mW

    A jittered-sampling correction technique for ADCs

    Get PDF
    In Analogue to Digital Converters (ADCs) jittered sampling raises the noise floor; this leads to a decrease in its Signal to Noise ratio (SNR) and its effective number of bits (ENOB). This research studies a technique that compensate for the effects of sampling with a jittered clock. A thorough understanding of sampling in various data converters is complied

    From analog to digital

    Get PDF
    Analog-to-digital conversion and its reverse, digital-to-analog conversion, are ubiquitous in all modern electronics, from instrumentation and telecommunication equipment to computers and entertainment. We shall explore the consequences of converting signals between the analog and digital domains and give an overview of the internal architecture and operation of a number of converter types. The importance of analog input and clock signal integrity will be explained and methods to prevent or mitigate the effects of interference will be shown. Examples will be drawn from several manufacturers' datasheets

    Contribución al modelado y diseño de moduladores sigma-delta en tiempo continuo de baja relación de sobremuestreo y bajo consumo de potencia

    Get PDF
    Continuous-Time Sigma-Delta modulators are often employed as analog-to-digital converters. These modulators are an attractive approach to implement high-speed converters in VLSI systems because they have low sensitivity to circuit imperfections compared to other solutions. This work is a contribution to the analysis, modelling and design of high-speed Continuous-Time Sigma-Delta modulators. The resolution and the stability of these modulators are limited by two main factors, excess-loop delay and sampling uncertainty. Both factors, among others, have been carefully analysed and modelled. A new design methodology is also proposed. It can be used to get an optimum high-speed Continuous-Time Sigma-Delta modulator in terms of dynamic range, stability and sensitivity to sampling uncertainty. Based on the proposed design methodology, a software tool that covers the main steps has been developed. The methodology has been proved by using the tool in designing a 30 Megabits-per-second Continuous-Time Sigma-Delta modulator with 11-bits of dynamic range. The modulator has been integrated in a 0.13-”m CMOS technology and it has a measured peak SNR of 62.5dB
    • 

    corecore